

$b o s \ell \ell$ decays at LHCb

Konstantinos A. Petridis on behalf of the LHCb collaboration

University of Bristol

March 29, 2017

K.A. Petridis (UoB) Flavour Trends 2017 Paris 1 / 21

Introduction

- ▶ Run 1 of the LHC provided us with a rich set of results
 - \rightarrow Rise of the precision era for rare decays
- ➤ Selective set of results with Run 1 and plans with Run 2 data and beyond in light of current anomalies

LHCb signal yields

channel	Run 1	Run 2	Run 3,4 (50fb^{-1})
$B^0 \to K^{*0}(K^+\pi^-)\mu^+\mu^-$	2,400	9,000	80,000
$B^0 o K^{*+}(K^0_{ m S}\pi^+)\mu^+\mu^-$	160	600	5,500
$B^0 ightarrow K_{ m S}^0 \mu^+ \mu^-$	180	650	5,500
$B^+ ightarrow ilde{\mathcal{K}}^+ \mu^+ \mu^-$	4,700	17,500	150,000
$\Lambda_b o \Lambda \mu^+ \mu^-$	370	1500	10,000
$B^+ \to \pi^+ \mu^+ \mu^-$	93	350	3,000
$B^0_s ightarrow \mu^+ \mu^-$ $B^0 ightarrow K^{*0} e^+ e^- ext{ (low } g^2 ext{)}$	15	60	500
$B^0 ightarrow K^{*0} e^+ e^- \; (ext{low } q^2)$	150	550	5,000
$B_s o \phi \gamma$	4,000	15,000	150,000

Naively scaling with luminosity and linear scaling of $\sigma_{b\bar{b}}$ with \sqrt{s} . Extrapolated yields rounded to the nearest 50/500

- ▶ Our measurements of $d\mathcal{B}/dq^2$ obtained by normalising rare yield to that of normalisation channel $B \to J/\psi K^*$
- ▶ For higher statistics decays, dominant uncertainty of integrated BF is the knowledge of $\mathcal{B}(B \to J/\psi K^*)$
 - ightarrow More $b
 ightarrow s\ell\ell$ decays in Run 1 than $B
 ightarrow J/\psi K^*$ of B-factories!
- ▶ Dominant systematic uncertainty on BFs: Knowledge equivalent J/ψ BF → Belle2 could help here also resolving isospin asymmetries at $\Upsilon(4S)$ M.Jung [1510.03423]
- ▶ With the LHCb upgrade even "tough" modes will be sufficiently populated

An intriguing set of results

- 1. Measurements of differential branching fractions of $B \to K^{(*)} \mu^+ \mu^-$, $\Lambda_b \to \Lambda \mu^+ \mu^-$, $B_s \to \phi \mu^+ \mu^ \Rightarrow 1\sigma$ to 3σ depending on final state
- 2. Tests of lepton universality between $B^+ \to K^+ \mu^+ \mu^-$ and $B^+ \to K^+ e^+ e^ \Rightarrow 2.6\sigma$
- 3. Angular analyses of $B \to K^{(*0)} \mu^+ \mu^-$, $B_s \to \phi \mu^+ \mu^-$, $\Lambda_b \to \Lambda \mu^+ \mu^ \Rightarrow \sim 3\sigma$

Measurements form a consistent picture.

Interpretations

▶ Several attempts to interpret $b \to s\mu^+\mu^-$ and $b \to s\gamma$ data

Altmannshofer, Straub [1503.06199]

- ► Modified vector coupling $C_9^{NP} \neq 0$ at $\sim 4\sigma$
 - \rightarrow New vector Z', leptoquarks, vector-like confinement... Buttazzo et al [1604.03940], Bauer et al [PRL116,141802(2016)], Crivellin et al [PRL14,151801(2015)], Altmannshofer et al [PRD89(2014)095033]...

