Kaon Physics: Theory Status

Based on work in collaboration with:
Andrzej Buras, Sebastian Jäger & Matthias Jamin [1507.06345]
Maria Cerda-Sevilla, Sebastian Jäger & Ahmet Kokulu [1611.08276]
[And based on older calculations with
Joachim Brod, Emanuel Stamou and Ulrich Haisch]

Current Trends in Flavour Physics Institut Henri Poincare, Paris 30 March 2017

Martin Gorbahn

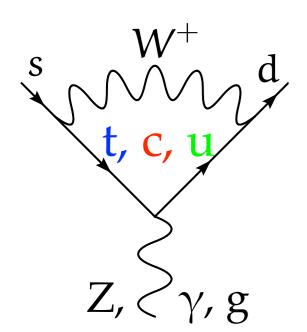
Kaon Physics: Topics in Theory Calculations

Based on work in collaboration with:
Andrzej Buras, Sebastian Jäger & Matthias Jamin [1507.06345]
Maria Cerda-Sevilla, Sebastian Jäger & Ahmet Kokulu [1611.08276]
[And based on older calculations with
Joachim Brod, Emanuel Stamou and Ulrich Haisch]

Current Trends in Flavour Physics Institut Henri Poincare, Paris 30 March 2017

Martin Gorbahn

CKM Factors in Kaon physics



Semi-leptonic decays (V_{us}): $\lambda = O(0.2)$

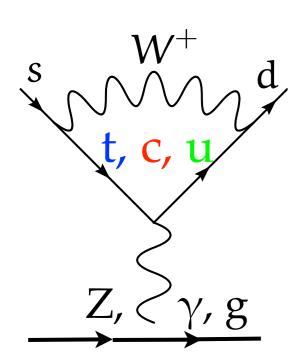
$$V_{ij} = \mathcal{O} \begin{pmatrix} 1 & \lambda & \lambda^3 \\ \lambda & 1 & \lambda^2 \\ \lambda^3 & \lambda^2 & 1 \end{pmatrix}$$

$$\operatorname{Im} V_{ts}^* V_{td} = -\operatorname{Im} V_{cs}^* V_{cd} = \mathcal{O}(\lambda^5) \qquad \operatorname{Im} V_{us}^* V_{ud} = 0$$
$$\operatorname{Re} V_{us}^* V_{ud} = -\operatorname{Re} V_{cs}^* V_{cd} = \mathcal{O}(\lambda^1) \qquad \operatorname{Re} V_{ts}^* V_{td} = \mathcal{O}(\lambda^5)$$

Kaon observables $\propto V_{ts}^* V_{td} \rightarrow$ suppressed in SM sensitive to flavour violating NP

Kaon observables $\propto V_{us}^* V_{ud}$ or $V_{cs}^* V_{cd} \rightarrow$ dominated by QCD, useful for extracting low energy constants

CKM Factors in Kaon physics



Using the GIM mechanism, we can eliminate either $V_{cs}^* V_{cd}$ or $V_{us}^* V_{ud} \rightarrow - V_{cs}^* V_{cd} - V_{ts}^* V_{td}$

Z-Penguin and Boxes (high virtuality): power expansion in: $A_c - A_u \propto 0 + O(m_c^2/M_W^2)$

 γ/g -Penguin (momentum expansion + e.o.m.): power expansion in: A_c - $A_u \propto O(Log(m_c^2/m_u^2))$

Content

Semileptonic decays: V_{us} , Lepton Flavour Universality, QCD

Leptonic decays: CP violation, Lepton Flavour Violation

Radiative decays: QCD

Rare decays: $K \rightarrow \pi l^+ l^-$ see talk by A. Jüttner

In this talk I will discuss:

1,
$$K \rightarrow \pi \bar{\upsilon} \upsilon$$

$$2, \varepsilon_{\rm K}$$

3,
$$\varepsilon'_{\rm K}/\varepsilon_{\rm K}$$

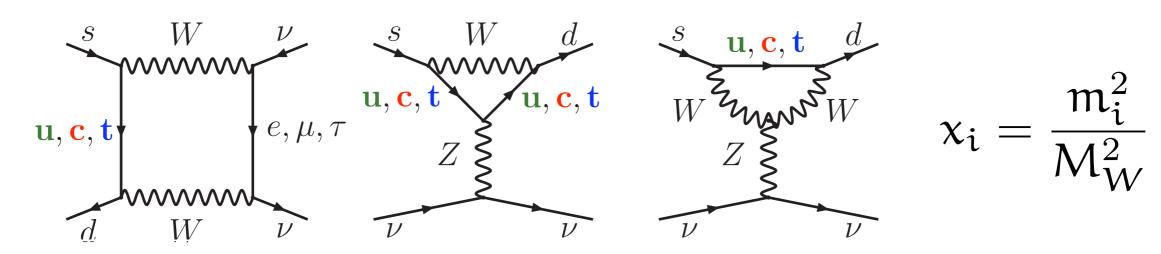
$$\mathbf{u}, \mathbf{c}, \mathbf{t}$$

$$\mathbf{u}, \mathbf{u}, \mathbf{c}, \mathbf{t}$$

$$\mathbf{u}, \mathbf{c}, \mathbf{t}$$

$$\mathbf{u},$$

$$\sum_{i} V_{is}^* V_{id} F(x_i) = V_{ts}^* V_{td} (F(x_t) - F(x_u)) + V_{cs}^* V_{cd} (F(x_c) - F(x_u))$$



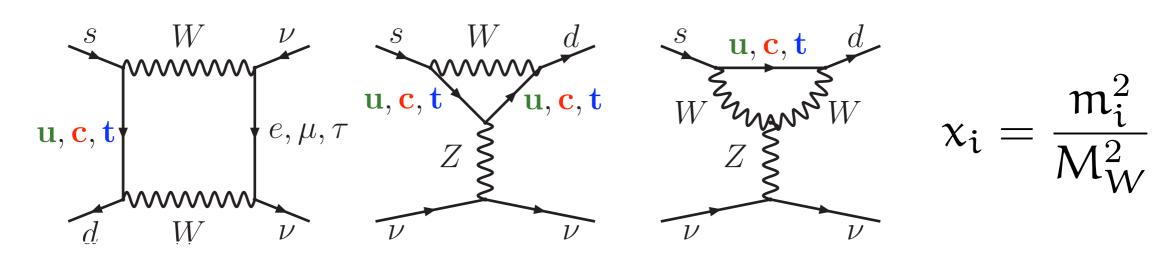
$$\sum V_{is}^* V_{id} F(x_i) = V_{ts}^* V_{td} (F(x_t) - F(x_u)) + V_{cs}^* V_{cd} (F(x_c) - F(x_u))$$

Quadratic GIM $\lambda^5 \frac{m_t^2}{M_W^2}$

Matching (NLO +EW):

[Misiak, Urban; Buras, Buchalla; Brod, MG, Stamou`11]

$$Q_{\nu} = (\bar{s}_L \gamma_{\mu} d_L) (\bar{\nu}_L \gamma^{\mu} \nu_L)$$



$$\sum_{i} V_{is}^* V_{id} F(x_i) = V_{ts}^* V_{td} (F(x_t) - F(x_u)) + V_{cs}^* V_{cd} (F(x_c) - F(x_u))$$

