Theory of $b \rightarrow s \ell \ell$:

New Physics Fits and Hadronic Contributions

Javier Virto

Universität Bern

Current Trends in Flavor Physics - Paris, March 29, 2017

b
UNIVERSITÄT
BERN

:: Effective Theory for $b \rightarrow s$ Transitions

For $\Lambda_{\mathrm{EW}}, \Lambda_{\mathrm{NP}} \gg M_{B}$: General model-independent parametrization of NP :

$$
\begin{array}{cl}
\mathcal{L}_{W}=\mathcal{L}_{\mathrm{QCD}}+\mathcal{L}_{\mathrm{QED}}+\frac{4 G_{F}}{\sqrt{2}} V_{t b} V_{t s}^{\star} \sum_{i} \mathcal{C}_{i}(\mu) \mathcal{O}_{i}(\mu) \\
\mathcal{O}_{1}=\left(\bar{c} \gamma_{\mu} P_{L} b\right)\left(\bar{s} \gamma^{\mu} P_{L} c\right) & \mathcal{O}_{2}=\left(\bar{c} \gamma_{\mu} P_{L} T^{a} b\right)\left(\bar{s} \gamma^{\mu} P_{L} T^{a} c\right) \\
\mathcal{O}_{7}=\frac{e}{16 \pi^{2}} m_{b}\left(\bar{s} \sigma_{\mu \nu} P_{R} b\right) F^{\mu \nu} & \mathcal{O}_{7^{\prime}}=\frac{e}{16 \pi^{2}} m_{b}\left(\bar{s} \sigma_{\mu \nu} P_{L} b\right) F^{\mu \nu} \\
\mathcal{O}_{9 \ell}=\frac{\alpha}{4 \pi}\left(\bar{s} \gamma_{\mu} P_{L} b\right)\left(\bar{\ell} \gamma^{\mu} \ell\right) & \mathcal{O}_{9^{\prime} \ell}=\frac{\alpha}{4 \pi}\left(\bar{s} \gamma_{\mu} P_{R} b\right)\left(\bar{\ell} \gamma^{\mu} \ell\right) \\
\mathcal{O}_{10 \ell}=\frac{\alpha}{4 \pi}\left(\bar{s} \gamma_{\mu} P_{L} b\right)\left(\bar{\ell} \gamma^{\mu} \gamma_{5} \ell\right) & \mathcal{O}_{10^{\prime} \ell}=\frac{\alpha}{4 \pi}\left(\bar{s} \gamma_{\mu} P_{R} b\right)\left(\bar{\ell} \gamma^{\mu} \gamma_{5} \ell\right)
\end{array}
$$

SM contributions to $\mathcal{C}_{i}\left(\mu_{b}\right)$ known to NNLL Bobeth, Misiak, Urban '99; Misiak, Steinhauser '04, Gorbahn, Haisch '04; Gorbahn, Haisch, Misiak '05; Czakon, Haisch, Misiak '06

$$
\mathcal{C}_{7 \text { eff }}^{\text {SM }}=-0.3, \mathcal{C}_{9}^{\mathrm{SM}}=4.1, \mathcal{C}_{10}^{\mathrm{SM}}=-4.3, \mathcal{C}_{1}^{\mathrm{SM}}=1.1, \mathcal{C}_{2}^{\mathrm{SM}}=-0.4, \mathcal{C}_{\text {rest }}^{\mathrm{SM}} \lesssim 10^{-2}
$$

:: Effective Theory for $b \rightarrow s$ Transitions

For $\Lambda_{\mathrm{EW}}, \Lambda_{\mathrm{NP}} \gg M_{B}$: General model-independent parametrization of NP :

$$
\begin{gathered}
\mathcal{L}_{W}=\mathcal{L}_{\mathrm{QCD}}+\mathcal{L}_{\mathrm{QED}}+\frac{4 G_{F}}{\sqrt{2}} V_{t b} V_{t s}^{\star} \sum_{i} \mathcal{C}_{i}(\mu) \mathcal{O}_{i}(\mu) \\
\mathcal{O}_{1}=\left(\bar{c} \gamma_{\mu} P_{L} b\right)\left(\bar{s} \gamma^{\mu} P_{L} c\right) \\
\mathcal{O}_{7}=\frac{e}{16 \pi^{2}} m_{b}\left(\bar{s} \sigma_{\mu \nu} P_{R} b\right) F^{\mu \nu} \\
\mathcal{O}_{2}=\left(\bar{c} \gamma_{\mu} P_{L} T^{a} b\right)\left(\bar{s} \gamma^{\mu} P_{L} T^{a} c\right) \\
\hline \mathcal{O}_{9 \ell}=\frac{\alpha}{4 \pi}\left(\bar{s} \gamma_{\mu} P_{L} b\right)\left(\bar{\ell} \gamma^{\mu} \ell\right) \\
\mathcal{O}_{7^{\prime}}=\frac{e}{16 \pi^{2}} m_{b}\left(\bar{s} \sigma_{\mu \nu} P_{L} b\right) F^{\mu \nu} \\
\mathcal{O}_{10 \ell}=\frac{\alpha}{4 \pi}\left(\bar{s} \gamma_{\mu} P_{L} b\right)\left(\bar{\ell} \gamma^{\mu} \gamma_{5} \ell\right)
\end{gathered} \mathcal{O}_{9^{\prime} \ell=\frac{\alpha}{4 \pi}\left(\bar{s} \gamma_{\mu} P_{R} b\right)\left(\bar{\ell} \gamma^{\mu} \ell\right)} \quad \mathcal{O}_{10^{\prime} \ell}=\frac{\alpha}{4 \pi}\left(\bar{s} \gamma_{\mu} P_{R} b\right)\left(\bar{\ell} \gamma^{\mu} \gamma_{5} \ell\right), ~ \$
$$