- Potential problem with our understanding of the contribution from $B \to X_{c\bar{c}} (\to \mu\mu) K$ Lyon, Zwicky [1406.0566], Altmannshofer, Straub[1503.06199], Ciuchini et al [1512.07157]...
 - \rightarrow Mimics vector-like new physics effects (corrections to C_9)

Impact on dilepton vector coupling

- Dependence of observables on vector couplings enters through $C_0^{eff} = C_9 + Y(q^2)$
 - $\rightarrow Y(q^2)$ summarises contributions from $bs\bar{q}q$ operators

- lacksquare At low q^2 main culprit is the J/ψ
 - ightarrow Corrections to C_9^{eff} (ΔC_9) all the way down to $q^2=0$
 - → Effect strongly dependent on relative phase with penguin
- More data will help resolve apparent q^2 dependence of C_9

Measuring phase differences [Eur. Phys.J. C(2017)77:161]

- ▶ Measure relative phase between narrow resonances and penguin amplitudes
- ▶ Use expression of differential decay rate in terms of short- and long-distance contributions
 - \rightarrow Model resonances as relativistic Breit–Wigners multiplied by relative scale and phase <code>inspired</code> by Lyon <code>Zwicky</code> [1406.0566], Hiller et al. [1606.00775]

$$ightarrow \mathit{C}_{9}^{\mathit{eff}} = \sum_{i} \eta_{j} e^{i\delta_{j}} \mathit{A}_{\mathit{res}}(q^{2}) + \mathit{C}_{9}$$

- Fit dimuon spectrum of $B^+ \to K^+ \mu^+ \mu^-$ to obtain:
 - \rightarrow Relative phases between resonant and penguin amplitudes
 - ightarrow C_9 and C_{10}
 - \rightarrow Further constrain lattice input Bailey et al [PRD93,025026(2016] On form-factor $f_+(q^2)$
- Note have 4 degenerate solutions for phases depending on relative sign between J/ψ and $\psi(2s)$ phases

Measuring phase differences cont'd [Eur. Phys.J. C(2017)77:161]

- ▶ Results show minimal interference with J/ψ and $\psi(2S)$ resonances
 - \rightarrow Given this model, the J/ψ and $\psi(2S)$ resonances play sub-dominant role below their pole mass
- ▶ Phases of $\psi(3770)$, $\psi(4040)$, $\psi(4160)$ in good agreement with Lyon Zwicky [1406.0566]

Resonance	J/ψ negative/ $\psi(2S)$ negative			
	Phase [rad]	Branching fraction		
ρ(770)	-0.35 ± 0.54	$(1.71 \pm 0.25) \times 10^{-10}$		
ω(782)	0.26 ± 0.39	$(4.93 \pm 0.59) \times 10^{-10}$		
$\phi(1020)$	0.47 ± 0.39	$(2.53 \pm 0.26) \times 10^{-9}$		
J/ψ	-1.66 ± 0.05	-		
$\psi(2S)$	-1.93 ± 0.10	$(4.64 \pm 0.20) \times 10^{-6}$		
$\psi(3770)$	-2.13 ± 0.42	$(1.38 \pm 0.54) \times 10^{-9}$		
$\psi(4040)$	-2.52 ± 0.66	$(4.17 \pm 2.72) \times 10^{-10}$		
$\psi(4160)$	-1.90 ± 0.64	$(2.61 \pm 0.84) \times 10^{-9}$		
$\psi(4415)$	-2.52 ± 0.36	$(6.04 \pm 3.93) \times 10^{-10}$		

- ► Constrains on C₉ and C₁₀ consistent agreement with other global analyses [straub et al Flavio]
- Interference with resonances exclude $C_9 = 0$ at more than $5\sigma!$
- Significantly improve precision on b₁⁺ and b₂⁺
- Working on measurement in $B^0 \to K^{*0} \mu^+ \mu^-$
 - ▷ Phases per helicity amplitude

Flavour Trends 2017 Paris 8 / 21

Measurement of $B_{\rm s} ightarrow \mu^+ \mu^-$ [arXiv:1703.05747]

- ▶ The process $B_s \to \mu^+ \mu^-$ is both GIM and helicity suppressed in SM
- ➤ Small theoretical uncertainties (Lattice QCD for needed for B meson decay constants)
 - \rightarrow Increased sensitivity to effects of new physics entering in dilepton (pseudo-)scalar and axial-vector couplings

- ► Experimental challenge: Reduce huge background from combinations of muons from different *B* decays
- $\mathcal{B}(B \to \mu X) \sim 10\% \\ \mathcal{B}(B_s \to \mu^+ \mu^-) \sim 10^{-9}$

- ightarrow Use a mulitvariate classifier to separate signal and background
- ightarrow Use of PID to reduce peaking backgrounds from B
 ightarrow hh, $B
 ightarrow \mu h$

New measurement with Run2 data [arXiv:1703.05747]

- ▶ Accounting for increase in cross-section: Run1+Run2 $\sim 1.75 \times$ Run1
- \blacktriangleright Improvements in isolation algorithem \rightarrow lower backgrounds compared to previous publication

- Fit dimuon mass in bins of multivariate classifier to determine signal yield
- Cross-check yields of peaking backgrounds through control samples in the data

- ▶ New result consistent with SM. Observation of $B^0_s o \mu^+\mu^-$ by LHCb alone
- ▶ Also performed first measurement of the effective lifetime $\tau(B_s \to \mu^+ \mu^-) = 2.04 \pm 0.44 \pm 0.05$ ps
 - \rightarrow More data required to test SM

Full angular analysis of $B^0 o K^{*0}\mu^+\mu^-$ [JHEP02(2016)104]

- Working hard to update this analysis with Run2 data
- Run1 analysis statistically dominated

- ► Full Run2 dataset expect factor of ~ 2 improvement in stat. precision → Still stat. dominated
- ► Important to increase precision in C₁₀ as well

ATLAS,CMS Moriond 2017. Plot courtesy of Tom Blake

Imaginary contributions to C_9 and C_{10}

- ▶ We have measured complete set of CP asymmetric observables LHCЬ [JHEP02(2016)104]
 - → Sensitive to imaginary NP contributions

- ▶ With 300fb $^{-1}$ collected by Run 5, LHCb could have \sim 500,000 $B^0 \to K^{*0} u^+ u^$
 - ightharpoonup More than entire Run 1 $B^0 o J/\psi K^{*0}$ sample!
- lacksquare Uncertainties in plots shrink by $\sim imes 10$ assumptions about systs
 - → Sensitive to NP contributions of order shown

Other $K^+\pi^-$ states [JHEP11(2016)047]

Measure S-wave fraction in 644 $< m_{K\pi} < 1200 \text{ MeV}/c^2$ [JHEP11(2016)047] \rightarrow Enables first determination of P-wave only $B^0 \rightarrow K^{*0}(892)\mu^+\mu^-$ differential branching fraction

- Additional data should provide sensitivity to potential non-resonant P-wave contributions
 - \rightarrow Orthogonal constraints provided theory uncertainties under contro Das et al [1406.6681] What are prospects here? Our measurements could help

Other $K^+\pi^-$ states cont'd [JHEP12(2016)065]

- Angular moment and differential branching fraction analysis in $1330 < m_{K\pi} < 1530 \; {\rm MeV}/c^2$ [JHEP12(2016)065]
 - \rightarrow Measure 40 normalised angular moments sensitive to interference between S-, P- and D-wave
 - \rightarrow No significant D-wave component observed in contrast to $B^0 \rightarrow J/\psi K^+\pi^-$

- ▶ In Run 1: 230 candidates, by Run 4 7500 candidates (×3 as many candidates as current $B^0 \to K^{*0}(892)\mu^+\mu^-$ yield)
 - ightarrow Estimates of $B
 ightarrow K_{J=0,2}^*$ form-factors exist Lu et al [PRD85(2012)] but more input from theory required to constrain Wilson coefficients from these measurements. What are prospects here?

