$b \rightarrow s \ell \ell$ decays at LHCb

Konstantinos A. Petridis on behalf of the LHCb collaboration

University of Bristol

March 29, 2017

Introduction

- Run 1 of the LHC provided us with a rich set of results \rightarrow Rise of the precision era for rare decays
- Selective set of results with Run 1 and plans with Run 2 data and beyond in light of current anomalies

channel	Run 1	Run 2	Run 3,4 $\left(50 \mathrm{fb}^{-1}\right)$
$B^{0} \rightarrow K^{* 0}\left(K^{+} \pi^{-}\right) \mu^{+} \mu^{-}$	2,400	9,000	80,000
$B^{0} \rightarrow K^{*+}\left(K_{\mathrm{S}}^{0} \pi^{+}\right) \mu^{+} \mu^{-}$	160	600	5,500
$B^{0} \rightarrow K_{\mathrm{S}}^{0} \mu^{+} \mu^{-}$	180	650	5,500
$B^{+} \rightarrow K^{+} \mu^{+} \mu^{-}$	4,700	17,500	150,000
$\Lambda_{b} \rightarrow \Lambda \mu^{+} \mu^{-}$	370	1500	10,000
$B^{+} \rightarrow \pi^{+} \mu^{+} \mu^{-}$	93	350	3,000
$B_{\mathrm{s}}^{0} \rightarrow \mu^{+} \mu^{-}$	15	60	500
$B^{0} \rightarrow K^{* 0} e^{+} e^{-}\left(\right.$low $\left.q^{2}\right)$	150	550	5,000
$B_{s} \rightarrow \phi \gamma$	4,000	15,000	150,000

Naively scaling with luminosity and linear scaling of $\sigma_{b \bar{b}}$ with \sqrt{s}. Extrapolated yields rounded to the nearest 50/500

- Our measurements of $d \mathcal{B} / d q^{2}$ obtained by normalising rare yield to that of normalisation channel $B \rightarrow J / \psi K^{*}$
- For higher statistics decays, dominant uncertainty of integrated BF is the knowledge of $\mathcal{B}\left(B \rightarrow J / \psi K^{*}\right)$
\rightarrow More $b \rightarrow$ sl decays in Run 1 than $B \rightarrow J / \psi K^{*}$ of B-factories!
- Dominant systematic uncertainty on BFs : Knowledge equivalent $\mathrm{J} / \psi \mathrm{BF}$ \rightarrow Belle2 could help here also resolving isospin asymmetries at $\Upsilon(4 S)$ м.Jung [1510.03423]
- With the LHCb upgrade even "tough" modes will be sufficiently populated

An intriguing set of results

1. Measurements of differential branching fractions of $B \rightarrow K^{(*)} \mu^{+} \mu^{-}$, $\Lambda_{b} \rightarrow \Lambda \mu^{+} \mu^{-}, B_{s} \rightarrow \phi \mu^{+} \mu^{-}$
$\triangleright 1 \sigma$ to 3σ depending on final state
2. Tests of lepton universality between $B^{+} \rightarrow K^{+} \mu^{+} \mu^{-}$and $B^{+} \rightarrow K^{+} e^{+} e^{-}$ $\triangleright 2.6 \sigma$
3. Angular analyses of $B \rightarrow K^{(* 0)} \mu^{+} \mu^{-}, B_{s} \rightarrow \phi \mu^{+} \mu^{-}, \Lambda_{b} \rightarrow \Lambda \mu^{+} \mu^{-}$ $\triangleright \sim 3 \sigma$
Measurements form a consistent picture.

Interpretations

- Several attempts to interpret $b \rightarrow s \mu^{+} \mu^{-}$and $b \rightarrow s \gamma$ data

Altmannshofer,Straub[1503.06199]

- Modified vector coupling $C_{9}^{N P} \neq 0$ at $\sim 4 \sigma$
\rightarrow New vector Z^{\prime}, leptoquarks, vector-like confinement...
Buttazzo et al [1604.03940], Bauer et al [PRL116,141802(2016)], Crivellin et al [PRL114,151801(2015)], Altmannshofer et al [PRD89(2014)095033]...

- Potential problem with our understanding of the contribution from $B \rightarrow X_{c \bar{c}}(\rightarrow \mu \mu) K$ Lyon,Zwicky [1406.0566], Altmannshofer,Straub[1503.06199], Ciuchini et al [1512.07157]...
\rightarrow Mimics vector-like new physics effects (corrections to C_{9})

Impact on dilepton vector coupling

- Dependence of observables on vector couplings enters through $C_{9}^{\text {eff }}=C_{9}+Y\left(q^{2}\right)$
$\rightarrow Y\left(q^{2}\right)$ summarises contributions from $b s \bar{q} q$ operators

- At low q^{2} main culprit is the J / ψ \rightarrow Corrections to $C_{9}^{\text {eff }}\left(\Delta C_{9}\right)$ all the way down to $q^{2}=0$
\rightarrow Effect strongly dependent on relative phase with penguin
- More data will help resolve apparent q^{2} dependence of C_{9}

Measuring phase differences [Eur. Phys. . c[2017)77:16]]

- Measure relative phase between narrow resonances and penguin amplitudes
- Use expression of differential decay rate in terms of short- and long-distance contributions
\rightarrow Model resonances as relativistic Breit-Wigners multiplied by relative scale and phase inspired by Lyon Zwicky [1406.0566], Hiller et al. [1606.00775]
$\rightarrow C_{9}^{e f f}=\sum_{j} \eta_{j} e^{i \delta_{j}} A_{r e s}\left(q^{2}\right)+C_{9}$

- Fit dimuon spectrum of $B^{+} \rightarrow K^{+} \mu^{+} \mu^{-}$to obtain:
\rightarrow Relative phases between resonant and penguin amplitudes
$\rightarrow C_{9}$ and C_{10}
\rightarrow Further constrain lattice input Bailey et al [PRD93,025026(2016] On form-factor $f_{+}\left(q^{2}\right)$
- Note have 4 degenerate solutions for phases depending on relative sign between J / ψ and $\psi(2 s)$ phases

Measuring phase differences cont'd ${ }_{[E u r}$ Phys.J. c(20017)7:161]

- Results show minimal interference with J / ψ and $\psi(2 S)$ resonances
\rightarrow Given this model, the J / ψ and $\psi(2 S)$ resonances play sub-dominant role below their pole mass
- Phases of $\psi(3770), \psi(4040)$, $\psi(4160)$ in good agreement with Lyon Zwicky [1406.0566]

Resonance	J / ψ negative $/ \psi(2 S)$ negative	
	Phase [rad]	Branching fraction
$\rho(770)$	-0.35 ± 0.54	$(1.71 \pm 0.25) \times 10^{-10}$
$\omega(782)$	0.26 ± 0.39	$(4.93 \pm 0.59) \times 10^{-10}$
$\phi(1020)$	0.47 ± 0.39	$(2.53 \pm 0.26) \times 10^{-9}$
J / ψ	-1.66 ± 0.05	-
$\psi(2 S)$	-1.93 ± 0.10	$(4.64 \pm 0.20) \times 10^{-6}$
$\psi(3770)$	-2.13 ± 0.42	$(1.38 \pm 0.54) \times 10^{-9}$
$\psi(4040)$	-2.52 ± 0.66	$(4.17 \pm 2.72) \times 10^{-10}$
$\psi(4160)$	-1.90 ± 0.64	$(2.61 \pm 0.84) \times 10^{-9}$
$\psi(4415)$	-2.52 ± 0.36	$(6.04 \pm 3.93) \times 10^{-10}$

- Constrains on C_{9} and C_{10} consistent agreement with other global analyses [Straub et al Flavio]
- Interference with resonances exclude $C_{9}=0$ at more than 5σ !
- Significantly improve precision on b_{1}^{+}and b_{2}^{+}
- Working on measurement in $B^{0} \rightarrow K^{* 0} \mu^{+} \mu^{-}$
\triangleright Phases per helicity amplitude

Measurement of $B_{s} \rightarrow \mu^{+} \mu^{-}{ }_{[\text {arxiv:1703.05747] }}$

- The process $B_{s} \rightarrow \mu^{+} \mu^{-}$is both GIM and helicity suppressed in SM
- Small theoretical uncertainties (Lattice QCD for needed for B meson decay constants)
\rightarrow Increased sensitivity to effects of new physics entering in dilepton (pseudo-)scalar and axial-vector couplings
- Experimental challenge: Reduce huge background from combinations of muons from different B decays
- $\mathcal{B}(B \rightarrow \mu X) \sim 10 \%$
$\mathcal{B}\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right) \sim 10^{-9}$

\rightarrow Use a mulitvariate classifier to separate signal and background
\rightarrow Use of PID to reduce peaking backgrounds from $B \rightarrow h h, B \rightarrow \mu h$

New measurement with Run2 data ${ }_{[a r x i v: 1703.05747]}$

- Accounting for increase in cross-section: Run1+Run2~ $1.75 \times$ Run1
- Improvements in isolation algorithem \rightarrow lower backgrounds compared to previous publication
- Fit dimuon mass in bins of multivariate classifier to determine signal yield
- Cross-check yields of peaking backgrounds through control samples in the data

Nature 522, 68-72
New: LHCb 1703.05747

- New result consistent with SM. Observation of $B_{s}^{0} \rightarrow \mu^{+} \mu^{-}$by LHCb alone
- Also performed first measurement of the effective lifetime $\tau\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)=2.04 \pm 0.44 \pm 0.05 \mathrm{ps}$
\rightarrow More data required to test SM

Full angular analysis of $B^{0} \rightarrow K^{* 0} \mu^{+} \mu^{-}{ }_{\text {[נHEPO2(20016)(0)04] }}$

ATLAS,CMS Moriond 2017. Plot courtesy of Tom Blake

- Working hard to update this analysis with Run2 data
- Run1 analysis statistically dominated
- Full Run2 dataset expect factor of ~ 2 improvement in stat. precision \rightarrow Still stat. dominated
- Important to increase precision in C_{10} as well

Imaginary contributions to C_{9} and C_{10}

- We have measured complete set of CP asymmetric observables Lнсь [JHEP02(2016)104]
\rightarrow Sensitive to imaginary NP contributions

- With $300 \mathrm{fb}^{-1}$ collected by Run 5, LHCb could have $\sim 500,000$ $B^{0} \rightarrow K^{* 0} \mu^{+} \mu^{-}$
\triangleright More than entire Run $1 B^{0} \rightarrow J / \psi K^{* 0}$ sample!
- Uncertainties in plots shrink by $\sim \times 10$ assumptions about systs \rightarrow Sensitive to NP contributions of order shown

Other $K^{+} \pi^{-}$states ${ }_{[H H E P 11(2016)(47]]}$

- Measure S-wave fraction in $644<m_{K \pi}<1200 \mathrm{MeV} / c^{2}$ [JHEP11(2016)047] \rightarrow Enables first determination of P-wave only $B^{0} \rightarrow K^{* 0}(892) \mu^{+} \mu^{-}$ differential branching fraction

- Additional data should provide sensitivity to potential non-resonant P-wave contributions
\rightarrow Orthogonal constraints provided theory uncertainties under contro Das et al [1406.6681] What are prospects here? Our measurements could help

Other $K^{+} \pi^{-}$states cont'd [JHEP12(2016)065]

- Angular moment and differential branching fraction analysis in $1330<m_{K \pi}<1530 \mathrm{MeV} / c^{2}$ [JHEP12(2016)065]
\rightarrow Measure 40 normalised angular moments sensitive to interference between S-, P- and D-wave
\rightarrow No significant D-wave component observed in contrast to $B^{0} \rightarrow J / \psi K^{+} \pi^{-}$

- In Run 1: 230 candidates, by Run 47500 candidates ($\times 3$ as many candidates as current $B^{0} \rightarrow K^{* 0}(892) \mu^{+} \mu^{-}$yield)
\rightarrow Estimates of $B \rightarrow K_{J=0,2}^{*}$ form-factors exist Lu et al [PRD85(2012)] but more input from theory required to constrain Wilson coefficients from these measurements. What are prospects here?

What about baryonic decays

- For example: Run 1: $370 \Lambda_{b} \rightarrow \Lambda(\rightarrow p \pi) \mu^{+} \mu^{-}$events

LHCb [JHEP06(2015)115]

- Additional observables eg $A_{F B}^{p}$ giving access to different combinations of Wilson coefficients

What about baryonic decays cont'd

vDyk, Meinel [1603.02974],[LHCb implications 2015]
(toy model low recoil)

F_{L} (common with $B \rightarrow K \mu^{+} \mu^{-}$) (common with $B \rightarrow K \mu^{+} \mu^{-}$)
$A_{F B}^{\ell p}$ (unique to $\Lambda_{b} \rightarrow \Lambda \mu^{+} \mu^{-}[\operatorname{not}$ measured yet])
$A_{F B}^{p}$ (unique to $\Lambda_{b} \rightarrow \Lambda \mu^{+} \mu^{-}$)

- Ongoing work on $\Lambda_{b} \rightarrow \Lambda^{*}(\rightarrow p K) \mu^{+} \mu^{-}$BF measurement, CP asymmetry measurements etc
- With 10,000 candidates by Run 4 and 60,000 by Run 5, LHCb will uniquely contribute to these new observables

Measurements with $\Lambda_{b} \rightarrow \Lambda^{*}(\rightarrow p K) \mu^{+} \mu^{-}$[axxivi.703.0.0256]

- Using Run1 data, perform first observation of this mode. Measure:
- The $C P$ asymmetry relative to $\Lambda_{b} \rightarrow p K J / \psi\left(\Delta \mathcal{A}_{C P}\right)$
\triangleright Cancellation of detector and production asymmetry
- The \hat{T}-odd $C P$ asymmetry: $a_{C P}^{\hat{T}-\text { odd }} \equiv \frac{1}{2}\left(A_{\hat{T}}-\bar{A}_{\hat{T}}\right)$
$\triangleright A_{\hat{T}}\left(\bar{A}_{\hat{T}}\right)$ is a triple product asymmetry of the $\Lambda_{b}\left(\bar{\Lambda}_{b}\right)$
- These aymmetries have different dependencies on strong phases and sensitivities to NP

$$
\begin{gathered}
\Delta \mathcal{A}_{C P}=(-3.5 \pm 5.0(\text { stat }) \pm 0.2(\text { syst })) \times 10^{-2} \\
a_{C P}^{\widehat{T} \text {-odd }}=(1.2 \pm 5.0(\text { stat }) \pm 0.7(\text { syst })) \times 10^{-2}
\end{gathered}
$$

- No evidence for CP asymmetry observed
$B^{+} \rightarrow \pi^{+} \mu^{+} \mu^{-}$differential branching fraction ${ }_{\text {IHEP10(2015)(О344 }}$ LHCh
- Very relevant if tensions persist \rightarrow test MFV nature of new physics
- Latest lattice results enable further precision tests of CKM paradigm Buras,Blanke[1602.04020], FNAL/MILC[1602.03560]
- Current measurement from penguin decays of $\left|V_{t d} / V_{t s}\right|=0.201 \pm 0.020$ FNAL/MILC[PRD93,034005(2016]

LHCb [JHEP10(2015)034] FNAL/MILC[1602.03560], FNAL/MILC[PRD93,034005(2016)]

Baryonic $b \rightarrow d \mu^{+} \mu^{-}$[axxi:1701.0875s]

- First observation of baryonic $b \rightarrow d \mu^{+} \mu^{-}$transition (5.5σ)
- Use Run1 data and measure relative to $\Lambda_{b} \rightarrow J / \psi p \pi$
- $\mathcal{B}\left(\Lambda_{b} \rightarrow p \pi \mu \mu\right)=$ $\left(6.9 \pm 1.9 \pm 1.1_{-1.0}^{+1.3}\right) \times 10^{-8}$
- These decays will greatly benefit with Run 2 and beyond
- $b \rightarrow d \mu^{+} \mu^{-}$the new $b \rightarrow s \mu^{+} \mu^{-}$:
- Run 1: $93 B^{+} \rightarrow \pi^{+} \mu^{+} \mu^{-}, 40 B^{0} \rightarrow \pi^{+} \pi^{-} \mu^{+} \mu^{-}$
- 300fb ${ }^{-1}: 18,000 B^{+} \rightarrow \pi^{+} \mu^{+} \mu^{-}$and $4,000 B^{+} \rightarrow \pi^{+} e^{+} e^{-}$ (naive scaling)
- $300 \mathrm{fb}^{-1}: 8,000 B^{+} \rightarrow \pi^{+} \pi^{-} \mu^{+} \mu^{-}$and $2,000 B^{+} \rightarrow \pi^{+} \pi^{-} e^{+} e^{-}$ (naive scaling)
\rightarrow Allows for precision MFV and MFV+LNU tests

Summary

- Run 1 and 2 of the LHC introduce precision era in rare B-decay measurements
- Precision reveals tensions. Run2 data aimed at understanding these \rightarrow Clarify the impact of $c \bar{c}$ and other resonances in $B \rightarrow K^{(*)} \mu^{+} \mu^{-}$ observables
\rightarrow Update of $B \rightarrow K^{* 0} \mu^{+} \mu^{-}$on its way
\rightarrow Plethora of observables for $K_{J=0,2}^{*}$ states and baryonic decays
- Towards Run3,4 and beyond
\rightarrow Clear physics case for rare decays given stat precision
\rightarrow Big gains in $b \rightarrow d$ transitions and final states with electrons
\rightarrow Critical to maintain detector performance

Backup