* Important operators in this talk.
$\mathcal{C}_{7 \text { eff }}^{\text {SM }}=-0.3, \mathcal{C}_{9}^{\mathrm{SM}}=4.1, \mathcal{C}_{10}^{\mathrm{SM}}=-4.3, \mathcal{C}_{1}^{\mathrm{SM}}=1.1, \mathcal{C}_{2}^{\mathrm{SM}}=-0.4, \mathcal{C}_{\text {rest }}^{\mathrm{SM}} \lesssim 10^{-2}$

:: Constraining Effective coefficients

- Inclusive

- $B \rightarrow X_{s} \ell^{+} \ell^{-}\left(d B R / d q^{2}\right) \ldots \mathcal{C}_{7}^{(\prime)}, \mathcal{C}_{9}^{(\prime)}, \mathcal{C}_{10}^{(\prime)}, \mathcal{C}_{1,2}$
- Exclusive leptonic

- Exclusive radiative/semileptonic
- $B \rightarrow K^{*} \gamma\left(B R, S, A_{l}\right) \ldots \mathcal{C}_{7}^{(\prime)}, \mathcal{C}_{1,2}$
- $B \rightarrow K \ell^{+} \ell^{-}\left(d B R / d q^{2}\right)$ $\mathcal{C}_{7}^{(\prime)}, \mathcal{C}_{9}^{(\prime)}, \mathcal{C}_{10}^{(\prime)}, \mathcal{C}_{1,2}$
- $B \rightarrow K^{*} \ell^{+} \ell^{-}\left(d B R / d q^{2}\right.$, Angular Observables $)$ $\mathcal{C}_{7}^{(\prime)}, \mathcal{C}_{9}^{(\prime)}, \mathcal{C}_{10}^{(\prime)}, \mathcal{C}_{1,2}$
- $B_{s} \rightarrow \phi \ell^{+} \ell^{-}\left(d B R / d q^{2}\right.$, Angular Observables) $\mathcal{C}_{7}^{(\prime)}, \mathcal{C}_{9}^{(\prime)}, \mathcal{C}_{10}^{(\prime)}, \mathcal{C}_{1,2}$

Exclusive decay modes have huge weight in fits.

:: Outline

The idea is to constrain very well the WCs, compare with the SM and learn about NP. If it was obvious that it is not New Physics, we wouldn't be discussing this so much, so:

1. Review of Fits and Evidence (?) for New Physics
as a motivational starter.
These fits assume NP only in $\mathcal{C}_{7,9,10}^{(1)}$.
The interesting possibility of NP in $(\bar{s} c)(\bar{c} b)$ will be discussed by Sebastian Jäger.
But the problem really is SM uncertainties. So:
2. Hadronic contributions

Many issues here will be left for the talk by Bernat Capdevila.
Once the anomalies are interpreted model-independently we need to figure out which models can explain them. So:
3. Model-dependent interpretations - Not covered in this talk. But see talk by Olcyr Sumensari.

1. Global Fits and New Physics

$::$ Chronology of $b \rightarrow s \ell \ell$ (last ~ 5 years)

$\triangleright 2012$ Some global fits in the market: Altmannshofer, Paradisi, Straub, Beaujean, Bobeth, van Dyk, Descotes-Genon, Matias, Ramon, Virto. No one notices.

$::$ Chronology of $b \rightarrow s \ell \ell$ (last ~ 5 years)

$\triangleright 2012$ Some global fits in the market: Altmannshofer, Paradisi, Straub, Beaujean, Bobeth, van Dyk, Descotes-Genon, Matias, Ramon, Virto. No one notices.
$\triangleright 2012$ Definition of optimized observables Kruger, Matias, Becirevic, Schneider, Hiller, Bobeth, van Dyk. and P_{5}^{\prime} and company Descotes-Genon, Matias, Ramon, Virto. No one cares.

$::$ Chronology of $b \rightarrow s \ell \ell$ (last ~ 5 years)

$\triangleright 2012$ Some global fits in the market: Altmannshofer, Paradisi, Straub, Beaujean, Bobeth, van Dyk, Descotes-Genon, Matias, Ramon, Virto. No one notices.
$\triangleright 2012$ Definition of optimized observables Kruger, Matias, Becirevic, Schneider, Hiller, Bobeth, van Dyk. and P_{5}^{\prime} and company Descotes-Genon, Matias, Ramon, Virto. No one cares.
$\triangleright 2013$ LHCb measurements of optimized obs. Everyone jumps from their seats.

$::$ Chronology of $b \rightarrow s \ell \ell$ (last ~ 5 years)

$\triangleright 2012$ Some global fits in the market: Altmannshofer, Paradisi, Straub, Beaujean, Bobeth, van Dyk, Descotes-Genon, Matias, Ramon, Virto. No one notices.
$\triangleright 2012$ Definition of optimized observables Kruger, Matias, Becirevic, Schneider, Hiller, Bobeth, van Dyk. and P_{5}^{\prime} and company Descotes-Genon, Matias, Ramon, Virto. No one cares.
$\triangleright 2013$ LHCb measurements of optimized obs. Everyone jumps from their seats.
$\triangleright 2013$ First global fit to new data pointing out $\mathcal{C}_{9}^{\text {NP }} \sim-1$ solution. Descotes-Genon, Matias, Virto. Everyone starts spinning. Other fits confirm results Altmannshofer, Straub, Beaujean, Bobeth, van Dyk, Horgan, Liu, Meinel, Wingate,...

