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CKM Factors in Kaon physics
� = O(0.2)

Kaon observables ∝ Vts* Vtd → suppressed in SM
sensitive to flavour violating NP
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ImV ⇤
tsVtd = �ImV ⇤

csVcd = O(�5) ImV ⇤
usVud = 0

ReV ⇤
usVud = �ReV ⇤

csVcd = O(�1) ReV ⇤
tsVtd = O(�5)

Semi-leptonic decays (Vus):

Kaon observables ∝ Vus* Vud or Vcs* Vcd → dominated by 
QCD, useful for extracting low energy constants



CKM Factors in Kaon physics
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s d
W+

Z,     γ, g 

t, c, u Using the GIM mechanism, 
we can eliminate either Vcs* Vcd  or
Vus* Vud → - Vcs* Vcd - Vts* Vtd

Z-Penguin and Boxes (high virtuality):
power expansion in: Ac - Au ∝ 0 + O(mc2/MW2)

γ/g-Penguin (momentum expansion + e.o.m.):
power expansion in: Ac - Au ∝ O(Log(mc2/mu2))
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Semileptonic decays: Vus , Lepton Flavour Universality, 
QCD

Leptonic decays: CP violation, Lepton Flavour Violation

Radiative decays: QCD

Rare decays: K → " l+ l- see talk by A. Jüttner

In this talk I will discuss:
1, K → " ῡ υ
2, εK

3, ε‘K/εK

Content
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Matrix element from Kl3 decays
(Isospin symmetry: K+→#0 e+ υ)
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After 2011 uncertainty at 1%
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Figure 5: �Xt as a function of MH , in two di�erent renormalisation schemes. The dashed lines
show the LO results, the dashed-dotted lines the LO results including the electroweak corrections
in the large-mt limit. The full two-loop results are represented by the dotted lines. The left panel
shows the results where all parameters are defined in the MS scheme. By contrast, in the right
panel, all parameters apart from � are defined in the on-shell scheme. For comparison, we also
plot in both panels the NLO result, where all masses are defined on-shell and all couplings in the
MS scheme. It is represented by the solid lines.

long distance contributions were calculated in Reference [30] to be

⇥Pc,u = 0.04± 0.02 . (4.7)

The hadronic matrix element of the low-energy e⇥ective Hamiltonian can be extracted
from the well-measured Kl3 decays, including isospin breaking and long-distance QED
radiative corrections [27, 32, 33]. The long-distance contributions are contained in the pa-
rameters ⇧+, including NLO and partially NNLO corrections in chiral perturbation theory.
�EM denotes the long distance QED corrections [27].

Including the two-loop electroweak corrections to Xt, we find for the branching ratio of
the charged mode

Br(K+ ⇤ �+⌥⌥̄) = (8.22+0.74
�0.65 ± 0.29)� 10�11 , (4.8)

The first error is related to the uncertainties in the input parameters. The main contri-
butions are (Vcb : 49%,  ̄ : 22%, �s : 9%, mc : 8%, mt : 7%, ⇤̄ : 4%, sin2 ⌅W : 1%). The
second error quantifies the remaining theoretical uncertainty. In detail, the contributions
are (⇥Pc,u : 49%, Pc : 21%, Xt(QCD) : 17%, ⇧+

� : 8%, Xt(EW) : 7%), respectively. Here
and below, we determine the QCD error on Xt by varying the scale µc between 80 GeV
and 320 GeV. Correspondingly, our central value of Xt is the average of Xt(µ = 80GeV)
and Xt(µ = 320GeV).
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long distance contributions were calculated in Reference [30] to be

⇥Pc,u = 0.04± 0.02 . (4.7)

The hadronic matrix element of the low-energy e⇥ective Hamiltonian can be extracted
from the well-measured Kl3 decays, including isospin breaking and long-distance QED
radiative corrections [27, 32, 33]. The long-distance contributions are contained in the pa-
rameters ⇧+, including NLO and partially NNLO corrections in chiral perturbation theory.
�EM denotes the long distance QED corrections [27].

Including the two-loop electroweak corrections to Xt, we find for the branching ratio of
the charged mode
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butions are (Vcb : 49%,  ̄ : 22%, �s : 9%, mc : 8%, mt : 7%, ⇤̄ : 4%, sin2 ⌅W : 1%). The
second error quantifies the remaining theoretical uncertainty. In detail, the contributions
are (⇥Pc,u : 49%, Pc : 21%, Xt(QCD) : 17%, ⇧+

� : 8%, Xt(EW) : 7%), respectively. Here
and below, we determine the QCD error on Xt by varying the scale µc between 80 GeV
and 320 GeV. Correspondingly, our central value of Xt is the average of Xt(µ = 80GeV)
and Xt(µ = 320GeV).