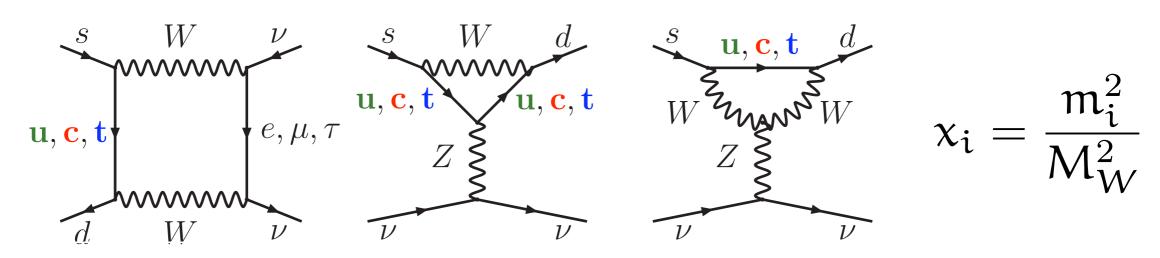
Quadratic GIM $\lambda^5 \frac{m_t^2}{M_W^2}$

Matching (NLO +EW):

[Misiak, Urban; Buras, Buchalla; Brod, MG, Stamou`11]

$$Q_{\nu} = (\bar{s}_L \gamma_{\mu} d_L) (\bar{\nu}_L \gamma^{\mu} \nu_L)$$

Matrix element from K_{13} decays (Isospin symmetry: $K^+ \rightarrow \pi^0 e^+ \upsilon$) [Mescia, Smith]



$$\sum V_{is}^* V_{id} F(x_i) = V_{ts}^* V_{td} (F(x_t) - F(x_u)) + V_{cs}^* V_{cd} (F(x_c) - F(x_u))$$

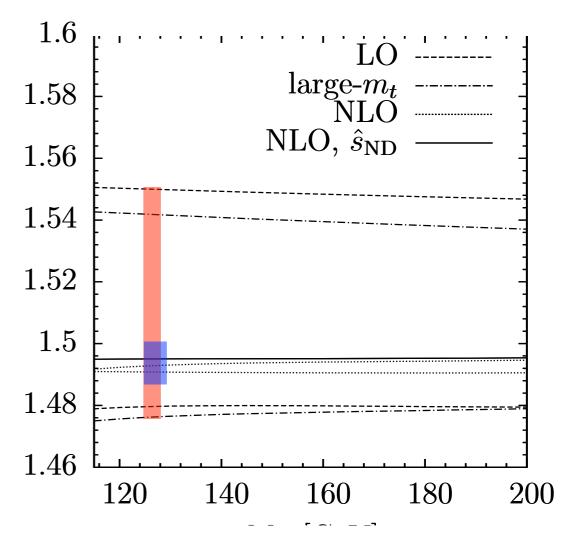
Quadratic GIM: $\lambda^5 \frac{m_t^2}{M_W^2}$

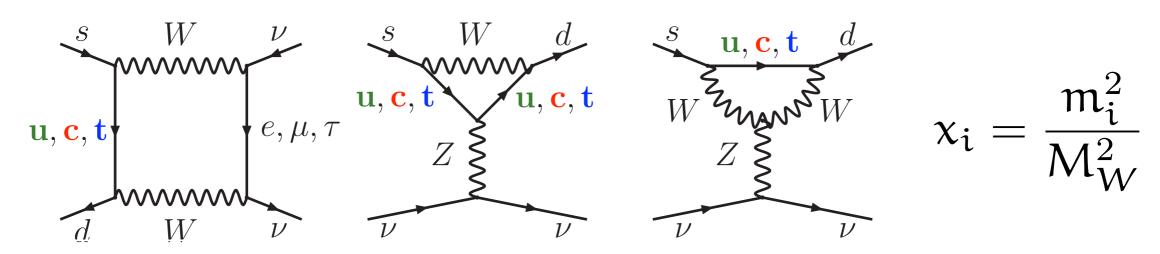
Matching (NLO +EW):

[Misiak, Urban; Buras, Buchalla; Brod, MG, Stamou`11]

$$Q_{\nu} = (\bar{s}_{L}\gamma_{\mu}d_{L})(\bar{\nu}_{L}\bar{\gamma}^{\mu}\nu_{L})$$

After 2011 uncertainty at 1%





$$\sum_{i} V_{is}^* V_{id} F(x_i) = V_{ts}^* V_{td} (F(x_t) - F(x_u)) + V_{cs}^* V_{cd} (F(x_c) - F(x_u))$$

Quadratic GIM $\lambda^5 \frac{m_t^2}{M_W^2}$

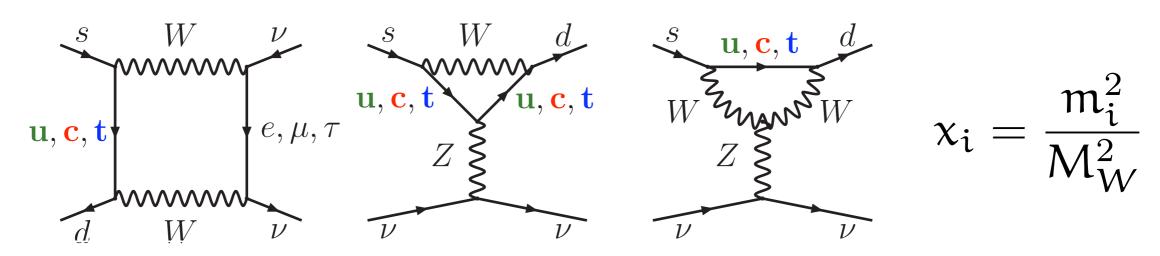
Matching (NLO +EW):

[Misiak, Urban; Buras, Buchalla; Brod, MG, Stamou`11]

$$Q_{\nu} = (\bar{s}_L \gamma_{\mu} d_L) (\bar{\nu}_L \gamma^{\mu} \nu_L)$$

For CP violating $K_L \rightarrow \pi^0 \bar{\upsilon} \upsilon$ only top contribution relevant.

Clean theory and CKM suppression: NP sensitivity



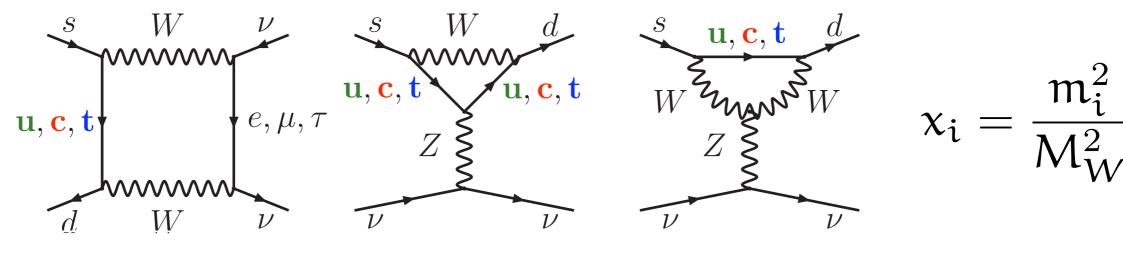
$$\sum V_{is}^* V_{id} F(x_i) = V_{ts}^* V_{td} (F(x_t) - F(x_u)) + V_{cs}^* V_{cd} (F(x_c) - F(x_u))$$

Quadratic GIM $\lambda^5 \frac{m_t^2}{M_W^2}$

Matching (NLO +EW):

[Misiak, Urban; Buras, Buchalla; Brod, MG, Stamou`11]

$$Q_{\nu} = (\bar{s}_L \gamma_{\mu} d_L) (\bar{\nu}_L \gamma^{\mu} \nu_L)$$



$$\sum V_{is}^* V_{id} F(x_i) = V_{ts}^* V_{td} (F(x_t) - F(x_u)) + V_{cs}^* V_{cd} (F(x_c) - F(x_u))$$