$::$ Chronology of $b \rightarrow s \ell \ell$ (last ~ 5 years)

$\triangleright 2012$ Some global fits in the market: Altmannshofer, Paradisi, Straub, Beaujean, Bobeth, van Dyk, Descotes-Genon, Matias, Ramon, Virto. No one notices.
$\triangleright 2012$ Definition of optimized observables Kruger, Matias, Becirevic, Schneider, Hiller, Bobeth, van Dyk. and P_{5}^{\prime} and company Descotes-Genon, Matias, Ramon, Virto. No one cares.
$\triangleright 2013$ LHCb measurements of optimized obs. Everyone jumps from their seats.
$\triangleright 2013$ First global fit to new data pointing out $\mathcal{C}_{9}^{\text {NP }} \sim-1$ solution. Descotes-Genon, Matias, Virto. Everyone starts spinning. Other fits confirm results Altmannshofer, Straub, Beaujean, Bobeth, van Dyk, Horgan, Liu, Meinel, Wingate,...
$\triangleright 2013$ Paper of Camalich, Jäger is rescued. Everyone starts fighting.

$::$ Chronology of $b \rightarrow s \ell \ell$ (last ~ 5 years)

$\triangleright 2012$ Some global fits in the market: Altmannshofer, Paradisi, Straub, Beaujean, Bobeth, van Dyk, Descotes-Genon, Matias, Ramon, Virto. No one notices.
$\triangleright 2012$ Definition of optimized observables Kruger, Matias, Becirevic, Schneider, Hiller, Bobeth, van Dyk. and P_{5}^{\prime} and company Descotes-Genon, Matias, Ramon, Virto. No one cares.
$\triangleright 2013$ LHCb measurements of optimized obs. Everyone jumps from their seats.
$\triangleright 2013$ First global fit to new data pointing out $\mathcal{C}_{9}^{\text {NP }} \sim-1$ solution. Descotes-Genon, Matias, Virto. Everyone starts spinning. Other fits confirm results Altmannshofer, Straub, Beaujean, Bobeth, van Dyk, Horgan, Liu, Meinel, Wingate,...
$\triangleright 2013$ Paper of Camalich, Jäger is rescued. Everyone starts fighting.
$\triangleright 2014$ LHCb Measurements of $B \rightarrow K \mu \mu$ and R_{K}. Everyone goes crazy.

$::$ Chronology of $b \rightarrow s \ell \ell$ (last ~ 5 years)

$\triangleright 2012$ Some global fits in the market: Altmannshofer, Paradisi, Straub, Beaujean, Bobeth, van Dyk, Descotes-Genon, Matias, Ramon, Virto. No one notices.
$\triangleright 2012$ Definition of optimized observables Kruger, Matias, Becirevic, Schneider, Hiller, Bobeth, van Dyk. and P_{5}^{\prime} and company Descotes-Genon, Matias, Ramon, Virto. No one cares.
$\triangleright 2013$ LHCb measurements of optimized obs. Everyone jumps from their seats.
$\triangleright 2013$ First global fit to new data pointing out $\mathcal{C}_{9}^{\text {NP }} \sim-1$ solution. Descotes-Genon, Matias, Virto. Everyone starts spinning. Other fits confirm results Altmannshofer, Straub, Beaujean, Bobeth, van Dyk, Horgan, Liu, Meinel, Wingate,...
$\triangleright 2013$ Paper of Camalich, Jäger is rescued. Everyone starts fighting.
$\triangleright 2014$ LHCb Measurements of $B \rightarrow K \mu \mu$ and R_{K}. Everyone goes crazy.
$\triangleright 2015 \mathrm{LHCb}$ confirms P_{5}^{\prime} anomaly. Quim breathes for the first time in 2 years.

$::$ Chronology of $b \rightarrow s \ell \ell$ (last ~ 5 years)

$\triangleright 2012$ Some global fits in the market: Altmannshofer, Paradisi, Straub, Beaujean, Bobeth, van Dyk, Descotes-Genon, Matias, Ramon, Virto. No one notices.
$\triangleright 2012$ Definition of optimized observables Kruger, Matias, Becirevic, Schneider, Hiller, Bobeth, van Dyk. and P_{5}^{\prime} and company Descotes-Genon, Matias, Ramon, Virto. No one cares.
$\triangleright 2013$ LHCb measurements of optimized obs. Everyone jumps from their seats.
$\triangleright 2013$ First global fit to new data pointing out $\mathcal{C}_{9}^{\text {NP }} \sim-1$ solution. Descotes-Genon, Matias, Virto. Everyone starts spinning. Other fits confirm results Altmannshofer, Straub, Beaujean, Bobeth, van Dyk, Horgan, Liu, Meinel, Wingate,...
$\triangleright 2013$ Paper of Camalich, Jäger is rescued. Everyone starts fighting.
$\triangleright 2014$ LHCb Measurements of $B \rightarrow K \mu \mu$ and R_{K}. Everyone goes crazy.
$\triangleright 2015$ LHCb confirms P_{5}^{\prime} anomaly. Quim breathes for the first time in 2 years.
$\triangleright 2015$ Ciuchini et al. Everyone outside the field is confused.

$::$ Chronology of $b \rightarrow s \ell \ell$ (last ~ 5 years)

$\triangleright 2012$ Some global fits in the market: Altmannshofer, Paradisi, Straub, Beaujean, Bobeth, van Dyk, Descotes-Genon, Matias, Ramon, Virto. No one notices.
$\triangleright 2012$ Definition of optimized observables Kruger, Matias, Becirevic, Schneider, Hiller, Bobeth, van Dyk. and P_{5}^{\prime} and company Descotes-Genon, Matias, Ramon, Virto. No one cares.
$\triangleright 2013$ LHCb measurements of optimized obs. Everyone jumps from their seats.
$\triangleright 2013$ First global fit to new data pointing out $\mathcal{C}_{9}^{\text {NP }} \sim-1$ solution. Descotes-Genon, Matias, Virto. Everyone starts spinning. Other fits confirm results Altmannshofer, Straub, Beaujean, Bobeth, van Dyk, Horgan, Liu, Meinel, Wingate,...
$\triangleright 2013$ Paper of Camalich, Jäger is rescued. Everyone starts fighting.
$\triangleright 2014$ LHCb Measurements of $B \rightarrow K \mu \mu$ and R_{K}. Everyone goes crazy.
$\triangleright 2015$ LHCb confirms P_{5}^{\prime} anomaly. Quim breathes for the first time in 2 years.
$\triangleright 2015$ Ciuchini et al. Everyone outside the field is confused.
$\triangleright 2016$ Belle confirms P_{5}^{\prime}, with LFNU hints. Silence.....