11

xi =
m2

i

M2
W
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KL → "0 ῡ υ only
top contribution 

relevant.
Clean theory and

CKM suppression:
NP sensitivity
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K+ → #+ ῡ υ at MW

W

s

d

sν

ν ν

Z

u, c, ts dd

ν ν ν

Z

W W

W We, µ, τ
u, c, t u, c, t

u, c, t

7

�

i

V�
isVidF(xi) = V�

tsVtd(F(xt) ⌅ F(xu)) + V�
csVcd(F(xc) ⌅ F(xu))

Q⇥ = (s̄L�µdL)(⇥̄L�µ⇥L)

�5 m2
t

M2
W

Quadratic GIM:

[Misiak, Urban; Buras, Buchalla;
Brod, MG, Stamou`11]

Matching (NLO +EW): 

�
m2

c

M2
W

ln
MW

mc

Operator
Mixing (RGE)

xi =
m2

i

M2
W



K+ → #+ ῡ υ at MW
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K+ → #+ ῡ υ from MW to mc

8

Pc

µc[GeV]1 2
.35

.39

.36 NNLO 
(QCD)

NLO (EW)LO (EW)Pc: charm quark contribution
to K+ → #+ ῡ υ (30% to BR)
Series converges very well

(NNLO:10%→2.5% uncertainty)
NNLO+EW [Buras, MG, Haisch, 

Nierste; Brod MG]
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Figure 1: One-loop diagrams corresponding to the T-products in Eqs. (2)–(4).

the other hand, we differ from these works in the last step, namely the removal of the
charm as dynamical degrees of freedom. In this case we proceed as in Ref. [9], matching
the operator product expansion of the T-products into an effective theory which includes
also dimension-8 operators. The structure of the local terms, for µIR

<
∼ mc, takes the form

of the following effective Hamiltonian density

H(6+8)
eff (µIR) =

GF√
2

α

2π sin2 θW
λc

∑

l=e,µ,τ

[

X l
c(xc)Q

(6)
l +

1

M2
W

∑

i

C l
i(µIR)Q(8)

il

]

. (9)

Neglecting neutrino masses, the only Q(8)
il with non-vanishing coefficients to lowest order

in αs(mc) are

Q(8)
1l = s̄γµ(1 − γ5)d ∂2 [ν̄lγµ(1 − γ5)νl] ,

Q(8)
2l = (s̄

←−
Dα)γµ(1 − γ5)(

−→
Dαd) ν̄lγµ(1 − γ5)νl ,

Q(8)
3l = (s̄

←−
Dα)γµ(1 − γ5)d

[

ν̄l(
←−
∂α −

−→
∂α)γµ(1 − γ5)νl

]

. (10)

The operator Q(8)
1l arises by the neutral-current coupling (left diagram in Figure 1), while

Q(8)
2l and Q(8)

3l are generated by the charged-current coupling (right diagram in Figure 1).

The operator Q(8)
3l , which has been considered first in Ref. [8], is the only term which can

induce a CP-conserving contribution to the K2 → π0νlν̄l transition. In agreement with
the results of Ref. [8, 9], we find

C l
1(µIR) =

1

12

(

1 −
4

3
sin2 θW

)

log
(

m2
c/µ

2
IR

)

[3C1(µc) + C2(µc)]

Ce,µ
2 (µIR) =

1

2
log

(

m2
c/µ

2
IR

)

CB(µc) (11)

Cτ
2 (µIR) = −

1

4
f

(

m2
c/m

2
τ

)

CB(µc)

C l
3(µIR) = −C l

2(µIR)

4

No GIM below the charm quark mass scale
higher dimensional operators UV scale dependent
One loop ChiPT calculation approximately cancels 
this scale dependence �Pc,u = 0.04± 0.02

[Isidori, Mescia, Smith `05]
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No GIM below the charm quark mass scale
higher dimensional operators UV scale dependent
One loop ChiPT calculation approximately cancels 
this scale dependence �Pc,u = 0.04± 0.02
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Explorative (unphysical) Lattice calculation: 
δPc,u =0.0040(±13)(±32)(-45) [Bai et.al. `17]



