

Heavy neutral leptons searches from kaon experiments at CERN

Marco Mirra

(Università degli studi di Napoli Federico II and Sezione INFN Napoli, Italy)
on behalf of the NA62 collaboration

Current trends in Flavor Physics
March 31 2017, Paris, France

Outline

- > Majorana neutrinos in a nutshell
- > North area experiments
- > NA48/2 and NA62-R_K experimental setup
- ightharpoonup NA48/2: heavy neutrino searches in $K^{\pm} \to \pi \mu \mu$
- > NA62-R_K: heavy neutrino searches in $K^+ \to \mu^+ N$
- **Conclusions**

Majorana neutrinos in a nutshell

Neutrino mass needs to be accommodated in the SM.

Asaka-Shaposhnikov model (ν MSM) [*PLB 620 (2005) 17*] introduces three right-handed neutrinos N_i in the SM:

- $> N_1$ ($\mathcal{O}(\text{keV})$) represents a Dark Matter candidate
- $> N_{2,3}$ $\mathcal{O}(100 \text{ MeV} \text{few GeV})$ explain baryon asymmetry and produce low standard ν mass through seesaw mechanism

Effective vertices with W^{\pm} , Z and SM leptons with U mixing matrix:

Production of $N_{2,3}$ in K^{\pm} decays

$$K^{\pm} \rightarrow l^{\pm}N$$
 , $K^{\pm} \rightarrow \pi^{0}l^{\pm}N$, ...

Decay of $N_{2,3}$ for $m_{2,3} < m_K - m_{\pi}$

$$N \rightarrow \pi^{\pm} l^{\mp}, N \rightarrow \pi^{0} \nu,$$

 $N \rightarrow l_{1}^{\pm} l_{2}^{\mp} \nu_{2}, N \rightarrow \nu \overline{\nu} \nu_{l}...$

This talk with $l = \mu$

North Area experiments

Kaon Physics at CERN:

- ✓ Fixed target experiments at CERN SPS
- ✓ Kaon decay-in-flight

Currently in NA62:

- ~200 participants
- 29 institutions from 13 countries

NA48/2 and NA62- R_K experimental setup

Narrow momentum band K^{\pm} beam

$$P_K = 60 \text{ GeV}, \delta P_K/P_K \sim 4\% \text{ (rms)}$$
 in NA48/2
 $P_K = 74 \text{ GeV}, \delta P_K/P_K \sim 1\% \text{ (rms)}$ in NA62-R_K

Drift chambers

$$\sigma_p/p = 1.02\% \oplus 0.044\% \ p(\text{GeV})$$
 in NA48/2 $\sigma_p/p = 0.48\% \oplus 0.009\% \ p(\text{GeV})$ in NA62-R_K

LKr EM calorimeters

$$\sigma_E/E = 3.2\% / \sqrt{E(\text{GeV})} \oplus 9\% / E(\text{GeV}) \oplus 0.42\%$$

 $\sigma_x = \sigma_y = 4.2 \text{ mm} / \sqrt{E(\text{GeV})} \oplus 0.6 \text{ mm}$

Hodoscope

Fast trigger, good time resolution $\sigma_t \sim 150 \text{ ps}$

NA48/2 and NA62-R_K strategies

NA48/2

Heavy Neutrino (HN) search in $K^{\pm} \rightarrow \mu^{\pm} N_4$ production + $N_4 \rightarrow \pi \mu$ decay [*PLB769 (2017), 67*] :

- Model dependent (HN decay modes & lifetime)
- Sensitive to short-lived (unstable) HNs
- Sensitive to Majorana/Dirac nature of HNs

Searching for a 3-tracks vertex topology events $K^{\pm} \rightarrow \mu^{\pm}\pi\mu$:

- ✓ same sign muons sample $K^{\pm} \rightarrow \pi^{\mp} \mu^{\pm} \mu^{\pm}$ (LNV)
- ✓ opposite sign muons sample $K^{\pm} \rightarrow \pi^{\pm} \mu^{\pm} \mu^{\mp}$ (LNC)