Quadratic GIM: $\lambda^5 \frac{m_t^2}{M_W^2}$

 $\lambda \frac{m_c^2}{M_W^2} \ln \frac{M_W}{m_c}$

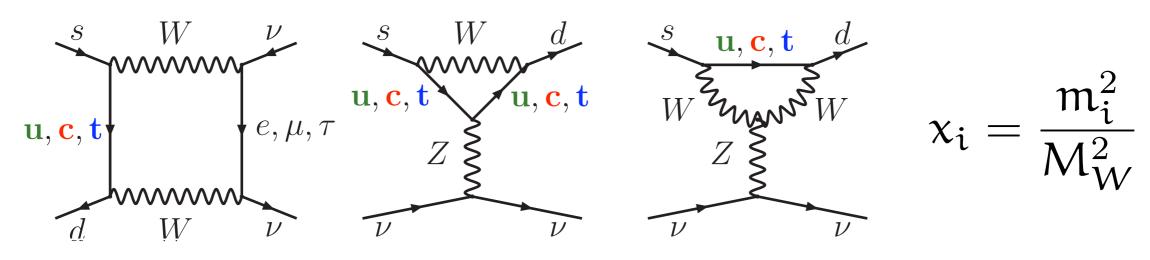
Matching (NLO +EW):

[Misiak, Urban; Buras, Buchalla; Brod, MG, Stamou`11]

$$Q_{\nu} = (\bar{s}_{L}\gamma_{\mu}d_{L})(\bar{\nu}_{L}\bar{\gamma}^{\mu}\nu_{L})$$

Operator

Mixing (RGE)



$$\sum_{i,s} V_{i,s}^* V_{i,d} F(x_i) = V_{t,s}^* V_{t,d} (F(x_t) - F(x_u)) + V_{c,s}^* V_{c,d} (F(x_c) - F(x_u))$$

Quadratic GIM: $\lambda^5 \frac{m_t^2}{M_W^2}$

$$\lambda \frac{m_c^2}{M_W^2} \ln \frac{M_W}{m_c}$$

 $\lambda rac{\Lambda_{ ext{QCD}}^2}{M_W^2}$

Matching (NLO +EW):

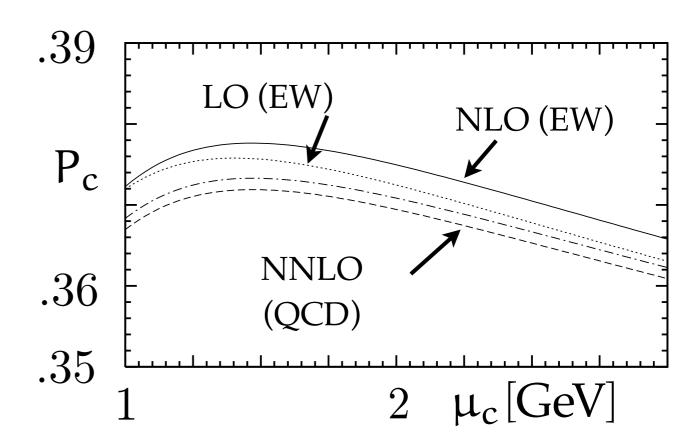
[Misiak, Urban; Buras, Buchalla; Brod, MG, Stamou`11]

$$Q_{\nu} = (\bar{s}_{L}\gamma_{\mu}d_{L})(\bar{\nu}_{L}\bar{\gamma}^{\mu}\nu_{L})$$

OperatorMixing (RGE)

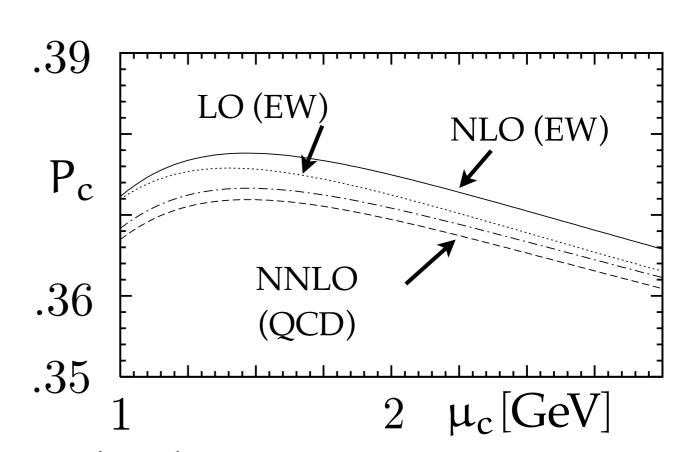
$K^+ \rightarrow \pi^+ \bar{\upsilon} \upsilon \text{ from } M_W \text{ to } m_C$

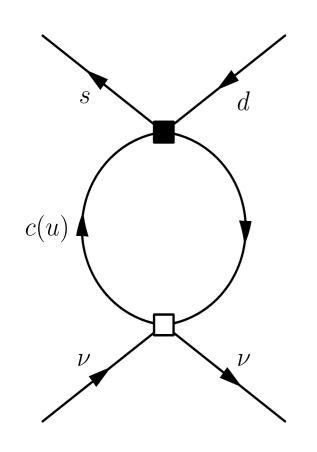
 P_c : charm quark contribution to $K^+ \rightarrow \pi^+ \bar{\upsilon} \, \upsilon \, (30\% \text{ to BR})$ Series converges very well (NNLO:10% \rightarrow 2.5% uncertainty)
NNLO+EW [Buras, MG, Haisch, Nierste; Brod MG]



$K^+ \rightarrow \pi^+ \bar{\upsilon} \upsilon \text{ from } M_W \text{ to } m_C$

 P_c : charm quark contribution to $K^+ \rightarrow \pi^+ \bar{\upsilon} \, \upsilon \, (30\% \text{ to BR})$ Series converges very well (NNLO:10% \rightarrow 2.5% uncertainty)
NNLO+EW [Buras, MG, Haisch, Nierste; Brod MG]

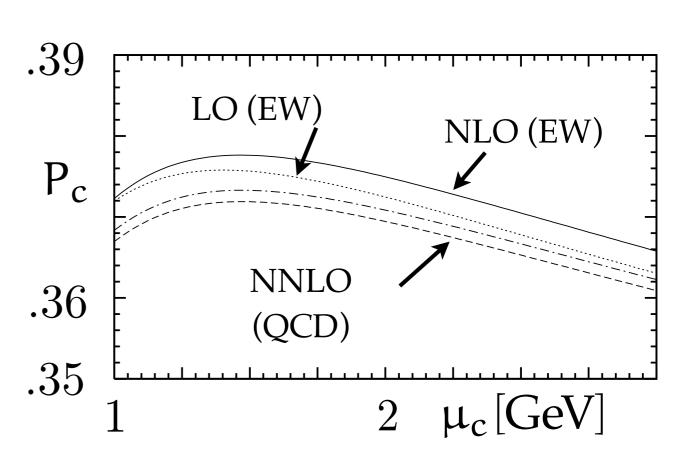


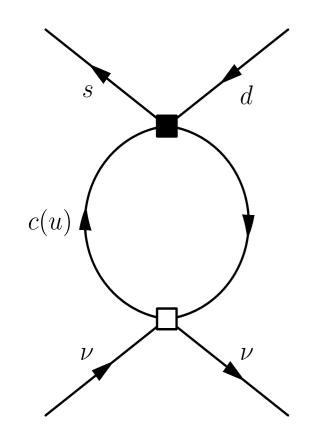


No GIM below the charm quark mass scale higher dimensional operators UV scale dependent One loop ChiPT calculation approximately cancels this scale dependence $\delta P_{c,u} = 0.04 \pm 0.02$ [Isidori, Mescia, Smith `05]