K → # ῡ υ: Error Budget 

kappa
2 %

Xt
7 %

Pc
6 %

delta Pcu
14 %

CKM
53 %

Parametric
18 %

BRth(K+→#+ῡυ) = 7.8(8)(3) ⋅ 10-11

BRexp(K+→#+ῡυ) = 17(11) ⋅ 10-11

[E787, E949 ´08] NA62 → 10% accuracy
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Xt
8 %

kappa
2 %CKM

84 %

Mt
6 %

BRth(KL →#0ῡυ) = 2.43(39)(6) ⋅ 10-11

BRexp(KL→#0ῡυ) < 6.7 ⋅ 10-8

[E391a ´08]

[Brod, MG, Stamou
`2011]

Using the same calculations: [Buras et.al. `15]
BR+ = 8.4(6) ⋅ 10-11 (CKM tree) BRL = 3.4(6) ⋅ 10-11 (CKM tree)



Schrödinger type equation for meson mixing

K Meson Mixing

M12 from ∆s = 2 Box ⟷ Electroweak process

Γ12  ⟷ ∆Γ maximal and ∆I = 1/2 saturates Γ12  = A0 A̅0
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CP violation in Kaons
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✏0 = (⌘+� � ⌘00)/3✏K = (⌘00 + 2⌘+�)/3

CP violation in mixing, interference & decay → non-zero

Only CP violation in mixing (Re ε), interference of mixing and 
decay (Im ε, Im ε‘) and direct CP violation (Re ε‘)

�K � ⇥(⇥⇥)I=0|KL⇤
⇥(⇥⇥)I=0|KS⇤

⇥K = ei⇥� sin ⌅�

�
Im(MK

12)

�MK
+ ⇤

⇥

from experiment, Lattice small

ξ = Im A0/Re A0 Individual: phase convention dependent



εK: CP violation in Kaon Mixing

(+75(1)%):  λtλt mt2/MW2 + 

(+40(6)%):  λcλt mc2/MW2 
                 log(mc2/MW2) + 

( -15(6)%):  λcλc mc2/MW2   

ηct: 3-loop RGE,
2-loop Matching

[Brod, MG `10]

ηcc: 3-loop RGE,
3-loop Matching

[Brod, MG `12]12

2MKM12 = hK0|H|�S|=2 |K̄0i� i

2

Z
d4x hK0|H|�S|=1(x)H|�S|=1(0) |K̄0i

dispersive part
s

d s

d

u

c

t

u

c

t

W

W

K̄0 K0 Q̃ = (s̄L�µdL)(s̄L�
µdL)

�K0|Q̃|K̄0�Lattice:

Local Interaction:

Only known at NLO

NNLO



Long Distance contributions εK

s

d

d

s

c, u

c, u

13

Z
d4xd4y hK0|T{H(x)H(y)} |K̄0i

Integrate over tA < tx,y < tB on the 
Lattice, see talk by Jüttner

Lattice + charm could reduce dominant error from ηcc 

With a phase convention where Vcs* Vcd is real, ηcc vanishes

→ new LD contributions for εK via modified ξ  
(standard convention: 2" loop leading contribution to ξ,
Vcs* Vcd real conventions: ξ dominated by ∆MK(LD) )

Effectively, one would estimate ηcc from ∆MKexp - ∆MKSD

Comment on in my opinion not useful approach:



Residual Theory Uncertainty

14

After Lattice QCD & NNLO progress: ηcc dominant uncertainty

εK is very important for phenomenology: 
Future improvements are expected from Lattice QCD and 
interplay with perturbative QCD  

parametric
43 %

LD
15 %

η_tt
4 %
η_ct
13 %

η_cc
26 %

[Brod, MG `12] Vcb dominates 
parametric uncertainty:
2012 |εK|=1.81(28) 10-3

CKMFitter 2016:
|εK|=2.27[+0.21 –0.42] 10-3

Experimental:
|εK|=2.22(1) 10-3
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CP violation in mixing, interference & decay → non-zero

Only CP violation in mixing (Re ε), interference of mixing and 
decay (Im ε, Im ε‘) and direct CP violation (Re ε‘)

✏0 ⇡ 1

6
(�00 � �+�) +

1

12
(�00 � �+�)(2� �00 � �+�) + . . .

