Status & Perspectives of Charm (LHCb and Belle2)

Jolanta Brodzicka, University of Manchester

Trends in Flavour Physics Paris, March 2017

Charm: complementary but difficult

- Unique access to up-type quarks (HF physics with top limited)
- Rare charm processes very suppressed in SM

- b loop $\sim V_{ub}V_{cb}(m_b/m_W)^2$
- s & d: GIM suppressed, cancel in U-spin limit

- d,s,b in loops: different NP particle/couplings?
- Large non-perturbative corrections (~1/m_c)

Theoretical reality, in short

- Charm Unitarity Triangle
- UT openness ⇒ CPV expected

$$\bigvee_{\mathsf{ud}}^* \bigvee_{\mathsf{cd}} \sim \lambda$$

$$V_{ub}^*V_{cb}^* \lambda^5$$

$$\beta_c \sim 0.03^{\circ}$$

$$B_d$$
: $\beta/\phi_1\sim22^\circ$

$$B_s$$
: $\beta_s \sim 1^\circ$

$$V_{us}^*V_{cs} \sim \lambda$$

Increased CPV in decays dominated by penguins

Experimental reality, in short

- D^0 - D^0 mixing
 - established (= no-mixing excluded)
 - not measured precisely

CPV

- not observed yet
- precision down to O(10⁻³)
- becoming sensitive to SM charm CPV

Rare decays

- looking for signals, precision down to O(10-8)
- not there yet to go beyond
 (asymmetries, γ polarisation, LFU, ...)
- will take B-brother path ASAP

Mixing & Indirect CPV

D⁰-D⁰ mixing & Indirect CPV: basics

• Flavour eigenstates $D^0[cu] \bar{D}^0[\underline{c}u] \Rightarrow$ mass eigenstates $D_1 D_2[m_{1,2} \Gamma_{1,2}]$

$$|D_{1,2}\rangle = p|D^0\rangle \pm q|\overline{D}^0\rangle \quad |p^2| + |q^2| = 1$$

Mixing frequencies x, y

$$x = \frac{m_2 - m_1}{\Gamma}$$
 $y = \frac{\Gamma_2 - \Gamma_1}{2\Gamma}$ $\Gamma = \frac{\Gamma_1 + \Gamma_2}{2}$

CPV related to mixing (Indirect CPV)

$$|q/p| \neq 1$$
 $\phi = \arg(q/p) \neq 0$

SM:
 x, y ~O(10⁻²) with large uncertainty
 Indirect CPV universal, ~10⁻⁴

difficult to calculate

Mixing & Indirect CPV: global fit

$$x = (0.32 \pm 0.14)\%$$
 $y = (0.69^{+0.06}_{-0.07})\%$

$$|q/p| = 0.89^{+0.08}_{-0.07}$$
 $\phi = \arg(q/p) = -12.9^{+9.9}_{-8.7} \deg$

- No-mixing excluded by $>11\sigma$
- x still not significant
- No evidence for indirect CPV
- Mixing: search for NP within SM
- Why to bother?
 - To disentangle q/p from measurements
 - In case theory calculation improves

Mixing & Indirect CPV: methods/modes

- t-dependent analysis; $t = D^0$ decay time
- Best access through interference of decays & mixing

- Contribution from mixing itself $\sim x^2+y^2 \sim O(10^{-4})$
- $D^0 \rightarrow \overline{D}{}^0 \rightarrow K^-l\nu$ (purely from mixing) not yet observed
- Max sensitivity
 - both paths with similar rates (f = DCS)
 - large statistics (f = SCS)

Wrong Sign Decays: $D^0 \rightarrow K\pi$

$$D^{O}$$
 WS $K^{+}\pi^{-}$ D^{O} RS $K^{-}\pi^{+}$ Mix DCS D^{O}

$$R(t) = \frac{N_{WS}}{N_{RS}}(t) \approx R_D + \sqrt{R_D} y' \frac{t}{\tau} + \frac{x'^2 + y'^2}{4} \left(\frac{t}{\tau}\right)^2$$

Decay Interference Mixing

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} \cos \delta_{K\pi} & \sin \delta_{K\pi} \\ -\sin \delta_{K\pi} & \cos \delta_{K\pi} \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

• $\delta_{K\pi}$: CF/DCS strong phase; from CLEO/BESIII

$$y' = (5.2 \pm 0.8) \times 10^{-3}$$
$$x'^{2} = (3.6 \pm 4.3) \times 10^{-5}$$
$$0.75 < |q/p| < 1.24 @68\% CL$$