$K^+ \rightarrow \pi^+ \bar{\upsilon} \upsilon \text{ from } M_W \text{ to } m_C$

 P_c : charm quark contribution to $K^+ \rightarrow \pi^+ \bar{\upsilon} \, \upsilon \, (30\% \text{ to BR})$ Series converges very well (NNLO:10% \rightarrow 2.5% uncertainty)
NNLO+EW [Buras, MG, Haisch, Nierste; Brod MG]





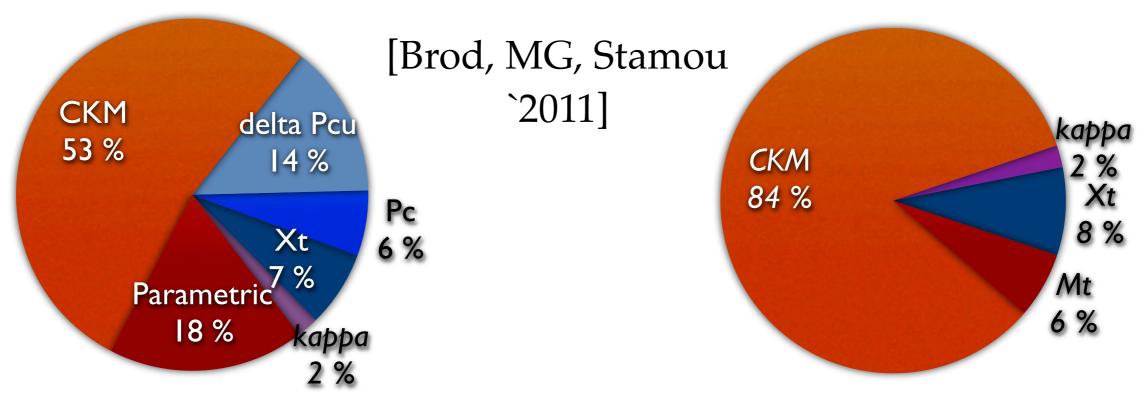
No GIM below the charm quark mass scale higher dimensional operators UV scale dependent One loop ChiPT calculation approximately cancels this scale dependence $\delta P_{c,u} = 0.04 \pm 0.02$ [Isidori, Mescia, Smith `05]

Explorative (unphysical) Lattice calculation: $\delta P_{c,u} = 0.0040(\pm 13)(\pm 32)(-45)$ [Bai et.al. `17]

$K \rightarrow \pi \bar{\nu} \nu$: Error Budget

BRth(K+
$$\rightarrow \pi^+ \bar{\nu} \nu$$
) = 7.8(8)(3) · 10⁻¹¹ BF
BRexp(K+ $\rightarrow \pi^+ \bar{\nu} \nu$) = 17(11) · 10⁻¹¹
[E787, E949 '08] NA62 \rightarrow 10% accuracy

 $BR^{th}(K_L \to \pi^0 \bar{\upsilon} \upsilon) = 2.43(39)(6) \cdot 10^{-11}$ $BR^{exp}(K_L \to \pi^0 \bar{\upsilon} \upsilon) < 6.7 \cdot 10^{-8}$ [E391a '08]



$$BR^{+} = 8.4(6) \cdot 10^{-11} \text{ (CKM tree)}$$

$$BR_L = 3.4(6) \cdot 10^{-11} \text{ (CKM tree)}$$

Using the same calculations: [Buras et.al. `15]

K Meson Mixing

Schrödinger type equation for meson mixing

$$i\frac{d}{dt}\begin{pmatrix} |\mathsf{K}^0(\mathsf{t})\rangle \\ |\overline{\mathsf{K}}^0(\mathsf{t})\rangle \end{pmatrix} = \begin{bmatrix} \begin{pmatrix} \mathsf{M}_{11} & \mathsf{M}_{12} \\ \mathsf{M}_{12}^* & \mathsf{M}_{11} \end{pmatrix} - \frac{i}{2}\begin{pmatrix} \mathsf{\Gamma}_{11} & \mathsf{\Gamma}_{12} \\ \mathsf{\Gamma}_{12}^* & \mathsf{\Gamma}_{11} \end{pmatrix} \end{bmatrix} \begin{pmatrix} |\mathsf{K}^0(\mathsf{t})\rangle \\ |\overline{\mathsf{K}}^0(\mathsf{t})\rangle \end{pmatrix}$$

Diagonalise

$$|K_{S}\rangle = p|K^{0}\rangle + q|\overline{K}^{0}\rangle$$
$$|K_{L}\rangle = p|K^{0}\rangle - q|\overline{K}^{0}\rangle$$

 M_{12} from $\Delta_s = 2$ Box \longleftrightarrow Electroweak process

 $\Gamma_{12} \longleftrightarrow \Delta\Gamma$ maximal and $\Delta I = 1/2$ saturates $\Gamma_{12} = A_0 \overline{A_0}$

CP violation in Kaons

CP violation in mixing, interference & decay → non-zero

$$\eta_{+-} = \frac{\langle \pi^{+} \pi^{-} | K_{L}^{0} \rangle}{\langle \pi^{+} \pi^{-} | K_{S}^{0} \rangle} \qquad \eta_{00} = \frac{\langle \pi^{0} \pi^{0} | K_{L}^{0} \rangle}{\langle \pi^{0} \pi^{0} | K_{S}^{0} \rangle}$$

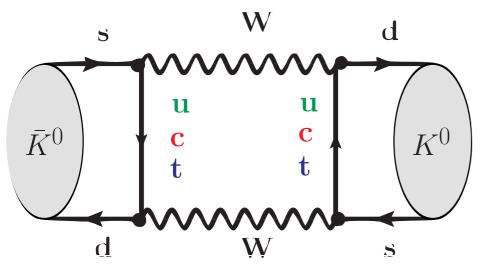
Only CP violation in mixing (Re ε), interference of mixing and decay (Im ε , Im ε) and direct CP violation (Re ε)

$$\begin{split} \epsilon_K &= (\eta_{00} + 2\eta_{+-})/3 & \epsilon' &= (\eta_{+-} - \eta_{00})/3 \\ \epsilon_K &\simeq \frac{\langle (\pi\pi)_{I=0} | K_L \rangle}{\langle (\pi\pi)_{I=0} | K_S \rangle} & \epsilon_K &= e^{i\varphi_\varepsilon} \sin\varphi_\varepsilon \left(\frac{Im(M_{12}^K)}{\Delta M_K} + \xi \right) \\ & \text{from experiment, Lattice} & \text{small} \end{split}$$

 $\xi = \text{Im } A_0/\text{Re } A_0$ Individual: phase convention dependent

εκ: CP violation in Kaon Mixing

$$2M_{K}M_{12} = \langle \mathsf{K}^{0}|\,\mathsf{H}^{|\Delta S|=2}\,|\bar{\mathsf{K}}^{0}\rangle - \frac{\mathfrak{i}}{2}\int d^{4}x\,\langle \mathsf{K}^{0}|\,\mathsf{H}^{|\Delta S|=1}(x)\,\mathsf{H}^{|\Delta S|=1}(0)\,|\bar{\mathsf{K}}^{0}\rangle \\ \text{dispersive part}$$



Local Interaction:

$$\tilde{Q} = (\bar{s}_L \gamma_\mu d_L)(\bar{s}_L \gamma^\mu d_L)$$

Lattice: $\langle K^0 | \tilde{Q} | \bar{K}^0 \rangle$

(+75(1)%): $\lambda_t \lambda_t m_t^2 / M_W^2 +$

Only known at NLO

(+40(6)%): $\lambda_c \lambda_t m_c^2 / M_W^2$ $\log(m_c^2 / M_W^2) +$

η_{ct}: 3-loop RGE, 2-loop Matching [Brod, MG `10]

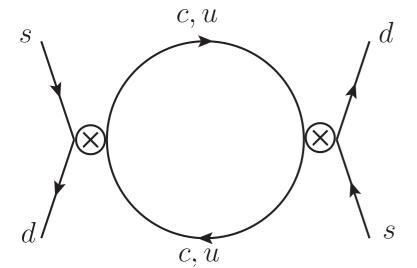
 $(-15(6)\%): \lambda_c \lambda_c m_c^2 / M_W^2$

η_{cc}: 3-loop RGE, 3-loop Matching [Brod, MG `12]

NNLO

Long Distance contributions ε_K

Lattice + charm could reduce dominant error from η_{cc}



$$\int d^4x d^4y \langle K^0 | T\{H(x) H(y)\} | \bar{K}^0 \rangle$$

Integrate over $t_A < t_{x,y} < t_B$ on the Lattice, see talk by Jüttner

Comment on in my opinion not useful approach:

With a phase convention where $V_{cs}^* V_{cd}$ is real, η_{cc} vanishes

 \rightarrow new LD contributions for ϵ_K via modified ξ (standard convention: 2π loop leading contribution to ξ , $V_{cs}^* V_{cd}$ real conventions: ξ dominated by $\Delta M_K^{(LD)}$)

Effectively, one would estimate η_{cc} from ΔM_K^{exp} - ΔM_K^{SD}

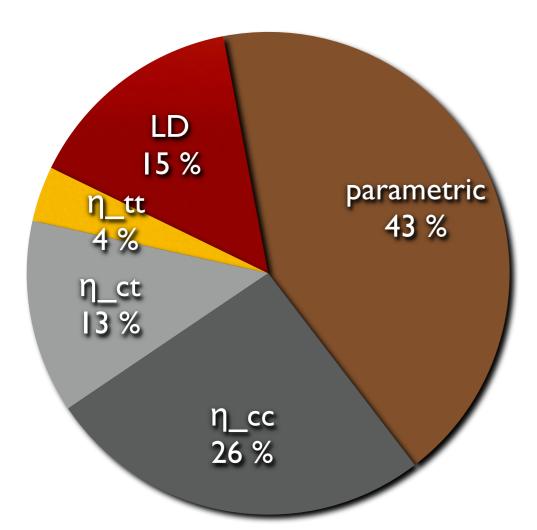
Residual Theory Uncertainty

After Lattice QCD & NNLO progress: η_{cc} dominant uncertainty

 ε_K is very important for phenomenology:

Future improvements are expected from Lattice QCD and

interplay with perturbative QCD



[Brod, MG `12] V_{cb} dominates parametric uncertainty: $2012 \mid \epsilon_K \mid =1.81(28) \cdot 10^{-3}$

CKMFitter 2016:

$$|\epsilon_{\rm K}| = 2.27[+0.21 - 0.42] 10^{-3}$$

Experimental:

$$|\epsilon_{\rm K}| = 2.22(1) \, 10^{-3}$$

CP violation in Kaons

CP violation in mixing, interference & decay → non-zero

$$\eta_{+-} = \frac{\langle \pi^{+} \pi^{-} | K_{L}^{0} \rangle}{\langle \pi^{+} \pi^{-} | K_{S}^{0} \rangle} \qquad \eta_{00} = \frac{\langle \pi^{0} \pi^{0} | K_{L}^{0} \rangle}{\langle \pi^{0} \pi^{0} | K_{S}^{0} \rangle}$$

Only CP violation in mixing (Re ε), interference of mixing and decay (Im ε , Im ε ') and direct CP violation (Re ε ')

$$\epsilon_{K} = (\eta_{00} + 2\eta_{+-})/3 \qquad \epsilon' = (\eta_{+-} - \eta_{00})/3$$
Using: $\lambda_{ij} = \frac{q}{p} \frac{\langle \pi^{i} \pi^{j} | \bar{K}^{0} \rangle}{\langle \pi^{i} \pi^{j} | K^{0} \rangle} \quad \text{and} \quad |1 - \lambda_{ij}| \ll 1$

$$\epsilon' \approx \frac{1}{6}(\lambda_{00} - \lambda_{+-}) + \frac{1}{12}(\lambda_{00} - \lambda_{+-})(2 - \lambda_{00} - \lambda_{+-}) + \dots$$

Formula for \epsilon'/\epsilon

[Cirigliano, et.al. `11]

a₀ & a₂: isospin amplitudes for isospin conservation

a₀, a₂ & a₂⁺ from experiment
$$\langle \pi^0 \pi^0 | K^0 \rangle = a_0 e^{i\chi_0} + a_2 e^{i\chi_2} / \sqrt{2}$$
 [Cirigliano, et.al. `11] $\langle \pi^+ \pi^- | K^0 \rangle = a_0 e^{i\chi_0} - a_2 e^{i\chi_2} \sqrt{2}$ a₀ & a₂: isospin amplitudes for isospin conservation $\langle \pi^+ \pi^0 | K^+ \rangle = 3a_2^+ e^{i\chi_2^+} / 2$

Formula for ϵ'/ϵ

[Cirigliano, et.al. `11]

a₀ & a₂: isospin amplitudes for isospin conservation

a₀, a₂ & a₂⁺ from experiment
$$\langle \pi^0 \pi^0 | K^0 \rangle = a_0 e^{i\chi_0} + a_2 e^{i\chi_2} / \sqrt{2}$$
 [Cirigliano, et.al. `11] $\langle \pi^+ \pi^- | K^0 \rangle = a_0 e^{i\chi_0} - a_2 e^{i\chi_2} \sqrt{2}$ a₀ & a₂: isospin amplitudes for isospin conservation $\langle \pi^+ \pi^0 | K^+ \rangle = 3a_2^+ e^{i\chi_2^+} / 2$

Current theory gives us only: $A_I = \langle (\pi \pi)_I | \mathcal{H}_{\text{eff}} | K \rangle$

Normalise to K⁺ decay (ω_+ , a) and ε_K , expand in A_2/A_0 and CP violation:

Formula for ϵ'/ϵ

a₀, a₂ & a₂⁺ from experiment [Cirigliano, et.al. `11]

a₀ & a₂: isospin amplitudes for isospin conservation

$$\langle \pi^0 \pi^0 | K^0 \rangle = a_0 e^{i\chi_0} + a_2 e^{i\chi_2} / \sqrt{2}$$
$$\langle \pi^+ \pi^- | K^0 \rangle = a_0 e^{i\chi_0} - a_2 e^{i\chi_2} \sqrt{2}$$
$$\langle \pi^+ \pi^0 | K^+ \rangle = 3a_2^+ e^{i\chi_2^+} / 2$$

Current theory gives us only: $A_I = \langle (\pi \pi)_I | \mathcal{H}_{\text{eff}} | K \rangle$

Normalise to K^+ decay (ω_+ , a) and ϵ_K , expand in A_2/A_0 and CP violation:

$$\operatorname{Re}\left(\frac{\epsilon'}{\epsilon}\right) \simeq \frac{\epsilon'}{\epsilon} = -\frac{\omega_{+}}{\sqrt{2}|\epsilon_{K}|} \left[\frac{\operatorname{Im}A_{0}}{\operatorname{Re}A_{0}} \left(1 - \hat{\Omega}_{\text{eff}}\right) - \frac{1}{a} \frac{\operatorname{Im}A_{2}}{\operatorname{Re}A_{2}}\right]$$

[Buras, MG, Jäger, Jamin `15]

Adjusted to keep electroweak penguins in Im A₀ [Cirigliano, et.al. `11]

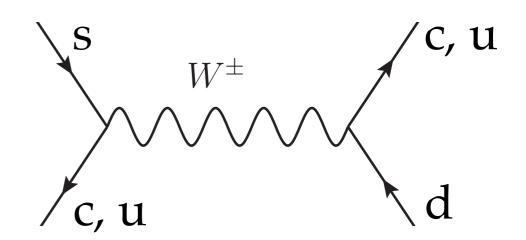
Current-Current & CKM

Study Unitarity & CKM Elements to get Im A_I & Re A_I

We use unitarity to eliminate

$$V_{cs}^* V_{cd} = -V_{us}^* V_{ud} - V_{ts}^* V_{td} Q_2^c$$

Current-current interactions: Two contributions if $\mu > m_c$.

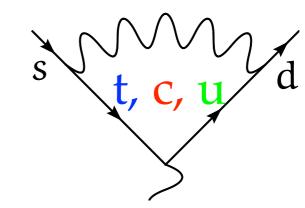


$$(\propto {\rm V_{ts}}^* {\rm V_{td}} \, {\rm and} \, \propto {\rm V_{us}}^* {\rm V_{ud}})$$
 $V_{us}^* V_{ud} Q_{1/2}^u + V_{cs}^* V_{cd} Q_{1/2}^c \rightarrow$ $V_{us}^* V_{ud} (Q_{1/2}^u - Q_{1/2}^c) - V_{ts}^* V_{td} Q_{1/2}^c$

For
$$\mu < m_c$$
: $V_{ts}^* V_{td}$ is absent: $V_{us}^* V_{ud} Q_{1/2}^u$

Penguin & CKM

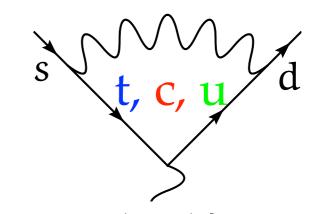
Penguins: $f(m_u)$ - $f(m_c)$ = 0: Only $V_{ts}^* V_{td}$ contribution



$$\{V_{us}^* V_{ud} f(m_u) + V_{cs}^* V_{cd} f(m_c) + V_{ts}^* V_{td} f(m_t)\} Q_{\text{Penguin}} \rightarrow \{V_{us}^* V_{ud} [f(m_u) - f(m_c)] + V_{ts}^* V_{td} [f(m_t) - f(m_c)]\} Q_{\text{Penguin}}$$

Penguin & CKM

Penguins: $f(m_u)$ - $f(m_c)$ = 0: Only $V_{ts}^* V_{td}$ contribution



$$\{V_{us}^* V_{ud} f(m_u) + V_{cs}^* V_{cd} f(m_c) + V_{ts}^* V_{td} f(m_t)\} Q_{\text{Penguin}} \rightarrow \{V_{us}^* V_{ud} [f(m_u) - f(m_c)] + V_{ts}^* V_{td} [f(m_t) - f(m_c)]\} Q_{\text{Penguin}}$$

 $\mu > m_c$: $V_{ts}^* V_{td} Q_{1/2}^c$ mixes into $V_{ts}^* V_{td} Q_{Penguin}$ (like usual).

 $\mu > m_c: V_{us}^* V_{ud} \left(Q^{u_{1/2}} - Q^{c_{1/2}} \right) does \ not \ mix \ into \ Q_{Penguin} \,.$

- μ < m_c: Match $V_{ts}^* V_{td} Q_{1/2}^c$ onto $V_{ts}^* V_{td} Q_{Penguin}$
 - \rightarrow CP violation from Q_{Penguin}
 - \rightarrow CP conserving from $Q^{u_{1/2}}$ (plus small $Q_{Penguin}$)

Effective Hamiltonian

Currently we use the effective Hamiltonian below the charm:

$$\mathcal{H}_{\text{eff}} = \frac{G_F}{\sqrt{2}} V_{ud} V_{us}^* \sum_{i=1}^{10} (z_i(\mu) + \tau \ y_i(\mu)) Q_i(\mu), \quad \tau \equiv -\frac{V_{td} V_{ts}^*}{V_{ud} V_{us}^*}$$

Effective Hamiltonian

Currently we use the effective Hamiltonian below the charm:

$$\mathcal{H}_{\text{eff}} = \frac{G_F}{\sqrt{2}} V_{ud} V_{us}^* \sum_{i=1}^{10} (z_i(\mu) + \tau \ y_i(\mu)) Q_i(\mu), \quad \tau \equiv -\frac{V_{td} V_{ts}^*}{V_{ud} V_{us}^*}$$

current-current
QCD &
electroweak
penguins

$$Q_{1,2/\pm} = (\bar{s}_i u_j)_{V-A} (\bar{u}_k d_l)_{V-A}$$

$$Q_{3,...,6} = (\bar{s}_i d_j)_{V-A} \sum_{q=u,d,s} (\bar{q}_k q_l)_{V\pm A}$$

$$Q_{7,...,10} = (\bar{s}_i d_j)_{V-A} \sum_{q=q} e_q(\bar{q}_k q_l)_{V\pm A}$$

q=u,d,s

Effective Hamiltonian

Currently we use the effective Hamiltonian below the charm:

$$\mathcal{H}_{\text{eff}} = \frac{G_F}{\sqrt{2}} V_{ud} V_{us}^* \sum_{i=1}^{10} (z_i(\mu) + \tau y_i(\mu)) Q_i(\mu), \quad \tau \equiv -\frac{V_{td} V_{ts}^*}{V_{ud} V_{us}^*}$$

current-current

QCD &

electroweak

penguins

$$Q_{1,2/\pm} = (\bar{s}_i u_j)_{V-A} (\bar{u}_k d_l)_{V-A}$$

$$Q_{3,...,6} = (\bar{s}_i d_j)_{V-A} \sum_{q=u,d,s} (\bar{q}_k q_l)_{V\pm A}$$

$$Q_{7,...,10} = (\bar{s}_i d_j)_{V-A} \sum_{q=u,d,s} e_q(\bar{q}_k q_l)_{V\pm A}$$

We have $z_i \& y_i$ at NLO [Buras et.al., Ciuchini et. al. `92 `93]

And now also a Lattice QCD calculation of: $\langle (\pi\pi)_I \, | \, Q_i \, | \, K \rangle = \langle Q_i \rangle_I$

by RBC-UKQCD [Blum et. al., Bai et. al. `15]

$Im A_2/Re A_2 - (V-A)x(V-A)$

 A_2 only contributes in the ratio Im $A_2/Re\ A_2$

Let us first consider only (V-A)x(V-A) operators:

$$Q_{1} = (\bar{s}_{\alpha}u_{\beta})_{V-A} (\bar{u}_{\beta}d_{\alpha})_{V-A} \qquad Q_{2} = (\bar{s}u)_{V-A} (\bar{u}d)_{V-A}$$

$$Q_{9} = \frac{3}{2} (\bar{s}d)_{V-A} \sum_{q=u,d,s,c,b} e_{q} (\bar{q}q)_{V-A} \qquad Q_{10} = \frac{3}{2} (\bar{s}_{\alpha}d_{\beta})_{V-A} \sum_{q=u,d,s,c,b} e_{q} (\bar{q}_{\beta}q_{\alpha})_{V-A}$$

Isospin limit: $2 < Q_9 >_2 = 2 < Q_{10} >_2 = 3 < Q_1 >_2 = 3 < Q_2 >_2$

Re A₂: $(z_1+z_2)< Q_1+Q_2>_2 = z_+< Q_+>_2$ Im A₂: $y_9< Q_9>_2 + y_{10}< Q_{10}>_2$

$$\left(\frac{\text{Im}A_2}{\text{Re}A_2}\right)_{V-A} = \text{Im}\tau \frac{3(y_9 + y_{10})}{2z_+}, \qquad \tau = \frac{V_{ts}^* V_{td}}{V_{us}^* V_{ud}}$$

$Im A_0/Re A_0 - (V-A)x(V-A)$

More operators contribute to $\text{Im } A_0/\text{Re } A_0$

$$\operatorname{Re} A_0 = \frac{G_F}{\sqrt{2}} V_{ud} V_{us}^* \left(z_+ \langle Q_+ \rangle_0 + z_- \langle Q_- \rangle_0 \right)$$

Fierz relations for (V-A)x(V-A) give, e.g.: $\langle Q_4 \rangle_0 = \langle Q_3 \rangle_0 + 2 \langle Q_- \rangle_0$

$$\left(\frac{\operatorname{Im} A_0}{\operatorname{Re} A_0}\right)_{V-A} = \operatorname{Im} \tau \frac{2y_4}{(1+q)z_-} + \mathcal{O}(p_3)$$

Is only a function of Wilson coefficients and of the ratio

$$q = (z_{+}(\mu)\langle Q_{+}(\mu)\rangle_{0})/(z_{-}(\mu)\langle Q_{-}(\mu)\rangle_{0})$$

Expression with $p_3 = \langle Q_3 \rangle_0 / \langle Q_4 \rangle_0$ and EW penguins given in [Buras, MG, Jäger & Jamin `15]

(V-A)x(V+A) Contributions

Q₆ & Q₈ give the leading contribution to ImA₀ & ImA₂ respectively

$$\left(\frac{\operatorname{Im} A_0}{\operatorname{Re} A_0}\right)_6 = -\frac{G_F}{\sqrt{2}} \operatorname{Im} \lambda_t y_6 \frac{\langle Q_6 \rangle_0}{\operatorname{Re} A_0}
\left(\frac{\operatorname{Im} A_2}{\operatorname{Re} A_2}\right)_8 = -\frac{G_F}{\sqrt{2}} \operatorname{Im} \lambda_t y_8^{\text{eff}} \frac{\langle Q_8 \rangle_2}{\operatorname{Re} A_2}$$

Here: Take Re A₀ from data

One can re-express <Q₆>₀ & <Q₈>₂ in terms of B₆ & B₈

Prediction for ϵ'/ϵ

I=2 Similarly for (V-A)x(V-A):

$$\frac{E'}{\varepsilon} = 10^{-4} \left[\frac{\text{Im}\lambda_{t}}{1.4 \cdot 10^{-4}} \right] \left[a \left(1 - \hat{\Omega}_{\text{eff}} \right) \left(-4.1(8) + 24.7 B_{6}^{(1/2)} \right) + 1.2(1) - 10.4 B_{8}^{(3/2)} \right]$$

(V-A)x(V+A) Matrix elements $B_6=0.57(19)$ and $B_8=0.76(5)$

from Lattice QCD [Blum et. al., Bai et. al. `15]

$$\left(\frac{\epsilon'}{\epsilon}\right)_{\text{SM}} = 1.9(4.5) \times 10^{-4}$$

$$2.9 \text{ odifference}$$

$$\left(\frac{\epsilon'}{\epsilon}\right)_{\text{exp}} = 16.6(2.3) \times 10^{-4}$$

Similar findings by Kitahara et.al. 16

quantity	error on ε'/ε
$B_6^{(1/2)}$	4.1
NNLO	1.6
$\hat{\Omega}_{ ext{eff}}$	0.7
p_3	0.6
$B_8^{(3/2)}$	0.5
p_5	0.4
$m_s(m_c)$	0.3
$m_t(m_t)$	0.3

NLO vs NNLO

Theory prediction only at NLO at the moment

Convergence at m_c is not clear – should calculate next order

Long term use Lattice QCD

Also the error estimate does not include $O(p^2/m_c^2)$ corrections which for $K \to \pi \pi$ are expected to be small

Status of \(\epsilon'/\epsilon NNLO\)

Energy	Fields	Order
μw	• '	NNLO Q_1 - Q_6 & Q_{8g} i) NNLO EW Penguins (traditional Basis) ii)
RGE	γ,g,u,d,s,c,b	NNLO Q ₁ -Q ₆ & Q _{8g} iii)
μ _b	γ,g,u,d,s,c,b	NNLO Q_1 - Q_6 iv)
RGE	γ,g,u,d,s,c	NNLO Q_1 - Q_6 & Q_{8g} iii)
μ _c	γ,g,u,d,s,c	NLO Q_1 - Q_{10} v)
RGE	γ,g,u,d,s	NNLO Q ₁ -Q ₆ & Q8g iii)
M _{Lattice}	g,u,d,s	NLO Q ₁ -Q ₁₀ (traditional Basis) vi)

i) [Misiak, Bobeth, Urban]

vi)[Blum et. al., Bai et. al. '15]

ii) [Gambino,Buras, Haisch]

iii)[Gorbahn, Haisch]

iv)[Gorbahn, Brod]

v) [Buras, Jamin, Lautenbacher]

RG-invariant factorisation

Traditional the contribution of running ($U(\mu, \mu_0)$) and matching ($M(\mu)$) are combined as:

$$\langle \vec{Q} \rangle^{(3)}(\mu_L) \vec{C}^{(3)}(\mu_L) = \langle \vec{Q} \rangle(\mu_L) U^{(3)}(\mu_L, \mu_c) M^{(34)}(\mu_c) U^{(4)}(\mu_c, \mu_b) M^{(45)}(\mu_b) U^{(5)}(\mu_b, \mu_W) \vec{C}^{(5)}(\mu_W)$$

Alternatively we can also factorise as

$$\langle \vec{Q} \rangle^{(3)}(\mu_L) \vec{C}^{(3)}(\mu) = \langle \vec{Q} \rangle (\mu_L)^{(3)} u^{(3)}(\mu_L)$$

$$u^{(3)^{-1}}(\mu_c) M^{(34)}(\mu_c) u^{(4)}(\mu_c)$$

$$u^{(4)^{-1}}(\mu_b) M^{(45)}(\mu_b) u^{(5)}(\mu_b)$$

$$u^{(5)^{-1}}(\mu_W) \vec{C}^{(5)}(\mu_W)$$

or write in terms of scheme and scale independent quantities:

$$\langle \vec{Q} \rangle^{(3)}(\mu_L) \vec{C}^{(3)}(\mu) = \langle \hat{\vec{Q}} \rangle^{(3)} \hat{M}^{(34)} \hat{M}^{(45)} \hat{\vec{C}}^{(5)}$$