�ij =
q

p

h⇡i⇡j |K̄0i
h⇡i⇡j |K0iUsing: and |1� �ij | ⌧ 1
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a0, a2 & a2+ from experiment
[Cirigliano,  et.al. `11]

 a0 & a2: isospin amplitudes
for isospin conservation

h⇡0⇡0|K0i = a0e
i�0 + a2e

i�2/
p
2

h⇡+⇡�|K0i = a0e
i�0 � a2e

i�2
p
2

h⇡+⇡0|K+i = 3a+2 e
i�+

2 /2
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AI = h(⇡⇡)I |He↵ |KiCurrent theory gives us only:

Normalise to K+ decay (ω+, a) and εK ,
expand in A2/A0 and CP violation:

a0, a2 & a2+ from experiment
[Cirigliano,  et.al. `11]

 a0 & a2: isospin amplitudes
for isospin conservation

h⇡0⇡0|K0i = a0e
i�0 + a2e

i�2/
p
2

h⇡+⇡�|K0i = a0e
i�0 � a2e

i�2
p
2

h⇡+⇡0|K+i = 3a+2 e
i�+
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Re

✓
✏0

✏

◆
' ✏0

✏
= � !+p

2 |✏K |


ImA0

ReA0
(1� ⌦̂e↵)�

1

a

ImA2

ReA2

�

[Buras, MG, Jäger, Jamin `15] Adjusted to keep electroweak 
penguins in Im A0 [Cirigliano,  et.al. `11]



Study Unitarity & CKM Elements to get Im AI & Re AI

Current-Current & CKM
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We use unitarity to eliminate

Current-current interactions: 
Two contributions if + > mc.

(∝ Vts* Vtd and ∝ Vus* Vud)

For + < mc: Vts* Vtd is absent:

V ⇤
csVcd = �V ⇤

usVud � V ⇤
tsVtdQ

c
2

s

c, u

d

c, u

W±
s

d

c, u

c, u

V ⇤
usVudQ

u
1/2

V ⇤
usVudQ

u
1/2 + V ⇤

csVcdQ
c
1/2 !

V ⇤
usVud(Q

u
1/2 �Qc

1/2)� V ⇤
tsVtdQ

c
1/2



Penguin & CKM
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{V ⇤
usVudf(mu) + V ⇤

csVcdf(mc) + V ⇤
tsVtdf(mt)}QPenguin !

{V ⇤
usVud [f(mu)� f(mc)] + V ⇤

tsVtd [f(mt)� f(mc)]}QPenguin

s dt, c, uPenguins: f(mu) - f(mc) = 0:
Only Vts* Vtd contribution



Penguin & CKM

18

{V ⇤
usVudf(mu) + V ⇤

csVcdf(mc) + V ⇤
tsVtdf(mt)}QPenguin !

{V ⇤
usVud [f(mu)� f(mc)] + V ⇤

tsVtd [f(mt)� f(mc)]}QPenguin

+ > mc: Vts* Vtd Qc1/2 mixes into  Vts* Vtd QPenguin (like usual).

+ > mc: Vus* Vud (Qu1/2 – Qc1/2) does not mix into QPenguin .

+ < mc: Match Vts* Vtd Qc1/2  onto Vts* Vtd QPenguin 
              → CP violation from QPenguin

                    → CP conserving from Qu1/2  (plus small QPenguin)

s dt, c, uPenguins: f(mu) - f(mc) = 0:
Only Vts* Vtd contribution



Effective Hamiltonian 
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Currently we use the effective Hamiltonian below the charm: 

He↵ =
GFp
2
VudV

⇤
us

10X

i=1

�
zi(µ) + ⌧ yi(µ)

�
Qi(µ) , ⌧ ⌘ � VtdV ⇤

ts

VudV ⇤
us
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Currently we use the effective Hamiltonian below the charm: 

He↵ =
GFp
2
VudV

⇤
us

10X

i=1

�
zi(µ) + ⌧ yi(µ)

�
Qi(µ) , ⌧ ⌘ � VtdV ⇤

ts

VudV ⇤
us

Q1,2/± = (s̄iuj)V�A (ūkdl)V�A

Q3,...,6 = (s̄idj)V�A

X

q=u,d,s

(q̄kql)V±A

Q7,...,10 = (s̄idj)V�A

X

q=u,d,s

eq(q̄kql)V±A

current-current
QCD &

electroweak
penguins



Effective Hamiltonian 
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Currently we use the effective Hamiltonian below the charm: 

He↵ =
GFp
2
VudV

⇤
us

10X

i=1

�
zi(µ) + ⌧ yi(µ)

�
Qi(µ) , ⌧ ⌘ � VtdV ⇤

ts

VudV ⇤
us

Q1,2/± = (s̄iuj)V�A (ūkdl)V�A

Q3,...,6 = (s̄idj)V�A

X

q=u,d,s

(q̄kql)V±A

Q7,...,10 = (s̄idj)V�A

X

q=u,d,s

eq(q̄kql)V±A

current-current
QCD &

electroweak
penguins

We have zi & yi at NLO [Buras et.al., Ciuchini et. al. `92 `93]

And now also a Lattice QCD calculation of: ⟨("")I|Qi|K⟩=⟨Qi⟩I 
by RBC-UKQCD [Blum et. al., Bai et. al. `15]



A2 only contributes in the ratio Im A2/Re A2

Im A2/Re A2 – (V-A)x(V-A)

20

2 Basic formulae 6

Electroweak Penguins:

Q
7

=
3

2
(s̄d)V�A

X

q=u,d,s,c,b

eq (q̄q)V+A Q
8

=
3

2
(s̄↵d�)V�A

X

q=u,d,s,c,b

eq (q̄�q↵)V+A (13)

Q
9

=
3

2
(s̄d)V�A

X

q=u,d,s,c,b

eq (q̄q)V�A Q
10

=
3

2
(s̄↵d�)V�A

X

q=u,d,s,c,b

eq (q̄�q↵)V�A (14)

Here, ↵, � denote colour indices and eq denotes the electric quark charges reflecting the
electroweak origin of Q

7

, . . . , Q
10

. Finally, (s̄d)V�A ⌘ s̄↵�µ(1� �
5

)d↵.
The Wilson coe�cients zi and yi have been calculated at the NLO level more than

twenty years ago [10,11], and some pieces of NNLO corrections are also available [12–14].
In Table 1, we collect values for z

1,2 and yi at µ = mc, used in our approach, for three
values of ↵s(MZ) and mt = 163GeV, in the NDR-MS scheme.

↵s(MZ) = 0.1179 ↵s(MZ) = 0.1185 ↵s(MZ) = 0.1191
z
1

–0.4036 –0.4092 –0.4150
z
2

1.2084 1.2120 1.2157
y
3

0.0275 0.0280 0.0285
y
4

–0.0555 –0.0563 –0.0571
y
5

0.0054 0.0052 0.0050
y
6

–0.0849 –0.0867 –0.0887
y
7

/↵ –0.0404 –0.0403 –0.0402
y
8

/↵ 0.1207 0.1234 0.1261
y
9

/↵ –1.3936 –1.3981 –1.4027
y
10

/↵ 0.4997 0.5071 0.5146

Table 1: �S = 1 Wilson coe�cients at µ = mc = 1.3GeV for three values of ↵s(MZ) and
mt = 163GeV in the NDR-MS scheme.

2.2 Basic formula for "0/"

Our starting expression is formula (8.16) of [29] which we recall here in our notation1

"0

"
= � !

+p
2 |"K |


ImA

0

ReA
0

(1� ⌦
e↵

)� ImA
2

ReA
2

�
, (15)

where [29]

!
+

= a
ReA

2

ReA
0

= (4.53± 0.02)⇥ 10�2, a = 1.017, ⌦
e↵

= (6.0± 7.7)⇥ 10�2 . (16)

Here a and ⌦
e↵

summarise isospin breaking corrections and include strong isospin violation
(mu 6= md), the correction to the isospin limit coming from �I = 5/2 transitions and

1In order to simplify the notation we denote Re("0/") simply by "0/", which is real to an excellent
approximation. The latter is a model-independent consequence of the experimentally known values of
the (strong) phases of "0 and ".

Isospin limit: 2 <Q9>2 = 2 <Q10>2 = 3 <Q1>2 = 3 <Q2>2

Re A2: (z1+z2)<Q1+Q2>2 = z+<Q+>2     Im A2: y9<Q9>2 + y10<Q10>2

2 Basic formulae 5

It should be stressed that assuming dominance of SM dynamics in CP-conserving data,
our determination of the contributions of (V �A)⌦ (V �A) operators to "0/" is basically
independent of the non-perturbative approach used. The RBC-UKQCD lattice collab-
oration calculates these contributions directly and we will indeed identify a significant
di↵erence between their estimate of the Q

4

contribution to "0/" and ours.
Our paper is organised as follows. In Section 2, we derive the analytic formula for "0/"

in question using the strategy of [10] but improving on it. Using this formula, we present

a new analysis of "0/" within the SM exhibiting its sensitivity to the precise value of B(1/2)
6

and the weak dependence on q. In Section 3, we perform the anatomy of uncertainties
a↵ecting "0/" and present the prediction of "0/" in the SM, including a discussion of

its B
(1/2)
6

dependence. In Section 4, we extract from the lattice-QCD results of [25] the
values of the most important hadronic matrix elements and compare them with ours. This
allows us to identify the main origin of the di↵erence between (5) and (6). In particular,
we point out an approximate correlation between the contribution of the Q

4

operator
to "0/" and the value of ReA

0

valid in any non-perturbative approach. In Section 5,
we investigate if thus far neglected SM contributions could bring our result for "0/" into
agreement with the experimental findings. A brief general discussion of the impact of
possible NP contributions to ReA

0,2 and ImA
0,2 and of the implications of our results for

NP models is given in Section 6. The summary of our observations and an outlook are
presented in Section 7. In Appendix A, we discuss the sub-leading contributions to our
prediction for "0/" and in Appendix B, for completeness, an updated analytic formula for
"0/" in the SM is presented in the form used in several of our papers in the past (e.g. [21])
that is equivalent to the one derived in Section 2, but exhibits the mt, ↵s, ms and md

dependences more explicitly.

2 Basic formulae

2.1 E↵ective Hamiltonian

We use the e↵ective Hamiltonian for �S = 1 transitions of [6–11]

H
e↵

=
GFp
2
VudV

⇤
us

10X

i=1

�
zi(µ) + ⌧ yi(µ)

�
Qi(µ) , ⌧ ⌘ � VtdV

⇤
ts

VudV ⇤
us

. (9)

The contributing operators are given as follows:
Current–Current:

Q
1

= (s̄↵u�)V�A (ū�d↵)V�A Q
2

= (s̄u)V�A (ūd)V�A (10)

QCD–Penguins:

Q
3

= (s̄d)V�A

X

q=u,d,s,c,b

(q̄q)V�A Q
4

= (s̄↵d�)V�A

X

q=u,d,s,c,b

(q̄�q↵)V�A (11)

Q
5

= (s̄d)V�A

X

q=u,d,s,c,b

(q̄q)V+A Q
6

= (s̄↵d�)V�A

X

q=u,d,s,c,b

(q̄�q↵)V+A (12)

Let us first consider only (V-A)x(V-A) operators:

✓
ImA2

ReA2

◆

V�A

= Im⌧
3(y9 + y10)

2z+
, ⌧ =

V ⇤
tsVtd

V ⇤
usVud



More operators contribute to Im A0/Re A0

Im A0/Re A0 – (V-A)x(V-A)

21

ReA0 =
GFp
2
VudV

⇤
us

�
z+hQ+i0 + z�hQ�i0

�
, ReA2 =

GFp
2
VudV

⇤
us z+hQ+i2

Expression with p3 = ⟨Q3⟩0/⟨Q4⟩0  and EW penguins given in
[Buras, MG, Jäger & Jamin `15]

Fierz relations for (V-A)x(V-A) give, e.g.: ⟨Q4⟩0=⟨Q3⟩0+2⟨Q–⟩0
✓
ImA0

ReA0

◆

V�A

= Im⌧
2y4

(1 + q)z�
+O(p3)

Is only a function of Wilson coefficients and of the ratio   

q = (z+(µ)hQ+(µ)i0)/(z�(µ)hQ�(µ)i0)



Q6 & Q8 give the leading contribution to
ImA0 & ImA2 respectively

(V-A)x(V+A) Contributions

22

2 Basic formulae 9

which reduces the number of independent (V � A) ⌦ (V � A) matrix elements entering
ReA

0,2 and ImA
0,2 to three. On the other hand, to an excellent approximation the am-

plitudes ReA
0

and ReA
2

at µ = mc are fully described by the operators Q� and Q
+

, so
that we can write

ReA
0

=
GFp
2
VudV

⇤
us

�
z
+

hQ
+

i
0

+ z�hQ�i0
�
, (33)

ReA
2

=
GFp
2
VudV

⇤
us z+hQ+

i
2

. (34)

Introducing the ratio

q ⌘ z
+

(µ)hQ
+

(µ)i
0

z�(µ)hQ�(µ)i0
, z± = z

2

± z
1

, (35)

allows us to express the ratios involving only (V �A)⌦ (V �A) operators that will enter
our basic formula for "0/" as follows:

✓
ImA

0

ReA
0

◆

V�A

= Im⌧
[4y

4

� b(3y
9

� y
10

)]

2(1 + q)z�
+ Im⌧ b

3q(y
9

+ y
10

)

2(1 + q)z
+

, (36)

✓
ImA

2

ReA
2

◆

V�A

= Im⌧
3(y

9

+ y
10

)

2z
+

. (37)

Besides the CKM ratio ⌧ , the first ratio depends only on Wilson coe�cients and the single
hadronic ratio q to which we will return below. On the other hand the second ratio is free
from hadronic uncertainties, being fully determined by the Wilson coe�cients z

+

, y
9

, y
10

and by ⌧ .
The remaining contributions to ImA

0

and ImA
2

are due to (V �A)⌦(V +A) operators
and are dominated by the operators Q

6

and Q
8

, respectively. We find this time
✓
ImA

0

ReA
0

◆

6

= � GFp
2
Im�t y6

hQ
6

i
0

ReA
0

, (38)

✓
ImA

2

ReA
2

◆

8

= � GFp
2
Im�t y

e↵

8

hQ
8

i
2

ReA
2

. (39)

Contributions from Q
3

and Q
5

are very suppressed but can and have been included in
our numerical error estimate. (See Appendix A.) We have also taken into account the
small e↵ect of hQ

7

i
2

, for which a relatively precise lattice prediction exists [23], through
the substitution

y
8

! ye↵
8

⌘ y
8

+ p
72

y
7

(40)

which is included in writing (39). Here p
72

⌘ hQ
7

i
2

/hQ
8

i
2

= 0.222 for central values
of [23]. (In our numerics, we have added the corresponding errors linearly and attribute
a 15% uncertainty to this contribution.)

The matrix elements of the Q
6

and Q
8

operators are conveniently parameterised by

hQ
6

(µ)i
0

= � 4h


m2

K

ms(µ) +md(µ)

�
2

(FK � F⇡)B
(1/2)
6

, (41)

hQ
8

(µ)i
2

=
p
2h


m2

K

ms(µ) +md(µ)

�
2

F⇡ B
(3/2)
8

, (42)

Here: Take Re A0  from data

One can re-express <Q6>0  & <Q8>2 in terms of B6 & B8



Prediction for ε‘/ε
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"0

"
= 10�4


Im�t

1.4 · 10�4

�h
a
�
1� ⌦̂e↵

��
� 4.1(8) + 24.7B(1/2)

6

�
+ 1.2(1)� 10.4B(3/2)

8

i

I=2 Similarly for (V-A)x(V-A):
I=0 (V-A)x(V-A)

(V-A)x(V+A) Matrix elements B6=0.57(19) and B8=0.76(5) 
from Lattice QCD [Blum et. al., Bai et. al. `15]

I=2 (V-A)x(V-A)

✓
✏0

✏

◆

SM

= 1.9(4.5)⇥ 10�4

✓
✏0

✏

◆

exp

= 16.6(2.3)⇥ 10�4

2.9 σ difference

3 Prediction for "0/" in the SM 14

the precision on mt increased by much in the last two decades. a
(3/2)
0

contributes
positively to "0/".

iv) The contribution of the (V �A)⌦(V +A) electroweak penguin operators Q
7

and Q
8

to P (3/2) is represented by the second term in (55). This contribution is dominated
by Q

8

and depends sensitively on mt and ↵s. It contributes negatively to "0/".

The competition between these four contributions is the reason why it is di�cult to
predict "0/" precisely. In this context, one should appreciate the virtue of our approach:
the contributions i) and iii) can be determined rather precisely by CP-conserving data so
that the dominant uncertainty in our approach in predicting "0/" resides in the values of

B
(1/2)
6

and B
(3/2)
8

.

3 Prediction for "0/" in the SM

3.1 Prediction for "0/" and discussion

We begin our analysis by employing the lattice values in (2) and (3). Varying all parame-
ters within their input ranges and combining the resulting variations in "0/" in quadrature,
we obtain:

("0/")
SM

= (1.9± 4.5)⇥ 10�4. (61)

Comparing to the experimental result ("0/")
exp

= (16.6±2.3)⇥10�4 (average of NA48 [26]
and KTeV [27,28]), we observe a discrepancy of 2.9 � significance.

quantity error on "0/" quantity error on "0/"

B
(1/2)
6

4.1 md(mc) 0.2
NNLO 1.6 q 0.2

⌦̂
e↵

0.7 B
(1/2)
8

0.1
p
3

0.6 Im�t 0.1

B
(3/2)
8

0.5 p
72

0.1
p
5

0.4 p
70

0.1
ms(mc) 0.3 ↵s(MZ) 0.1
mt(mt) 0.3

Table 4: Error budget, ordered from most important to least important. Each line shows
the variation from the central value of our "0/" prediction, in units of 10�4, as the cor-
responding parameter is varied within its input range, all others held at central values.