$::$ Chronology of $b \rightarrow s \ell \ell$ (last ~ 5 years)

$\triangleright 2012$ Some global fits in the market: Altmannshofer, Paradisi, Straub, Beaujean, Bobeth, van Dyk, Descotes-Genon, Matias, Ramon, Virto. No one notices.
$\triangleright 2012$ Definition of optimized observables Kruger, Matias, Becirevic, Schneider, Hiller, Bobeth, van Dyk. and P_{5}^{\prime} and company Descotes-Genon, Matias, Ramon, Virto. No one cares.
$\triangleright 2013$ LHCb measurements of optimized obs. Everyone jumps from their seats.
$\triangleright 2013$ First global fit to new data pointing out $\mathcal{C}_{9}^{\text {NP }} \sim-1$ solution. Descotes-Genon, Matias, Virto. Everyone starts spinning. Other fits confirm results Altmannshofer, Straub, Beaujean, Bobeth, van Dyk, Horgan, Liu, Meinel, Wingate,...
$\triangleright 2013$ Paper of Camalich, Jäger is rescued. Everyone starts fighting.
$\triangleright 2014$ LHCb Measurements of $B \rightarrow K \mu \mu$ and R_{K}. Everyone goes crazy.
$\triangleright 2015$ LHCb confirms P_{5}^{\prime} anomaly. Quim breathes for the first time in 2 years.
$\triangleright 2015$ Ciuchini et al. Everyone outside the field is confused.
$\triangleright 2016$ Belle confirms P_{5}^{\prime}, with LFNU hints. Silence.....

- 2017 ATLAS + CMS. Question marks.....

$::$ Chronology of $b \rightarrow s \ell \ell$ (future)

\triangleright 2017? LHCb measures $R_{K^{\star}}$ Everyone's head explodes.

:: The P_{5}^{\prime} Anomaly

$\boldsymbol{P}_{5}^{\prime}$ is an "optimized" angular observable in $\boldsymbol{B} \rightarrow \boldsymbol{K}^{\star} \boldsymbol{\mu}^{+} \boldsymbol{\mu}^{-} 1207.2753$ [hep-ph]
LHCb 2013 + 2015, Belle 2016 + Recent ATLAS + CMS Moriond 2017 !

Word of caution : CMS results take F_{L} and S-wave from separate analysis.
But P_{5}^{\prime} is not the only observable

:: Global Fits to all $b \rightarrow s$ data

All include $B \rightarrow X_{s} \gamma, B \rightarrow K^{*} \gamma, B_{s} \rightarrow \mu^{+} \mu^{-}, B \rightarrow X_{s} \mu^{+} \mu^{-}$by default.

- Fit 1 (Canonical): $B_{(s)} \rightarrow\left(K^{(*)}, \phi\right) \mu^{+} \mu^{-}, B R^{\prime}$ s and P_{i} 's, All q^{2} (91 obs)
- Fit 2: Branching Ratios only (27 obs)
- Fit 3: P_{i} Angular Observables only (64 obs)
- Fit 4: S_{i} Angular Observables only (64 obs)
- Fit 5: $B \rightarrow K \mu^{+} \mu^{-}$only (14 obs)
- Fit 6: $B \rightarrow K^{*} \mu^{+} \mu^{-}$only (57 obs)
- Fit 7: $B_{s} \rightarrow \phi \mu^{+} \mu^{-}$only (20 obs)
- Fit 8: Large Recoil only (74 obs)
- Fit 9: Low Recoil only (17 obs)
- Fit 10: Only bins within $[1,6] \mathrm{GeV}^{2}$ (39 obs)
- Fits 11: Bin-by-bin analysis.
- Fit 12: Full form factor approach [a la ABSZ] (91 obs)
- Fit 13: Enhanced Power Corrections (91 obs)
- Fit 14: Enhanced Charm loop effect (91 obs)

:: Canonical Fit: 6D hypotheses Descotes-Genon, Hofer, Matias, Vito

\triangleright All 6 WCs free (but real).

Coefficient	1σ	2σ	3σ
$\mathcal{C}_{7}^{\mathrm{NP}}$	$[-0.02,0.03]$	$[-0.04,0.04]$	$[-0.05,0.08]$
$\mathcal{C}_{9}^{\mathrm{NP}}$	$[-1.4,-1.0]$	$[-1.7,-0.7]$	$[-2.2,-0.4]$
$\mathcal{C}_{10}^{\mathrm{NP}}$	$[-0.0,0.9]$	$[-0.3,1.3]$	$[-0.5,2.0]$
$\mathcal{C}_{7^{\prime}}^{\mathrm{NP}}$	$[-0.02,0.03]$	$[-0.04,0.06]$	$[-0.06,0.07]$
$\mathcal{C}_{9^{\prime}}^{\mathrm{NP}}$	$[0.3,1.8]$	$[-0.5,2.7]$	$[-1.3,3.7]$
$\mathcal{C}_{10^{\prime}}^{\mathrm{NP}}$	$[-0.3,0.9]$	$[-0.7,1.3]$	$[-1.0,1.6]$

$\triangleright \mathcal{C}_{9}$ consistent with SM only above 3σ.
\triangleright All others consistent with the SM at 1σ, except for \mathcal{C}_{9}^{\prime} at 2σ.
\triangleright Pull $_{\text {SM }}$ for the 6D fit is 3.6σ.