Most significant mixing, no CPV

Wrong Sign Decays: $D^0 \rightarrow K3\pi$

- Rates integrated over Phase Space
- ⇒ averaged strong phase & coherence factor
- ⇒ dilution of sensitivity

$$R(t) = \frac{N_{WS}}{N_{RS}}(t) \simeq \left[R_D^{K3\pi} + \sqrt{R_D^{K3\pi}} R_{coh} \ y'' \frac{t}{\tau}\right] + \left[\frac{x''^2 + y''^2}{4} \left(\frac{t}{\tau}\right)^2\right]$$

 R_{coh} ~0 phase variation; R_{coh} ~1 resonances in phase

$$\int A_{K^{-}3\pi}(\mathbf{r})A_{K^{+}3\pi}(\mathbf{r})\,d\mathbf{r} \Rightarrow R_{coh}e^{-i\delta_{K3\pi}}$$

$$R_{coh}y'' = (0.3 \pm 1.8) \times 10^{-3}$$
$$(x''^2 + y''^2)/4 = (4.8 \pm 1.8) \times 10^{-5}$$

Measurement w/o PS integration expected to have large sensitivity

Multibody decays: time evolution of Dalitz

- ✓ Direct access to x, y, q/p
- X Need model to describe resonances
- ✓ Access to amplitudes & phases ⇒ no external input
- ✓ No dilution from coherence factor

$$\mathcal{P}\big[D^0(Dalitz;t)\big] \propto e^{-\Gamma t} \Big\{ |A_f|^2 [\cosh{(y\Gamma t)} + \cos{(x\Gamma t)}] \quad \text{decay Do-f} \\ + \big| \frac{q}{p} \overline{A}_f \big|^2 [\cosh{(y\Gamma t)} - \cos{(x\Gamma t)}] \quad \text{mixing Do-} \overline{D}^0 \text{--} f \\ - 2\Re{\left(\frac{q}{p} A_f^* \overline{A}_f\right)} \sinh{(y\Gamma t)} - 2\Im{\left(\frac{q}{p} A_f^* \overline{A}_f\right)} \sin{(x\Gamma t)} \Big\} \quad \text{tinterference of both}$$

Sensitivity depends on resonance interference

PRD89 091103 (2014)

Dalitz(t) of $D^0 \rightarrow K_S \pi^+ \pi^-$ golden mode

- Large statistics and rich dynamics
- Significant $D^0 \rightarrow f \& D^0 \rightarrow f$ interferences
- Most precise x so far

$$x = \left(0.56 \pm 0.19^{+0.04}_{-0.08}^{+0.04}\right)\% \qquad y = \left(0.30 \pm 0.15^{+0.04}_{-0.05}^{+0.04}^{+0.03}\right)\%$$
$$\left|q/p\right| = 0.90^{+0.16}_{-0.15}^{+0.05}^{+0.06}_{-0.05}^{+0.06} \quad \phi = \left(-6 \pm 11 \pm 3^{+3}_{-4}\right)^{\circ}$$

- Belle: 1.2M signal events
- LHCb: 2M in Run1. Significant x with Run1+2?

CP-eigenstates: effective lifetimes

- Does mixing affect D⁰ and D⁰ differently?
- Indirect CPV easiest to access via A_Γ

$$A_{\Gamma} = \frac{\tau(\overline{D}^0 \to h^+ h^-) - \tau(D^0 \to h^+ h^-)}{\tau(\overline{D}^0 \to h^+ h^-) + \tau(D^0 \to h^+ h^-)} \simeq -A_{CP}^{\text{indirect}}$$

• Asymmetry of yields in t(D) bins $A_{GD}(t) \sim A_{GD}^{\text{direct}} - A_{D} \frac{t}{t}$

$$A_{CP}(t) \simeq A_{CP}^{
m direct} - {f A}_{\Gamma} rac{t}{ au_D}$$

• LHCb 2012 data, prompt charm

A_{Γ} : entering SM area

- Sensitivity of O(10⁻⁴)
 Limited by statistics
- Indirect CPV in SM ~10-4

• A_{Γ} in terms of basic parameters LHCb 2015 μ tag

$$A_{\Gamma} = \frac{1}{2} \left[\left(\left| \frac{q}{p} \right| - \left| \frac{p}{q} \right| \right) y \cos \phi - \left(\left| \frac{q}{p} \right| + \left| \frac{p}{q} \right| \right) x \sin \phi \right]$$
LHCb 2016 D*+ tag