A detailed error budget is given in Table 4. It is evident that the error is dominated
by the hadronic parameter B

(1/2)
6

. Uncertainties from higher-order corrections are still
significant yet small if compared to the deviation from the experimental value. All other
individual errors are below 10�4, with the third most important uncertainty coming from
the isospin breaking parameter ⌦̂

e↵

, at a level of 0.7 ⇥ 10�4 and about six times smaller
than the error due to B

(1/2)
6

.

Similar findings by Kitahara et.al. 16



NLO vs NNLO
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Theory prediction only at NLO at the moment

Convergence at mc is not clear – should calculate next 
order

Long term use Lattice QCD

Also the error estimate does not include O(p2/mc2) 
corrections which for K → " " are expected to be small



Status of ε‘/ε NNLO
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Energy Fields Order

)W
g,γ,W,Z,h,
u,d,s,c,b,t

NNLO Q1-Q6 & Q8g i)
NNLO EW Penguins (traditional Basis) ii)

RGE γ,g,u,d,s,c,b NNLO Q1-Q6 & Q8g iii)

)b γ,g,u,d,s,c,b NNLO Q1-Q6 iv)

RGE γ,g,u,d,s,c NNLO Q1-Q6 & Q8g iii)

)c γ,g,u,d,s,c NLO Q1-Q10 v)

RGE γ,g,u,d,s NNLO Q1-Q6 & Q8g iii)

MLattice g,u,d,s NLO Q1-Q10 (traditional Basis) vi)
i)  [Misiak, Bobeth, Urban]
ii) [Gambino,Buras, Haisch]
iii)[Gorbahn, Haisch]

iv)[Gorbahn, Brod]
v) [Buras, Jamin, Lautenbacher]
vi)[Blum et. al., Bai et. al. ‘15]



RG-invariant factorisation

26

RG-invariant factorisation
Traditional the contribution of running (U(µ,µ0)) and
matching (M(µ)) are combined as:

h~Qi(3)(µL)~C(3)(µL) = h~Qi(µL)U(3)(µL,µc)M(34)(µc)U(4)(µc,µb)

M(45)(µb)U(5)(µb,µW)~C(5)(µW)

Alternatively we can also factorise as

h~Qi(3)(µL)~C(3)(µ) = h~Qi(µL)
(3)u(3)(µL)

u(3)-1
(µc)M(34)(µc)u(4)(µc)

u(4)-1
(µb)M(45)(µb)u(5)(µb)

u(5)-1
(µW)~C(5)(µW)

or write in terms of scheme and scale independent
quantities:

h~Qi(3)(µL)~C(3)(µ) = h~̂Qi(3)M̂(34)M̂(45)~̂C(5)

3 / 3



RG-invariant factorisation
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RG-invariant factorisation

All hatted quantities h~̂Qi(3), M̂(34), M̂(45) and ~̂C(5) and also
their products

~̂C(3) = M̂(34)M̂(45)~̂C(5)

are formally scheme and scale independent.

The matrix elements h~̂Qi satisfy d = 4 Fierz identities.

~̂C(3) is µ independent, but shows residual µ dependence.

Plot this for the ŷ(µc) (the ones / Im(V⇤
tsVtd)):

4 / 4



Residual +c dependence
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RGI Wilson coefficients

NNLO accuracy of ~1% for the most important coefficient 

µc µc

µc µc
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ŷ6

Cerda Sevilla, Gorbahn, SJ, Kokulu 2016  (preliminary)

ŷ6
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Residual +c dependence
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Conclusion
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Perturbative calculations for K → " υ ̄υ under very good 
control, with only sub-leading non-perturbative effects.

Ongoing Lattice efforts improve the estimate of non-
perturbative effects for K → " ῡ υ and εK.

New perturbative NNLO calculation removes large part 
of the perturbative uncertainty in ε’K.

Interesting tension with experiment.