:: Canonical Fit: 1D hypotheses

\triangleright Pull $_{\text {SM }}: \sim \chi_{\text {SM }}^{2}-\chi_{\text {min }}^{2}$ (metrology: how less likely is SM vs. best fit?)
\triangleright p-value: $\mathrm{p}\left(\chi_{\text {min }}^{2}, N_{\text {dof }}\right)$ (goodness of fit: is the best fit a good fit?)
\triangleright Contribution $\mathcal{C}_{9}^{\text {NP }}<0$ always favoured.

Coefficient	Best fit	3σ	Pull	SM
p-value (\%)				
SM	-	-	-	16.0
$\mathcal{C}_{7}^{\mathrm{NP}}$	-0.02	$[-0.07,0.03]$	1.2	17.0
$\mathcal{C}_{9}^{\mathrm{NP}}$	-1.09	$[-1.67,-0.39]$	4.5	63.0
$\mathcal{C}_{10}^{\mathrm{NP}}$	0.56	$[-0.12,1.36]$	2.5	25.0
$\mathcal{C}_{\mathbf{N P}^{\prime}}^{\mathrm{NP}}$	0.02	$[-0.06,0.09]$	0.6	15.0
$\mathcal{C}_{9^{\prime}}^{\mathrm{NP}}$	0.46	$[-0.36,1.31]$	1.7	19.0
$\mathcal{C}_{10}^{\mathrm{NP}}$	-0.25	$[-0.82,0.31]$	1.3	17.0
$\mathcal{C}_{9}^{\mathrm{NP}}=\mathcal{C}_{10}^{\mathrm{NP}}$	-0.22	$[-0.74,0.50]$	1.1	16.0
$\mathcal{C}_{9}^{\mathrm{NP}}=-\mathcal{C}_{10}^{\mathrm{NP}}$	-0.68	$[-1.22,-0.18]$	4.2	56.0
$\mathcal{C}_{9^{\prime}}^{\mathrm{NP}}=\mathcal{C}_{10}^{\mathrm{NP}}$	-0.07	$[-0.86,0.68]$	0.3	14.0
$\mathcal{C}_{9}^{\mathrm{NP}}=-\mathcal{C}_{10}^{\mathrm{NP}}$	0.19	$[-0.17,0.55]$	1.6	18.0
$\mathcal{C}_{9}^{\mathrm{NP}}=-\mathcal{C}_{9^{\prime}}^{\mathrm{NP}}$	-1.06	$[-1.60,-0.40]$	4.8	72.0

:: Consistency of different fits

$\triangleright 3 \sigma$ constraints, always including $b \rightarrow s \gamma$ and inclusive.

\triangleright Good consistency between BRs and Angular observables (P_{i} 's dominate).
\triangleright Good consistency between different modes ($B \rightarrow K^{*}$ dominates).
\triangleright Good consistency between different q^{2} regions (Large-R dominates, $[1,6]$ bulk).
\triangleright Remember: Quite different theory issues in each case!

:: Other Fits

\triangleright Uses the S_{i} basis of angular observables in $B \rightarrow K^{\star} \mu \mu$
\triangleright Uses "full form factors" from
a fit to LCSRs Barucha, Straub, Zwicky and Lattice Bouchard et al, Horgan et al.
\triangleright Uses all data from all experiments, but only 2D fits at most.

| Coeff. | best fit | 1σ | 2σ | $\chi_{\text {SM }}^{2}-\chi_{\text {b.f. }}^{2}$ | pull |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| C_{7}^{NP} | -0.04 | $[-0.07,-0.01]$ | $[-0.10,0.02]$ | 2.0 | 1.4 |
| C_{7}^{\prime} | 0.01 | $[-0.04,0.07]$ | $[-0.10,0.12]$ | 0.1 | 0.2 |
| C_{9}^{NP} | -1.07 | $[-1.32,-0.81]$ | $[-1.54,-0.53]$ | 13.7 | 3.7 |
| C_{9}^{\prime} | 0.21 | $[-0.04,0.46]$ | $[-0.29,0.70]$ | 0.7 | 0.8 |
| C_{10}^{NP} | 0.50 | $[0.24,0.78]$ | $[-0.01,1.08]$ | 3.9 | 2.0 |
| C_{10}^{\prime} | -0.16 | $[-0.34,0.02]$ | $[-0.52,0.21]$ | 0.8 | 0.9 |
| $C_{9}^{\mathrm{NP}}=C_{10}^{\mathrm{NP}}$ | -0.22 | $[-0.44,0.03]$ | $[-0.64,0.33]$ | 0.8 | 0.9 |
| $C_{9}^{\mathrm{NP}}=-C_{10}^{\mathrm{NP}}$ | -0.53 | $[-0.71,-0.35]$ | $[-0.91,-0.18]$ | 9.8 | 3.1 |
| $C_{9}^{\prime}=C_{10}^{\prime}$ | -0.10 | $[-0.36,0.17]$ | $[-0.64,0.43]$ | 0.1 | 0.4 |
| $C_{9}^{\prime}=-C_{10}^{\prime}$ | 0.11 | $[-0.01,0.22]$ | $[-0.12,0.33]$ | 0.9 | 0.9 |

:: Other Fits

\triangleright Uses the S_{i} basis of angular observables in $B \rightarrow K^{\star} \mu \mu$
\triangleright Uses "full form factors" from
a fit to LCSRs Barucha, Straub, Zwicky and Lattice Bouchard et al, Horgan et al.
\triangleright Also fits LHCb Method-of-Moments results.

:: Other Fits

Good agreement among the different fits:

Implies that the differences in the various analyses are not so relevant in the final result. Of course, each analysis separately has its own checks of hadronic uncertainties, etc.

:: Implications of new CMS + ATLAS ?