CPV in mix-decay in mixing interference

 \Rightarrow sensitivity to q/p depends on x

published ongoing

Mixing & ICPV: modes/methods

D ⁰ Mode	Method	Observ.	Exp.	Caveat
Κπ	WS/RS (t)	x'^2 , y' , $ q/p $	LHCb (Run2) CDF Belle Babar	external input: $\delta_{K\pi}$
$K3\pi$	WS/RS (t)	x'' ² , y''	LHCb	external input: $\delta_{K3\pi}$, R_{coh}
$K\pi\pi^0$	WS/RS (t)		Belle	
ΚΚ, ππ	effective τ	A_{Γ} , y_{CP}	LHCb (Run2) CDF Belle Babar	mixing/CPV entangled
$K_S\pi\pi$	Dalitz-bins(t)	x, y	LHCb	δ_{strong} in Dalitz bins
$K_S\pi\pi$	Dalitz-bins(t)		Belle LHCb	Dalitz model
K _S KK	Dalitz(t)	v u alp	Babar	Dalitz model
$\pi\pi\pi^0$	Dalitz(t)	x, y, q/p	Babar	Dalitz model
$K3\pi$	PhaseSpace(t)		LHCb	5-D model for WS&RS
$K_S\pi\pi\pi^0$	PhaseSpace(t)		?	5-D amplitude model

- Won't get far with 2-body decays. Multibody decays is a must
- Will model error limit us? Millions of events difficult to model
- For binned approach we need input from BESIII

Experimental aspects & prospects

• **flavour tagging** at t=0. Defines charm samples

- LHCb uses both; Belle prompt
- prompt/sec separation, nontrivial at LHCb

• Lifetime biasing; may need better approach

16

Experimental aspects & prospects

- **t-acceptance**: LHCb triggers distort prompt charm
- Prompt + sec charm ⇒ full coverage of decay time
- Lifetime-unbiased triggers in Run-2

- t-resolution
- good at LHCb: ~50fs
- improved at Belle2 wrt Belle: ~250fs →~150fs

A.Schwartz @ Charm2016 Future of mixing & ICPV

- Dominated by LHCb
- Significant x with Run1+2?

	$\sigma(x)$	σ(y)	σ(q/p) [10 ⁻³]	σ(φ)
	[10-3]	[10-3]	[10-3]	[mrad]
HFAG 2016	1.4	0.7	80	173
Run-1 (2011 - 2012)	1.1	0.8	65	119
Run-2 (2015 - 2018)	0.8	0.6	47	83
Run-3 (2021 - 2023)	0.3	0.2	17	32

- LHCb: √N scaling of stat & syst
- Belle: includes irreducible syst

Belle II 50 ab-1

Direct CPV

- Depends on decay mode
- Within SM:
 - from Tree-Penguin interference (expected in SCS decays)
 - $A_{CP} \le 10^{-3} \div 10^{-2}$
- From time independent measurements

'Extra' asymmetries to account for

Production asymmetry

- $e^+e^- \rightarrow \gamma/Z^*$ interference \Rightarrow FB asymmetry; easy to disentangle from CPV
- pp: $\sigma(\Lambda_c^+) > \sigma(\Lambda_c^-) \Rightarrow \sigma(D^+) < \sigma(D^-)$ to compensate (Asym~1%)

Detection asymmetries ($K^+ vs K^-$, $\pi^+ vs \pi^-$)

- different interactions with detector material: $\sigma(pK^-) > \sigma(pK^+)$
- depend on particle momentum

From raw asymmetry to CP asymmetry

Correct with CF control modes

- Overconstrain system with additional channels
- $A_{CP}(D^0 \rightarrow K^+K^-)$ case