What about baryonic decays

▶ For example: Run 1: 370 $\Lambda_b \to \Lambda(\to p\pi)\mu^+\mu^-$ events

► Additional observables eg A^p_{FB} giving access to different combinations of Wilson coefficients

What about baryonic decays cont'd

vDyk, Meinel [1603.02974],[LHCb implications 2015] (tov model low recoil)

 F_L (common with $B \to K \mu^+ \mu^-$) A_{FB}^{ℓ} (common with $B \to K \mu^+ \mu^-$) $A_{FB}^{\ell p}$ (unique to $\Lambda_b \to \Lambda \mu^+ \mu^-$ [not measured yet]) A_{FB}^{p} (unique to $\Lambda_b \to \Lambda \mu^+ \mu^-$)

- ▶ Ongoing work on $\Lambda_b \to \Lambda^*(\to pK)\mu^+\mu^-$ BF measurement, CP asymmetry measurements etc
- ▶ With 10,000 candidates by Run 4 and 60,000 by Run 5, LHCb will uniquely contribute to these new observables

Measurements with $\Lambda_b o \Lambda^*(o pK) \mu^+ \mu^-$ [arXiv:1703.00256]

- ▶ Using Run1 data, perform first observation of this mode. Measure:
- ▶ The *CP* asymmetry relative to $\Lambda_b o pKJ/\psi$ ($\Delta \mathcal{A}_{CP}$)
- ▶ The \hat{T} -odd CP asymmetry: $a_{CP}^{\hat{T}-odd} \equiv \frac{1}{2}(A_{\hat{T}} \overline{A}_{\hat{T}})$
- ▶ These aymmetries have different dependencies on strong phases and sensitivities to NP

No evidence for CP asymmetry observed

$B^+ o \pi^+ \mu^+ \mu^-$ differential branching fraction [JHEP10(2015)034]

- Very relevant if tensions persist → test MFV nature of new physics
- ► Latest lattice results enable further precision tests of CKM paradigm Buras,Blanke[1602.04020], FNAL/MILC[1602.03560]
- ullet Current measurement from penguin decays of $|V_{td}/V_{ts}|=0.201\pm0.020$ FNAL/MILC[PRD93,034005(2016]

LHCb [JHEP10(2015)034] FNAL/MILC[1602.03560], FNAL/MILC[PRD93,034005(2016)]

Baryonic $b o d\mu^+\mu^-$ [arXiv:1701.08705]

- First observation of baryonic $b \rightarrow d\mu^+\mu^-$ transition (5.5 σ)
- Use Run1 data and measure relative to $\Lambda_b o J/\psi p\pi$
- $\mathcal{B}(\Lambda_b \to p\pi\mu\mu) =$ $(6.9 \pm 1.9 \pm 1.1^{+1.3}_{-1.0}) \times 10^{-8}$
- ▶ These decays will greatly benefit with Run 2 and beyond
- ▶ $b \rightarrow d\mu^{+}\mu^{-}$ the new $b \rightarrow s\mu^{+}\mu^{-}$:
- ▶ Run 1: 93 $B^+ \rightarrow \pi^+ \mu^+ \mu^-$, 40 $B^0 \rightarrow \pi^+ \pi^- \mu^+ \mu^-$
- ▶ 300fb $^{-1}$: 18,000 $B^+ \to \pi^+ \mu^+ \mu^-$ and 4,000 $B^+ \to \pi^+ e^+ e^-$ (naive scaling)
- ▶ 300fb $^{-1}$: 8,000 $B^+ \to \pi^+\pi^-\mu^+\mu^-$ and 2,000 $B^+ \to \pi^+\pi^-e^+e^-$ (naive scaling)
 - \rightarrow Allows for precision MFV and MFV+LNU tests

Summary

- ▶ Run 1 and 2 of the LHC introduce precision era in rare B-decay measurements
- Precision reveals tensions. Run2 data aimed at understanding these
 - \to Clarify the impact of $c\bar{c}$ and other resonances in $B \to K^{(*)} \mu^+ \mu^-$ observables
 - ightarrow Update of $B
 ightarrow K^{*0}\mu^+\mu^-$ on its way
 - ightarrow Plethora of observables for $K_{J=0,2}^*$ states and baryonic decays
- Towards Run3,4 and beyond
 - \rightarrow Clear physics case for rare decays given stat precision
 - ightarrow Big gains in b
 ightarrow d transitions and final states with electrons
 - → Critical to maintain detector performance

Backup