Altmannshofer, Straub 2017

:: Summary 1

- A NP contribution $\mathcal{C}_{9 \mu}^{\text {NP }} \sim-1$ gives a substantially improved fit for
$\triangleright B \rightarrow K \mu \mu, B \rightarrow K^{*} \mu \mu$ and $B_{s} \rightarrow \Phi \mu \mu$
\triangleright BRs and angular observables (including P_{5}^{\prime})
\triangleright Low q^{2} and large q^{2}
$\triangleright R_{K}$
All these receive, in general, quite different contributions from hadronic operators.
- Different fits with similar results:
- Descotes-Genon, Matias, Virto, 1307.5683 [hep-ph]
- Altmannshofer, Straub, 1308.1501 [hep-ph], 1411.3161 [hep-ph]
- Beaujean, Bobeth, van Dyk, 1310.2478 [hep-ph]
- Horgan, Liu, Meinel, Wingate, 1310.3887 [hep-ph]
- Hurth, Mahmoudi, Neshatpour, $1410.4545[h e p-p h], 1603.00865$ [hep-ph]
- ATLAS + CMS results do not change the global picture

2. Hadronic Contributions

$::$ Theory calculation for $B \rightarrow M \ell^{+} \ell^{-}$

$$
\mathcal{M}_{\lambda}=\frac{G_{F} \alpha}{\sqrt{2} \pi} V_{t b} V_{t s}^{*}\left[\left(\mathcal{A}_{\lambda}^{\mu}+\mathcal{H}_{\lambda}^{\mu}\right) \bar{u}_{\ell} \gamma_{\mu} v_{\ell}+\mathcal{B}_{\lambda}^{\mu} \bar{u}_{\ell} \gamma_{\mu} \gamma_{5} v_{\ell}\right]+\mathcal{O}\left(\alpha^{2}\right)
$$

Local:

$$
\begin{aligned}
\mathcal{A}_{\lambda}^{\mu} & =-\frac{2 m_{b} q_{\nu}}{q^{2}} \mathcal{C}_{7}\left\langle M_{\lambda}\right| \bar{s} \sigma^{\mu \nu} P_{R} b|B\rangle+\mathcal{C}_{9}\left\langle M_{\lambda}\right| \bar{s} \gamma^{\mu} P_{L} b|B\rangle \\
\mathcal{B}_{\lambda}^{\mu} & =\mathcal{C}_{10}\left\langle M_{\lambda}\right| \bar{s} \gamma^{\mu} P_{L} b|B\rangle
\end{aligned}
$$

Non-Local: $\quad \mathcal{H}_{\lambda}^{\mu}=-\frac{16 i \pi^{2}}{q^{2}} \sum_{i=1 . .6,8} \mathcal{C}_{i} \int d^{4} x e^{i q \cdot x}\left\langle M_{\lambda}\right| T\left\{\mathcal{J}_{\mathcal{E} m}^{\mu}(x), \mathcal{O}_{i}(0)\right\}|B\rangle$
Two theory issues:

1. Form Factors (LCSRs, LQCD, symmetry relations ...)
2. Hadronic contribution (SCET/QCDF, OPE, LCOPE ... FOCUS HERE)

:: Hadronic correlator : Current approaches

\triangleright QCD-Factorization at $0<q^{2} \ll M_{J / P s i}^{2}$ Beneke, Feldmann, Seidel

- Based on large-energy limit, bottleneck is power corrections.
- Used in the region where light quarks can go on-shell.
\triangleright LCOPE at $q^{2}<0+$ LCSR for matrix elements + Dispersion relation $\left(\rightarrow q^{2}>0\right)$ Khodjamirian, Mannel, Pivovarov, Wang, Rusov.
- Systematic. Allows to compute power corrections.
- LCOPE needs perturbative calculation at LCSR $q^{2}<0$. Difficult for NLO.
- Assumes local duality for intermediate states in s-channel.
\triangleright Fit to data Ciuchini et al., Chovanova et al.
- Not predictive!
- Ad-hoc parametrization, not motivated.
- Embedding New Physics can use "Wilks' test (but inconclusive).
\triangleright "Low-recoil" OPE at $M_{\psi(2 S)}^{2}<q^{2}<M_{B}^{2}$ Grinstein, Pirjol, Hiller, Bobeth, van Dyk
- Must integrate over large region to "smear" spectral density.
- Can calculate power corrections, but HMEs not known.
\triangleright Factorization Approximation + data Lyon, Zwicky, Brass, Hiller, Nisandzic
- "Vaccuum polarization" contribution completely included.
- Non-factorizable effects must be introduced separately.

:: Hadronic correlator : Decomposition

Bobeth, Chrzaszcz, van Dyk, Virto

$$
\begin{aligned}
\mathcal{H}^{\mu}\left(q^{2}\right) & \equiv i \int \mathrm{~d}^{4} x e^{i q \cdot x}\left\langle\bar{K}^{*}(k, \eta)\right| T\left\{j_{\mathrm{em}}^{\mu}(x), \mathcal{C}_{1} \mathcal{O}_{1}+\mathcal{C}_{2} \mathcal{O}_{2}(0)\right\}|\bar{B}(p)\rangle \\
& \equiv M_{B}^{2} \eta_{\alpha}^{*}\left[S_{\perp}^{\alpha \mu} \mathcal{H}_{\perp}-S_{\|}^{\alpha \mu} \mathcal{H}_{\|}-S_{0}^{\alpha \mu} \mathcal{H}_{0}\right]
\end{aligned}
$$

$\triangleright S_{\lambda}^{\alpha \mu}$ - basis of Lorentz structures (carefully chosen)
$\triangleright \mathcal{H}_{\lambda}$ - Lorentz invariant correlation functions
$\triangleright \lambda \quad$ - polarization states $(\perp, \|, 0)$

The idea :

\triangleright Understand analytic structure of $\mathcal{H}_{\lambda}\left(q^{2}\right)$ to write a general parametrisation consistent with QCD.
\triangleright Use suitable experimental information to constrain the correlator.
\triangleright Use theory to constrain the correlator in suitable kinematic points.