$$A_{raw} = \frac{N(D) - N(\overline{D})}{N(D) + N(\overline{D})}$$

Multi-dim reweighting to match kinematics of signal & control modes

Calculated from known K⁰/K⁰ interactions with detector + K-mixing/CPV

- Assume no CPV in CF or include related uncertainty?
- Jolanta@MIAPP

Most precise Very important

A_{CP} in 2-body SCS decays

	LHCb	Belle	BaBar	BESIII
Mode	A _{CP} [%]			
$D_0 \rightarrow K_+K$	$+0.04 \pm 0.12 \pm 0.10$	$-0.32 \pm 0.21 \pm 0.09$	$+0.00 \pm 0.34 \pm 0.13$	
$D^0 \rightarrow \pi^+\pi^-$	$+0.07 \pm 0.14 \pm 0.11$	$+0.55 \pm 0.36 \pm 0.09$	$-0.24 \pm 0.52 \pm 0.22$	
$D^0 \rightarrow K_s K_s$	$-2.9 \pm 5.2 \pm 2.2$	$+0.00 \pm 1.53 \pm 0.17$		
$D^0 \rightarrow \pi^0 \pi^0$		$-0.03 \pm 0.64 \pm 0.10$		
$D^0 \rightarrow K_s \eta$		$+0.54 \pm 0.51 \pm 0.16$		
$D^0 \rightarrow K_s \eta'$		$+0.98 \pm 0.67 \pm 0.14$		
$D^+ \rightarrow K_s K^+$	$+0.03 \pm 0.17 \pm 0.14$	$+0.08 \pm 0.28 \pm 0.14$	$+0.46 \pm 0.36 \pm 0.25$	$-1.5 \pm 2.8 \pm 1.6$
$D^+ \rightarrow K^T K_+$				$-3.0 \pm 3.2 \pm 1.2$
$D^+ \rightarrow \varphi \pi^+$	$-0.04 \pm 0.14 \pm 0.14$	$+0.51 \pm 0.28 \pm 0.05$		
$D^+ \rightarrow \eta \pi^+$		$+1.74 \pm 1.13 \pm 0.19$		
$D^+ \rightarrow \eta' \pi^+$	$-0.61 \pm 0.72 \pm 0.55 \pm 0.12$	$-0.12 \pm 1.12 \pm 0.17$		
$D_s^+ \rightarrow K_s \pi^+$	$+0.38 \pm 0.46 \pm 0.17$	$+5.45 \pm 2.50 \pm 0.33$	$+0.3 \pm 2.0 \pm 0.3$	
$D_s^+ \rightarrow \eta' \pi^+$	$-0.82 \pm 0.36 \pm 0.24 \pm 0.27$	http://www.slac.stanford.edu/xorg/hfag/charm		

$$\Delta A_{CP} = A_{CP}(D^0 \rightarrow K^+K^-) - A_{CP}(D^0 \rightarrow \pi^+\pi^-)$$

• Sensitive & simple $\Delta A_{CP} \simeq \left[A_{CP}^{\text{direct}}(KK) - A_{CP}^{\text{direct}}(\pi\pi) \right] + \frac{\Delta \langle t \rangle}{\tau_D} A_{CP}^{\text{indirect}}$

• In SM: $|\Delta A_{CP}^{direct}| \le 0.6\%$

Prospects for direct CPV searches

Precision down to O(10-3), still no evidence

- Will improve by 6÷7 times with LHCb 50/fb or Belle2 50/ab
- Important Belle(2) input: $D^0 \rightarrow \pi^0 \pi^0$, $D^0 \rightarrow K_S K_S$, $D^+ \rightarrow \pi^+ \pi^0$

Exploit correlations, A_{CP} not enough

- Between modes related via Isospin or U-spin
- Model independent test of SM, model dependent test of NP
- e.g. SM sum rules:

$$A(D^+ \to \pi^+ \pi^0) - \overline{A}(D^+ \to \pi^+ \pi^0) = 0$$

$$\frac{1}{\sqrt{2}} A(\pi^+ \pi^-) + A(\pi^0 \pi^0) - \frac{1}{\sqrt{2}} \overline{A}(\pi^+ \pi^-) - \overline{A}(\pi^0 \pi^0) = 0$$

Look at DCS decays (strongly advertised by I.Bigi)

Explore charm baryons

- Nothing published yet!
- 1st evidence for CPV in baryons (in $\Lambda_b \rightarrow p3\pi$) arXiv:1609:05216

PLB 740 (2015) 158

Direct CPV in multibody decays

- Strong phases vary in Phase Space ⇒ local CPV asymmetries
- Model dependent: A_{CP} for resonances (amplitude analysis)
- Model independent: test data consistency with no-CPV, give p-value

binned $\chi^2(S_{CP} \text{ method})$

$$D^+ \to \pi^+ \pi^+ \pi^-$$
 p-value = 50÷100%

Significance of asymmetry in Dalitz bins

unbinned (Energy Test)

$$D^0 \rightarrow \pi^+ \pi^- \pi^0$$
 p-value = 2÷5%

Significance of asymmetry for each event

Direct CPV in 4-body decays

- Access to P-odd amplitudes

 ⇒ CPV via P-violation
 [P-odd amplitude e.g. D→VV in P-wave]
- 2&3-body D decays: P-even ampl. only ⇒ CPV via C-violation [Baryons: P-odd also in 2&3-body decays]
- CPV in P-even ampl: $A_{CP} \sim \sin \Delta \varphi_{weak} \sin \Delta \varphi_{strong}$ P-odd ampl: $A_{CP} \sim \sin \Delta \varphi_{weak} \cos \Delta \varphi_{strong}$ complementary
- Triple-product method (aka T-odd): sensitive to P-odd CPV only

Mode	A _{CP} ^{P-odd} [10 ⁻³]	Exp	Ref	
$D^0 \rightarrow K_S \pi^+ \pi^- \pi^0$	$-0.3 \pm 1.4^{+0.2}_{-0.8}$	Belle	arXiv:1703.05721	
$D^0 \rightarrow K^+K^-\pi^+\pi^-$	$1.8 \pm 2.9 \pm 0.4$	LHCb	JHEP10 (2014) 005	
$D^+ \rightarrow K_S K^+ \pi^+ \pi^-$	$-12 \pm 10 \pm 5$	Babar	PRD84 031103(2011)	

Triple product: $C_T \equiv \vec{p}_1 \cdot (\vec{p}_2 \times \vec{p}_3)$

Direct CPV in 4-body decays

- $D^0 \rightarrow \pi^+ \pi^- \pi^+ \pi^-$: P-even & P-odd CPV tested separately
- Separated with D flavour & triple-product sign
- Testing hypothesis of no-CPV with Energy Test
- No-CPV in P-even: p-value~5%
- No-CPV P-odd: p-value~0.6% \Rightarrow significance of CPV: 2.7 σ

- Region of increased asymmetry significance points to $\rho^0 \rightarrow \pi^+\pi^-$
- P-odd: $D^0 \rightarrow \rho^0 \rho^0$ in P-wave (~6%)

Rare decays

Spectrum of charm decays

Precision down to 0(10-8) Status of rare charm decays

Decay Note SM predict. BF or best UL Exp. D ⁰ →K*γ Radiative ~10-4 (4.7 ± 0.2 ± 0.2)×10-4 Belle D ⁰ →φγ "" ~10-5 (2.8 ± 0.2 ± 0.1)×10-5 Belle D ⁰ →φγ "" ~10-6 (1.8 ± 0.3 ± 0.1)×10-5 Belle D ⁰ →γγ "" (1 ÷ 3)×10-8 < 8.5 × 10-7 Belle D ⁺ →π ⁺ μ ⁺ μ ⁻ FCNC, μμ non-resonant ~10-9 < 8.3 × 10-8 LHCb D _s → π ⁺ μ ⁺ μ ⁻ "" ~10-9 < 4.8 × 10-7 LHCb D ⁺ →π ⁺ /K+e ⁺ e ⁻ FCNC, full e ⁺ e ⁻ spectrum 10-8 ÷ 10-6 < 0.3 / 1.2 × 10-6 BESIII D ⁰ →π ⁺ π ⁻ μ ⁺ μ ⁻ FCNC, μμ non-resonant ~10-9 < 7.4 × 10-7 LHCb D ⁰ →μ ⁺ μ ⁻ FCNC 10-13 ÷ 10-12 < 7.6 × 10-9 LHCb D ⁰ →e ⁺ e ⁻ FCNC 10-13 ÷ 10-12 < 7.9 × 10-8 Belle D ⁰ →ψ ⁻ Helicity suppressed ~10-30 < 8.8 × 10-5 Belle D ⁰ →π ⁻ μ ⁺ μ ⁺ Lepton Number Violating 0 < 2.5 × 10-8	- · · · · · · · · · · · · · · · · · · ·			<i>S</i>	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Decay	Note	SM predict.	BF or best UL	Exp.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	D ⁰ →K*γ	Radiative	~10-4	$(4.7 \pm 0.2 \pm 0.2) \times 10^{-4}$	Belle
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$D^0 \rightarrow \phi \gamma$	11 11	~10-5	$(2.8 \pm 0.2 \pm 0.1) \times 10^{-5}$	Belle
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$D^0 \rightarrow \varrho \gamma$	n n	~10-6	$(1.8 \pm 0.3 \pm 0.1) \times 10^{-5}$	Belle
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$D^0 \rightarrow \gamma \gamma$	11 11	$(1 \div 3) \times 10^{-8}$	$< 8.5 \times 10^{-7}$	Belle
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$D^+ \rightarrow \pi^+ \mu^+ \mu^-$	FCNC, μμ non-resonant	~10-9	$< 8.3 \times 10^{-8}$	LHCb
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$D_s^+ \rightarrow \pi^+ \mu^+ \mu^-$	" "	~10-9	$< 4.8 \times 10^{-7}$	LHCb
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$D^+ \rightarrow \pi^+/K^+ e^+e^-$	FCNC, full e ⁺ e ⁻ spectrum	$10^{-8} \div 10^{-6}$	$< 0.3 / 1.2 \times 10^{-6}$	BESIII
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$D^0 \rightarrow \pi^+ \pi^- \mu^+ \mu^-$	FCNC, μμ non-resonant	~10-9	$< 7.4 \times 10^{-7}$	LHCb
$D^0 \rightarrow \nu \bar{\nu}$ Helicity suppressed ~10 ⁻³⁰ < 8.8 × 10 ⁻⁵ Belle $D^0 \rightarrow e^+ \mu^-$ Lepton Flavour Violating 0 < 1.6 × 10 ⁻⁸ LHCb $D^+ \rightarrow \pi^- \mu^+ \mu^+$ Lepton Number Violating 0 < 2.5 × 10 ⁻⁸ LHCb $D_s^+ \rightarrow \pi^- \mu^+ \mu^+$ 0 < 1.4 × 10 ⁻⁷ LHCb	$D^0 \rightarrow \mu^+ \mu^-$	FCNC	$10^{-13} \div 10^{-12}$	$< 7.6 \times 10^{-9}$	LHCb
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$D^0 \rightarrow e^+e^-$	FCNC	$10^{-13} \div 10^{-12}$	$< 7.9 \times 10^{-8}$	Belle
$D^+ \rightarrow \pi^- \mu^+ \mu^+$ Lepton Number Violating 0 <2.5 × 10 ⁻⁸ LHCb $D_s^+ \rightarrow \pi^- \mu^+ \mu^+$ 0 <1.4 × 10 ⁻⁷ LHCb	$D^0 \rightarrow \upsilon \overline{\upsilon}$	Helicity suppressed	~10-30	$< 8.8 \times 10^{-5}$	Belle
$D_s^+ \to \pi^- \mu^+ \mu^+$ "" 0 < 1.4 × 10 ⁻⁷ LHCb	$D^0 \rightarrow e^+ \mu^-$	Lepton Flavour Violating	0	$< 1.6 \times 10^{-8}$	LHCb
	$D^+ \rightarrow \pi^- \mu^+ \mu^+$	Lepton Number Violating	0	$< 2.5 \times 10^{-8}$	LHCb
$D^{+} \rightarrow \pi^{-}/K^{-} e^{+}e^{+}$ "" 0 < 1.2 / 0.6 × 10 ⁻⁶ BESIII	$D_s^+ \rightarrow \pi^- \mu^+ \mu^+$	11 11	0	$< 1.4 \times 10^{-7}$	LHCb
	$D^+ \rightarrow \pi^-/K^- e^+ e^+$	<i>11 11</i>	0	$< 1.2 / 0.6 \times 10^{-6}$	BESIII

Decays with photon(s)

- Theory problem: LongDistance ~ $10^3 \times \text{ShortDistance}$
- NP probes: A_{CP} , γ polarisation (t-dep. analysis or polarised $\Lambda_c \rightarrow p\gamma$)
- Experimental problem: π^0 background

 $A_{CP}(D^0 \to \overline{K}^{*0}\gamma) = (-0.3 \pm 2.0 \pm 0.0)\%$ $A_{CP}(D^0 \to \phi \gamma) = (-9.4 \pm 6.6 \pm 0.1)\%$ $A_{CP}(D^0 \to \rho^0 \gamma) = (+5.6 \pm 15.1 \pm 0.6)\%$

No CPV

- LHCb competitive in $D^0 \rightarrow \varrho \gamma$, $\varphi \gamma$, $K^* \gamma$
- Belle2 dominated: $D^0 \rightarrow \gamma \gamma$, $D^+ \rightarrow \varrho^+ \gamma$, $\Lambda_c \rightarrow p \gamma$
- Belle2 wrt Belle: merged π^0 , $\gamma \rightarrow e^+e^-$ conversions
- LHCb upgrade: improved ECAL(?)

Decays with leptons: hot topic in B

- · Trendy K µ µ
- Searches for $D_{(s)}^+ \rightarrow K/\pi l^+l^-$
- Any good q²=m²(l⁺l⁻) range?
 Tails from charmonia?
- Remember about $\Lambda_c \rightarrow pl^+l^-$
- · Testing LFU in charm?
- × D→hl⁺l⁻, hhl⁺l⁻ too rare
- ? Tauonic decays

$$\frac{BF(D_s^+ \to \tau \nu)}{BF(D_s^+ \to \mu \nu)} = 9.95 \pm 0.57$$
SM: 9.76 ± 0.03

- ✓ Semileptonic decays
- LHCb & electrons = troubles
 Belle2 input needed

1.1

1.2

1.3

0.9

Jolanta@TrendsInFlavours

Summary

- Still analyzing LHCb Run-1 data
- Increasing precision on x&y mixing parameters
- x still not measured well
- Indirect CPV searches with precision down to 10⁻⁴
- Huge effort in searching for CPV in charm decays
- Sensitivity up to 10⁻³, still no evidence
- How small can be CPV in SM?
- Searching for signals in rare decays
- Precision down to 10-8
- Charm needsBelleII & LHCb upgrade

Backups

•

D⁰→υ<u>υ</u> (a.k.a invisible)

- Helicity suppression by $(m_p/m_D)^2 \Rightarrow BF\sim 10^{-30}$
- With light Dark Matter up to ~10⁻¹⁵
- Reconstruct event fully except for D⁰ signal
- D^0 signal in a recoil mass \Rightarrow inclusive D^0
- Require no extra particles and study residual energy in calorimeter

 ⇒ exclusive D⁰

 $\mathcal{B}(D^0 \to \text{invisible}) < 8.8 \times 10^{-5} \text{ at } 90\% \text{ C.L.}$

First search!