RG-invariant factorisation

All hatted quantities $\langle \hat{\vec{Q}} \rangle^{(3)}$, $\hat{M}^{(34)}$, $\hat{M}^{(45)}$ and $\hat{\vec{C}}^{(5)}$ and also their products

$$\hat{\vec{C}}^{(3)} = \hat{M}^{(34)} \hat{M}^{(45)} \hat{\vec{C}}^{(5)}$$

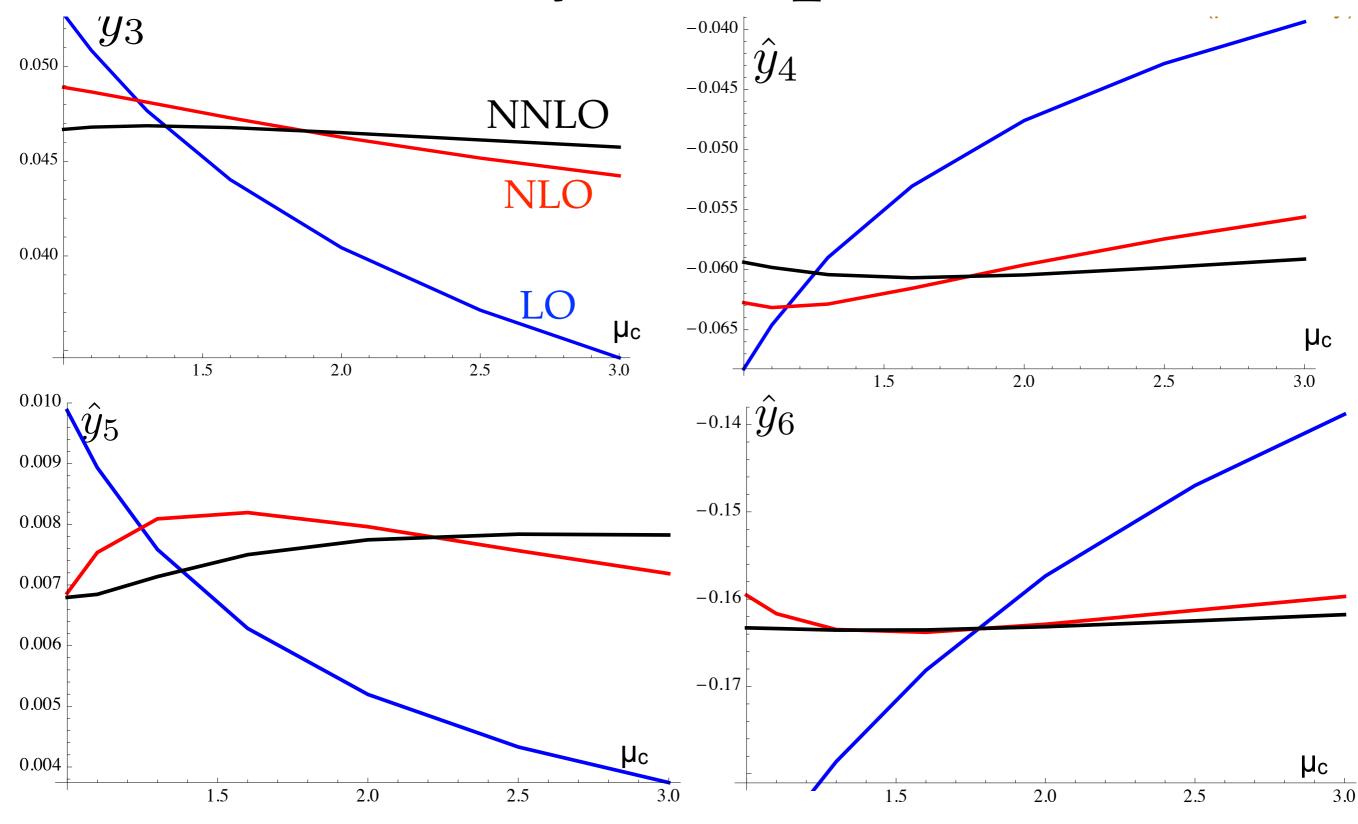
are formally scheme and scale independent.

The matrix elements $\langle \hat{\vec{Q}} \rangle$ satisfy d=4 Fierz identities.

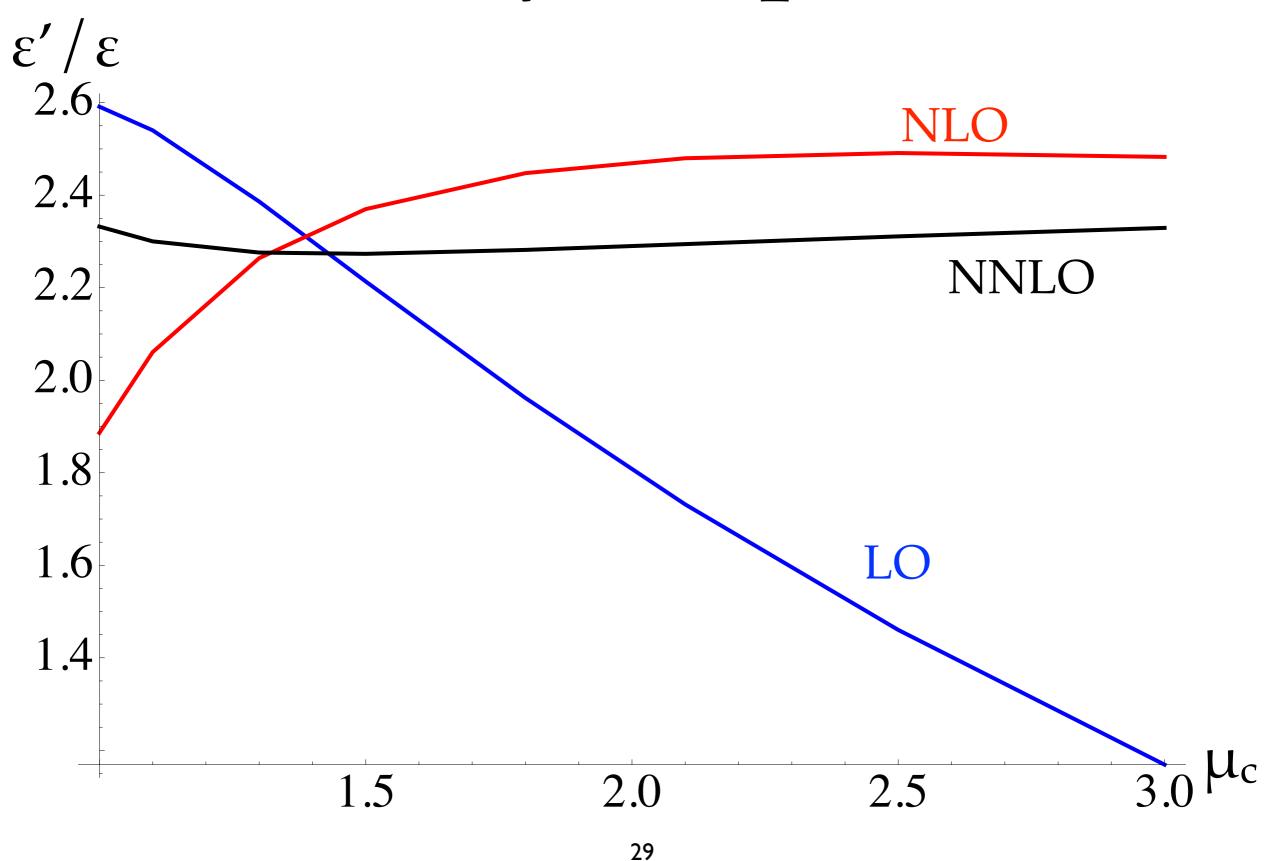
 $\hat{\vec{C}}^{(3)}$ is μ independent, but shows residual μ dependence.

Plot this for the $\hat{y}(\mu_c)$ (the ones $\propto \text{Im}(V_{ts}^*V_{td})$):

Residual µc dependence



Residual µc dependence



Conclusion

Perturbative calculations for $K \to \pi \bar{\nu} \nu$ under very good control, with only sub-leading non-perturbative effects.

Ongoing Lattice efforts improve the estimate of nonperturbative effects for $K \rightarrow \pi \bar{\nu} \nu$ and ϵ_K .

New perturbative NNLO calculation removes large part of the perturbative uncertainty in ε'_{K} .

Interesting tension with experiment.