:: Hadronic correlator: Analytic structure

Bobeth, Chrzaszcz, van Dyk, Virto

- narrow charmonia, assumed to be stable

:: Hadronic correlator: Analytic structure

Bobeth, Chrzaszcz, van Dyk, Virto

- narrow charmonia, assumed to be stable red branch cut from $D \bar{D}$ production
- broad charmonia, decaying to $D \bar{D}$
\times potential mirror poles

:: Hadronic correlator: Analytic structure

Bobeth, Chrzaszcz, van Dyk, Virto

- narrow charmonia, assumed to be stable red branch cut from $D \bar{D}$ production
- broad charmonia, decaying to $D \bar{D}$
\times potential mirror poles
blue branch cut from light hadrons

:: Hadronic correlator: Analytic structure

Bobeth, Chrzaszcz, van Dyk, Virto

- narrow charmonia, assumed to be stable
red branch cut from $D \bar{D}$ production
- broad charmonia, decaying to $D \bar{D}$
\times potential mirror poles
blue branch cut from light hadrons
green q^{2}-dep. imaginary due to branch cut in p^{2}

$::$ Understanding the p^{2} cut

Bobeth, Chrzaszcz, van Dyk, Virto

Trick : Add spurious momentum h to \mathcal{O}_{i} Recover physical kinematics as $h \rightarrow 0$

$\triangleright s \sim p^{2}$ independent of $t \sim q^{2}$.
\triangleright Cut in p^{2} does not translate into cut in q^{2}
\triangleright Two correlators:
$\mathcal{H}_{\lambda}\left(q^{2}\right) \rightarrow \mathcal{H}_{\lambda}^{\text {real }}\left(q^{2}\right)+i \mathcal{H}_{\lambda}^{\text {imag }}\left(q^{2}\right)$
\triangleright Both $\mathcal{H}_{\lambda}^{\text {real }}\left(q^{2}\right)$ and $\mathcal{H}_{\lambda}^{\text {imag }}\left(q^{2}\right)$ are analytic at $q^{2} \leq 0$
\triangleright Both $\mathcal{H}_{\lambda}^{\text {real }}\left(q^{2}\right)$ and $\mathcal{H}_{\lambda}^{\text {imag }}\left(q^{2}\right)$ have branch cuts at $q^{2}>0$

:: Parametrization A : J/ $\psi, \psi(2 s)$ poles $+D \bar{D}$ cut

Bobeth, Chrzaszcz, van Dyk, Virto

Motivated by famous " z-parametrization" of form factors. Boyd et al ' 94 , Bourelly et al ' 08

1. extract the poles

$$
\mathcal{H}_{\lambda}\left(q^{2}\right)=\frac{1}{q^{2}-M_{J / \psi}^{2}} \frac{1}{q^{2}-M_{\psi(2 S)}^{2}} \hat{\mathcal{H}}_{\lambda}\left(q^{2}\right)
$$

2. $\hat{\mathcal{H}}_{\lambda}\left(q^{2}\right)$ is analytic except for $D \bar{D}$ cut.
3. Perform conformal mapping $q^{2} \mapsto z\left(q^{2}\right)$.
4. $\hat{\mathcal{H}}_{\lambda}(z)$ analytic within unit circle.
5. Taylor expand $\hat{\mathcal{H}}_{\lambda}(z)$ around $z=0$.
6. Good convergence expected since

$$
|z|<0.42 \text { for }-5 \mathrm{GeV}^{2} \leq q^{2} \leq 14 \mathrm{GeV}^{2}
$$

:: Experimental constraints on the correlator

Bobeth, Chrzaszcz, van Dyk, Virto

The correlators \mathcal{H}_{λ} can be related to observables in the decays $B \rightarrow K^{*} J / \psi, K^{*} \psi(2 S)$
\triangleright Independent of short-distance contributions $\left(\mathcal{C}_{7}, \mathcal{C}_{9}\right.$, etc) in $B \rightarrow K^{*}\left\{\gamma, \mu^{+} \mu^{-}\right\}$
\triangleright Important constraints at $\boldsymbol{q}^{2} \simeq 9 \mathrm{GeV}^{2}$ and $\boldsymbol{q}^{2} \simeq 14 \mathrm{GeV}^{2}$.

Details:
\triangleright residues of the correlator can be expressed in terms of $B \rightarrow K^{*} \psi$ amplitudes. Khodjamirian et. al. 2010
$\triangleright \mathcal{B}$ and 4 angular observables measured in $B \rightarrow K^{*} J / \psi$ and $B \rightarrow K^{*} \psi(2 S)$

LHCb 2013, BaBar 2007

\triangleright Allows to constrain all moduli and two relative phases of the amplitudes, and therefore of the residues of the correlator.

:: Theory constraints on the correlator

Bobeth, Chrzaszcz, van Dyk, Virto

The correlator can be calculated at $\boldsymbol{q}^{\mathbf{2}}<\mathbf{0}$ reliably by means of a light-cone OPE
Khodjamirian et al. 2010
Using $\mathcal{H}_{\perp}\left(q^{2}\right)$ as an example:

$$
\mathcal{H}_{\perp}\left(q^{2}\right)=\# \times g\left(q^{2}, m_{c}^{2}\right) \mathcal{F}_{\perp}\left(q^{2}\right)+\# \times \widetilde{V}_{1}\left(q^{2}\right)+\mathrm{NLO}_{\alpha_{s}}
$$

\triangleright first term is usual form-factor-like contribution
\triangleright second term arises from soft-gluon effects only
\triangleright third term arises from NLO corrections (produces p^{2} cut !!)