 $D^0 \rightarrow \gamma \gamma$

- BF within SM ~10⁻⁸
- With SUSY up to $\sim 6 \times 10^{-6}$

- $\mathcal{B}(D^0 \to \gamma \gamma) < 8.5 \times 10^{-7} @ 90\% \text{C.L.}$
- Most restrictive limit so far

PRL118, 051801 (2017)

$D^0 \rightarrow K^{*0} \gamma$, $\varphi \gamma$, $\varrho^0 \gamma$: BF & A_{CP}

- Large CPV within SM, up to a few %
- First observation of D⁰→ϱ(770)γ

Short distance contribution

Long distance via Vector Meson Dominance

$$\mathcal{B}(D^0 \to \overline{K}^{*0}\gamma) = (4.66 \pm 0.21 \pm 0.18) \times 10^{-4}$$

$$\mathcal{B}(D^0 \to \phi\gamma) = (2.76 \pm 0.20 \pm 0.08) \times 10^{-5}$$

$$\mathcal{B}(D^0 \to \rho^0\gamma) = (1.77 \pm 0.30 \pm 0.08) \times 10^{-5}$$

$$A_{CP}(D^0 \to \overline{K}^{*0}\gamma) = (-0.3 \pm 2.0 \pm 0.0)\%$$

$$A_{CP}(D^0 \to \phi\gamma) = (-9.4 \pm 6.6 \pm 0.1)\%$$

$$A_{CP}(D^0 \to \rho^0\gamma) = (+5.6 \pm 15.1 \pm 0.6)\%$$

Pros & cons of charm experiments

· LHCb

- ☑ large x-section
- **■** busy environment, nontrivial triggers
- \blacksquare decays with γ 's and neutrinos difficult
- \square D flight distance~10mm, $\sigma(t)$ ~0.1× τ_D
- ☑ magnet polarity reversed periodically
- asymmetric production of charm/anti-charm

· Belle/BaBar

- ☑ clean environment
- ☑ good for neutrals & decays with neutrinos
- \square D flight distance~200 μ m, σ (t)~0.5× τ _D

BESIII/Cleo-c

- ☑ background-free charm
- **I** charm not boosted ⇒ no time measurement
- $\square \psi(3770) \rightarrow D\bar{D}$ quantum coherence $\Rightarrow CP(D) \times CP(\bar{D}) = -1$

LHCb changes & will change more

- LHCb Run-1 (2010-2012) Collected 3 fb⁻¹ Finalizing charm analyses. Still more to come
- LHCb Run-2 (2015-2018) Collect 5 fb⁻¹ (2 fb⁻¹ already collected) Improved triggers & computing. First results (charm x-section)
- LHCb Run-3, Run-4 (2021-2023, 2026-2029) Major New Experiment: LHCb Upgrade Phase-I

Collect >50 fb⁻¹ data L $\sim 2 \times 10^{33}$ cm⁻² s⁻¹

• LHCb Run-5 (2031-) LHCb Upgrade Phase-II Plans in discussion Collect ~300 fb⁻¹ data L ~2x10³⁴ cm⁻² s⁻¹

$D^0 \rightarrow K_S \pi \pi$, t-dep. Dalitz, model independent

- $D^0 \rightarrow K_S \pi \pi$ is a golden mode for mixing
- Binned approach to Dalitz
- Strong phases & fractions from Cleo-c
- Fit t(D) with data driven acceptance

$$x = (-0.86 \pm 0.53 \pm 0.17)\%$$

 $y = (+0.03 \pm 0.46 \pm 0.13)\%$
 $\tau_D = (410.9 \pm 1.1)$ fs

- This is with 2011 data: 180K signal
 K_S decayed inside vertex detector
- Ongoing for 2012 data: ~2M prompt+sec
 Also K_S decayed outside vertex detector

Belle: 1.2M signal

$$x = (0.56 \pm 0.19^{+0.04}_{-0.08}^{+0.04})\%$$
$$y = (0.30 \pm 0.15^{+0.04}_{-0.05}^{+0.04}^{+0.03})\%$$

PRD89 091103 (2014)

Jolanta@TrendsInFlavours

arXiv:1610.09476

$$A_{CP}(D^0 \to K^+K^-) \& A_{CP}(D^0 \to \pi^+\pi^-)$$

• Individual A_{CP}(KK), pion-tagged sample

$$A_{CP}(K^+K^-) = (0.14 \pm 0.15 \pm 0.10)\%$$

• Combine with $\Delta A_{CP} \Rightarrow$

$$A_{CP}(\pi^+\pi^-) = A_{CP}(K^+K^-) - \Delta A_{CP} = (0.24 \pm 0.15 \pm 0.11)\%$$

- Combine with results from muon-tagged sample JHEP07, 041 (2014)
 - ⇒ LHCb combination
- Both A_{CP}'s consistent with zero

Jolanta@TrendsInFlavours

•41

Search for CPV in $D^0 \rightarrow 4\pi$ with Energy Test

- Statistical comparison of two distributions
- Test statistics: based on distances of event pairs
- Compare with T distribution for no CPV case (randomize D flavour)
- 5-dim phase space: $m^2(\pi\pi)$, $m^2(\pi\pi\pi) \Rightarrow \mathbf{P}$ -even
- Use triple-product sign to access **P-odd** CPV

Marginally consistent with no CPV (~2.7σ)

$$T = \left\langle d_{ij} \right\rangle_{DD} + \left\langle d_{ij} \right\rangle_{\overline{D}\overline{D}} - \left\langle d_{ij} \right\rangle_{D\overline{D}}$$

I III D
$$C_T > 0$$
 \overline{D} $-\overline{C}_T > 0$

II IV D $C_T < 0$ \overline{D} $-\overline{C}_T < 0$

$$C_T \equiv \vec{p}\pi^+ \cdot (\vec{p}\pi^+ \times \vec{p}\pi^-)$$

Direct CPV with Belle2

Marko Staric, CKM 2014:

$$\sigma_{
m Belle~II} \! = \! \sqrt{(\sigma_{
m stat}^2 + \sigma_{
m syst}^2) \cdot rac{\mathcal{L}_{
m Belle}}{50~{
m ab}^{-1}} + \sigma_{
m irred}^2}$$

mode	\mathcal{L} (fb $^{-1}$)	A _{CP} (%)	Belle II at 50 ${\rm ab}^{-1}$
$D^0 o K^+K^-$	976	$-0.32 \pm 0.21 \pm 0.09$	± 0.03
$D^0 o\pi^+\pi^-$	976	$+0.55\pm0.36\pm0.09$	± 0.05
$D^0 o\pi^0\pi^0$	966	$-0.03 \pm 0.64 \pm 0.10$	± 0.09
$D^0 o extit{K}^0_s\pi^0$	966	$-0.21 \pm 0.16 \pm 0.07$	± 0.03
$D^0 o extit{K}^0_s\eta$	791	$+0.54 \pm 0.51 \pm 0.16$	± 0.07
$D^0 o extit{K}^0_s\eta'$	791	$+0.98 \pm 0.67 \pm 0.14$	± 0.09
$D^0 ightarrow \pi^+\pi^-\pi^0$	532	$+0.43 \pm 1.30$	± 0.13
$D^0 o K^+\pi^-\pi^0$	281	-0.60 ± 5.30	± 0.40
$D^0 o K^+\pi^-\pi^+\pi^-$	281	-1.80 ± 4.40	± 0.33
$D^+ o \phi \pi^+$	955	$+0.51\pm0.28\pm0.05$	± 0.04
$D^+ o \eta \pi^+$	791	$+1.74 \pm 1.13 \pm 0.19$	± 0.14
$D^+ o \eta' \pi^+$	791	$-0.12 \pm 1.12 \pm 0.17$	± 0.14
$D^+ o K_s^0\pi^+$	977	$-0.36 \pm 0.09 \pm 0.07$	± 0.03
$D^+ o K_s^0 K^+$	977	$-0.25 \pm 0.28 \pm 0.14$	± 0.05
$D_s^+ o K_s^0 \pi^+$	673	$+5.45 \pm 2.50 \pm 0.33$	± 0.29
$D_s^+ o K_s^0 K^+$	673	$+0.12\pm0.36\pm0.22$	±0.05

CPV from WS/RS $D^0 \rightarrow K\pi$

- Prompt sample, Run-1
- 2-dim confidence regions for measured x'^2 and y'

Translated into CPV

$$A_{CP}^{direct} = \frac{R_D^+ - R_D^-}{R_D^+ + R_D^-} = (-0.7 \pm 1.9)\%$$

$$x^{\pm \prime} = \left| \frac{q}{p} \right|^{\pm 1} (x' \cos \phi \pm y' \sin \phi)$$

$$y^{\pm \prime} = \left| \frac{q}{p} \right|^{\pm 1} (y' \cos \phi \mp x' \sin \phi)$$

$$0.75 < |q/p| < 1.24 @68\% CL$$

Jolanta@TrendsInFlavours

WS/RS D⁰ \rightarrow K3 π

- Constrain x&y from WA
- Get averaged strong phase & coherence factor