$NA62-R_K$

Heavy Neutrino (HN) search in $K^{\pm} \rightarrow \mu^{\pm} N_4$ production (paper in preparation):

- Independent of HN decay modes
- Sensitive to long-lived (or stable) HN

Searching for a peak in the $m_{miss} = \sqrt{\left(p_K - p_\mu\right)^2}$ spectrum

NA48/2: opposite sign muons sample (LNC)

Event selection:

- Similar to same sign muons: 3-track vertex topology, 2 opposite-sign muons, 1 pion, P_T consistent with zero
- Signal region: $|M(\pi^{\mp}\mu^{+}\mu^{-}) M_K| < 8 \text{ MeV/c}^2$

3489 $K^{\pm} \rightarrow \pi^{\pm} \mu^{+} \mu^{-}$ candidates in signal region $K^{\pm} \rightarrow \pi^{\pm} \pi^{+} \pi^{-}$ background: $(0.32 \pm 0.09)\%$

Search for resonances in $M(\pi^{\pm}\mu^{\mp})$ and $M(\mu^{+}\mu^{-})$ invariant masses; upper limit on the number of signal event N_{sig} using Rolke-Lopez from N_{obs} and N_{exp} for each hypothesis. Improved selection with respect to previous NA48/2 $K^{\pm} \rightarrow \pi^{\pm}\mu^{+}\mu^{-}$ analysis [*PLB 697(2011)107*]

Resonance searches in LNC sample

Search for $K^{\pm} \rightarrow \mu^{\pm} N_4 \ (N_4 \rightarrow \pi^{\pm} \mu^{\mp})$ decay.

Upper limits on N_{sig} and $BR(K^{\pm} \to \mu^{\pm} N_4) BR(N_4 \to \pi^{\pm} \mu^{\mp})) = \frac{N_{sig}}{N_K \cdot Acceptance}$

Statistical significance $z = \frac{N_{obs} - N_{exp}}{\sigma(N_{obs}) \oplus \sigma(N_{exp})}$ never exceeds 3σ : no signal observed

NA48/2: same sign muons sample (LNV)

Blind analysis:

- Selection based on MC simulation of $K^{\pm} \to \pi^{\mp} \mu^{\pm} \mu^{\pm}$ and $K^{\pm} \to \pi^{\pm} \pi^{+} \pi^{-}$
- Control region: $M(\pi^{\mp}\mu^{\pm}\mu^{\pm}) < 480 \text{ MeV/c}^2$

Event selection:

- 3-track vertex topology, 2 same-sign muons, 1 odd-sign pion, P_T consistent with zero
- Signal region: $|M(\pi^{\mp}\mu^{\pm}\mu^{\pm}) M_K| < 5 \text{ MeV/c}^2$

Kaon decays in the fiducial volume: $N_K \sim 2 \times 10^{11} (\text{from reconstructed } K^\pm \to \pi^\pm \pi^+ \pi^-)$

Events in Signal Region observed after $K^{\pm} \to \pi^{\mp} \mu^{\pm} \mu^{\pm}$ selection: $N_{obs} = 1$ Expected background (from MC): $N_{exp} = 1.163 \pm 0.867_{\text{stat}} \pm 0.021_{\text{ext}} \pm 0.116_{\text{syst}}$ From Rolke-Lopez statistical method: $BR(K^{\pm} \to \pi^{\mp} \mu^{\pm} \mu^{\pm}) < 8.6 \times 10^{-11}$ @ 90% CL

Resonance searches in LNV sample

Search for $K^{\pm} \rightarrow \mu^{\pm} N_4 \ (N_4 \rightarrow \pi^{\mp} \mu^{\pm})$ decay.

Upper limits on N_{sig} and $BR(K^{\pm} \to \mu^{\pm} N_4) BR(N_4 \to \pi^{\mp} \mu^{\pm}) = \frac{N_{sig}}{N_K \cdot Acceptance}$

Statistical significance $z = \frac{N_{obs} - N_{exp}}{\sigma(N_{obs}) \oplus \sigma(N_{exp})}$

never exceeds 3σ: no signal observed

Constraints on $|U_{\mu 4}|^2$

From UL on BR to UL on $|U_{\mu 4}|^2$:

$$|U_{\mu 4}|^2 = \frac{8\sqrt{2}\pi\hbar}{G_F^2\sqrt{M_K\tau_K}f_Kf_\pi|V_{us}V_{ud}|}\sqrt{\frac{\mathcal{B}(K^{\pm}\to\mu^{\pm}N_4)\mathcal{B}(N_4\to\pi\mu)}{\tau_{N_4}M_{N_4}^5\lambda^{\frac{1}{2}}(1,r_{\mu}^2,r_{N_4}^2)\lambda^{\frac{1}{2}}\left(1,\rho_{\pi}^2,\rho_{\mu}^2\right)\chi_{\mu\mu}}}$$

Heavy neutrino in NA62- R_K : strategy

HN search in $K^+ \rightarrow \mu^+ N_4$:

- **Independent of HN decay modes**
- Sensitive to long-lived (or stable) HN

Strategy:

Search for peaks in

$$m_{miss} = \sqrt{(p_K - p_\mu)^2}$$
 spectrum

Dedicated HN MC simulation for acceptance and resolution as a function of HN's mass at 1 MeV/c² intervals

Event selection:

- One positively charged muon track
- No clusters in LKr with E > 2 GeV not associated to the track
- Multi-dimensional cuts in $(z_{vtx}, \theta, p, CDA, \phi)$ to suppress muon halo
- Signal Region: 300 MeV/ $c^2 < m_{miss} < 375$ MeV/ c^2

Kaon decays in the fiducial volume: $N_K \sim 6 \times 10^7$ (from reconstructed $K^+ \rightarrow \mu^+ \nu_\mu$) [Downscale D = 150 of one track trigger]

Heavy neutrino in NA62- R_K : results

Heavy neutrino in NA62- R_K : results

Comparison with existing measurements

NA62 (2007) sets the world's most stringent limit on heavy neutrino production in the mass region $325 < M_{\rm HN} < 375~MeV/c^2$

Conclusions

The NA48/2 and NA62- R_K experiments at CERN were exposed to ~2 × 10¹¹ and ~2 × 10¹⁰ K^{\pm} decays respectively

NA48/2 results on HN production and decay [PLB769 (2017), 67]:

- ✓ Search for LNV $K^{\pm} \rightarrow \pi^{\mp} \mu^{\pm} \mu^{\pm}$ decay:
 - $BR(K^{\pm} \to \pi^{\mp} \mu^{\pm} \mu^{\pm}) < 8.6 \times 10^{-11} @ 90\% CL [World Best Limit]$
 - * Factor of 10 improvement with respect to previous best limit [1.1 \times 10-9 @ 90% CL]
- ✓ Search for $K^{\pm} \rightarrow \mu^{\pm} N_4 \ (N_4 \rightarrow \pi^{\mp} \mu^{\pm})$ decays [Majorana neutrinos]
 - Limits on BR products of the order of 10^{-10} for neutrino lifetimes < 100 ps
- ✓ Search for $K^{\pm} \rightarrow \mu^{\pm} N_4 \ (N_4 \rightarrow \pi^{\pm} \mu^{\mp})$ decays [LNC heavy neutrinos]
 - Limits on BR products of the order of 10^{-9} for neutrino lifetimes < 100 ps

NA62-R_K results on $K^+ \rightarrow \mu^+ N_4$ decays research [*Paper in preparation*]:

✓ Limits on BR($K^+ \to \mu^+ N_4$) ~ 10⁻⁵, limits on $\left| U_{\mu 4} \right|^2$ ~10⁻⁵ for M_{HN}>300 MeV/c²