We use this to constrain the correlators at $\boldsymbol{q}^{2}=-\mathbf{1} \mathrm{GeV}^{2}$ and $\boldsymbol{q}^{2}=-\mathbf{5} \mathrm{GeV}^{2}$.

:: Results Parametrization A

Preliminary

Bobeth, Chrzaszcz, van Dyk, Virto

Results for $\operatorname{Re}\left(\mathcal{H}_{\perp} / \mathcal{F}_{\perp}\right):$

Discrete ambiguity in phases of the residues: (only two shown)

$$
\text { Left : } \phi_{J / \psi}=\pi, \phi_{\psi(2 S)}=0
$$

$$
\text { Right }: \phi_{J / \psi}=\phi_{\psi(2 S)}=\pi
$$

:: Results Parametrization A

Preliminary

Bobeth, Chrzaszcz, van Dyk, Virto

SM predictions for P_{5}^{\prime}

Left : $\phi_{J / \psi}=\pi, \phi_{\psi(2 S)}=0$

Right : $\phi_{J / \psi}=\phi_{\psi(2 S)}=\pi$
\triangleright first-time use of inter-resonance bin : great potential!!

$::$ Confronting $B \rightarrow K^{\star} \mu \mu$ data

Preliminary

Bobeth, Chrzaszcz, van Dyk, Virto

Global fit to all $B \rightarrow K^{\star}\left\{\gamma, \mu^{+} \mu^{-}, J / \psi, \psi(2 S)\right\}$ data using Parametrization \mathbf{A}

Left : $\phi_{J / \psi}=\pi, \phi_{\psi(2 S)}=0$

Right : $\phi_{J / \psi}=\phi_{\psi(2 S)}=\pi$

:: Summary 2

\triangleright Systematic framework to access nonlocal correlator
\triangleright First approach to use both theory inputs and experimental constraints in fit
\triangleright Can accommodate existing and future theory results (systematically improvable)
\triangleright Provides model-independent prior predictions for $B \rightarrow K^{(*)} \mu^{+} \mu^{-}$
\triangleright Can be easily embedded in global fits
\triangleright Present data in tension with parametrization A
\triangleright favours NP interpretation with $>4 \sigma$
\triangleright Other results not disclosed here: see Bobeth, Chrzaszcz, van Dyk, Virto
\triangleright Complex parametrization A : needs analytic NLO Greub, Virto w.i.p.
\triangleright Parametrization B : includes light-hadron cut from ψ decay

Keep an eye on this !!

Back-up

:: Hadronic correlator: are we missing something?

Descotes-Genon, Hofer, Matias, Virto

$\rightarrow \mathcal{T}_{\mu}=-\frac{16 i \pi^{2}}{q^{2}} \sum_{i=1 . .6,8} \mathcal{C}_{i} \int d x^{4} e^{i q \cdot x}\left\langle M_{\lambda}\right| T\left\{\mathcal{J}_{\mu}^{e m}(x) \mathcal{O}_{i}(0)\right\}|B\rangle$ is q^{2}-dependent

\Rightarrow No evidence for q^{2}-dependence \rightarrow Good crosscheck of hadronic contribution!

:: Overview of exp. constraints on Correlator

Bobeth, Chrzaszcz, van Dyk, Virto

name	observables	degrees of freedom	source		
$\rightarrow \bar{K}^{*} J / \psi$	$\mathcal{B}, F_{\perp}, F_{\\|}, \delta_{\perp}, \delta_{\\|}$	5	BaBar		
	$\mathcal{B}, F_{\perp}, F_{\\|}, \delta_{\perp}, \delta_{\\|}$	5	Belle		
	$\mathcal{B}, F_{\perp}, F_{0}, \delta_{\perp}, \delta_{\\|}$	5	CDF		
	\mathcal{B}	1	CLEO		
	$F_{\perp}, F_{0}, \delta_{\perp}, \delta_{\\|}$	4	LHCb		
$\bar{B} \rightarrow \bar{K}^{*} \psi(2 S)$	$\mathcal{B}, F_{\perp}, F_{\\|}, \delta_{\perp}, \delta_{\\|}$	5	BaBar		
	\mathcal{B}	1	Belle		
	\mathcal{B}	1	CDF		
	\mathcal{B}	1	CLEO		
$\bar{K}^{*} \gamma$	\mathcal{B}	1	CLEO		
	$\mathcal{B}, S_{K^{*} \gamma}$	1	Belle		
	$\mathcal{B}, S_{K^{*} \gamma}$	BaBar			
$\bar{B} \rightarrow \bar{K}^{*} \mu^{+} \mu^{-}$"inter-resonance"	$\mathcal{B}, F_{L}, S_{3}, S_{4}, S_{5}, A_{\text {FB }}, S_{7}, S_{8}, S_{9}$	9×9	LHCb		

:: Anomaly patterns

		R_{K}	$\left\langle P_{5}^{\prime}\right\rangle_{[4,6],[6,8]}$	$B R\left(B_{s} \rightarrow \phi \mu \mu\right)$	low recoil $B R$	Best fit now
$\mathcal{C}_{9}^{\text {NP }}$	+	\checkmark	\checkmark	\checkmark	\checkmark	X
$\mathcal{C}_{10}^{\text {NP }}$	+	\checkmark			\checkmark	\checkmark
$\mathcal{C}_{9{ }^{\prime}}^{\text {NP }}$	+	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
$\mathcal{C}_{10^{\prime}}^{\mathrm{NP}}$	+	\checkmark	\checkmark	\checkmark		

$\triangleright \mathcal{C}_{9}<0$ consistent with all the anomalies
\triangleright No consistent and global alternative from long-distance dynamics.
:: Outlook: Potential of inclusive measurements at Belle-2
If the (current) exclusive fit is accurate, inclusive $b \rightarrow s \ell \ell$ Belle-2 measurements alone have the potential for a NP discovery:

