Kaon Physics: Theory Status

Based on work in collaboration with:
Andrzej Buras, Sebastian Jäger \& Matthias Jamin [1507.06345] Maria Cerda-Sevilla, Sebastian Jäger \& Ahmet Kokulu [1611.08276]
[And based on older calculations with Joachim Brod, Emanuel Stamou and Ulrich Haisch]

Current Trends in Flavour Physics Institut Henri Poincare, Paris 30 March 2017

Martin Gorbahn

Kaon Physics:

Topics in Theory Calculations

Based on work in collaboration with:
Andrzej Buras, Sebastian Jäger \& Matthias Jamin [1507.06345]
Maria Cerda-Sevilla, Sebastian Jäger \& Ahmet Kokulu [1611.08276]
[And based on older calculations with Joachim Brod, Emanuel Stamou and Ulrich Haisch]

Current Trends in Flavour Physics Institut Henri Poincare, Paris 30 March 2017

Martin Gorbahn

CKM Factors in Kaon physics

Semi-leptonic decays (V_{us}): $\lambda=\mathcal{O}(0.2)$

$$
V_{i j}=\mathcal{O}\left(\begin{array}{ccc}
1 & \lambda & \lambda^{3} \\
\lambda & 1 & \lambda^{2} \\
\lambda^{3} & \lambda^{2} & 1
\end{array}\right)
$$

$$
\begin{aligned}
\operatorname{Im} V_{t s}^{*} V_{t d} & =-\operatorname{Im} V_{c s}^{*} V_{c d}=\mathcal{O}\left(\lambda^{5}\right) \\
\operatorname{Re} V_{u s}^{*} V_{u d} & =-\operatorname{Im} V_{u s}^{*} V_{u d}^{*} V_{c d}=\mathcal{O}\left(\lambda^{1}\right)
\end{aligned} \quad \operatorname{Re} V_{t s}^{*} V_{t d}=\mathcal{O}\left(\lambda^{5}\right)
$$

Kaon observables $\propto \mathrm{V}_{\mathrm{ts}}{ }^{*} \mathrm{~V}_{\mathrm{td}} \rightarrow$ suppressed in SM sensitive to flavour violating NP
Kaon observables $\propto \mathrm{V}_{\mathrm{us}}{ }^{*} \mathrm{~V}_{\mathrm{ud}}$ or $\mathrm{V}_{\mathrm{cs}}{ }^{*} \mathrm{~V}_{\mathrm{cd}} \rightarrow$ dominated by QCD, useful for extracting low energy constants

CKM Factors in Kaon physics

> Using the GIM mechanism, we can eliminate either $\mathrm{V}_{\mathrm{cs}}{ }^{*} \mathrm{~V}_{\mathrm{cd}}$ or $\mathrm{V}_{\mathrm{us}}{ }^{*} \mathrm{~V}_{\mathrm{ud}} \rightarrow-\mathrm{V}_{\mathrm{cs}}{ }^{*} \mathrm{~V}_{\mathrm{cd}}-\mathrm{V}_{\mathrm{ts}}{ }^{*} \mathrm{~V}_{\mathrm{td}}$

Z-Penguin and Boxes (high virtuality): power expansion in: $\mathrm{A}_{\mathrm{c}}-\mathrm{A}_{\mathrm{u}} \propto 0+\mathrm{O}\left(\mathrm{m}_{\mathrm{c}}{ }^{2} / \mathrm{Mw}^{2}\right)$
γ / g-Penguin (momentum expansion + e.o.m.): power expansion in: $A_{c}-A_{u} \propto O\left(\log \left(m_{c}{ }^{2} / m_{u}{ }^{2}\right)\right)$

Content

Semileptonic decays: V_{us}, Lepton Flavour Universality, QCD

Leptonic decays: CP violation, Lepton Flavour Violation
Radiative decays: QCD
Rare decays: $K \rightarrow \pi l^{+} l^{-}$see talk by A. Jüttner
In this talk I will discuss:
$1, K \rightarrow \pi \bar{v} v$
2, ε_{K}
$3, \varepsilon^{\prime}{ }_{\mathrm{K}} / \varepsilon_{\mathrm{K}}$

$\mathrm{K} \rightarrow \pi \bar{v} v$ at M_{W}

$$
x_{i}=\frac{m_{i}^{2}}{M_{W}^{2}}
$$

$\sum_{i} V_{i s}^{*} V_{i d} F\left(x_{i}\right)=V_{t s}^{*} V_{t d}\left(F\left(x_{t}\right)-F\left(x_{u}\right)\right)+V_{c s}^{*} V_{c d}\left(F\left(x_{c}\right)-F\left(x_{u}\right)\right)$

$\mathrm{K} \rightarrow \pi \bar{v} v$ at M_{W}

$$
x_{i}=\frac{m_{i}^{2}}{M_{W}^{2}}
$$

$\sum_{i} V_{i s}^{*} V_{i d} F\left(x_{i}\right)=V_{t s}^{*} V_{t d}\left(F\left(x_{t}\right)-F\left(x_{u}\right)\right)+V_{c s}^{*} V_{c d}\left(F\left(x_{c}\right)-F\left(x_{u}\right)\right)$
Quadratic GIM $\lambda^{5} \frac{m_{t}^{2}}{M_{W}^{2}}$
Matching (NLO +EW):
[Misiak, Urban; Buras, Buchalla;
Brod, MG, Stamou`11]
$\mathrm{Q}_{\boldsymbol{v}}=\left(\bar{s}_{\mathrm{L}} \gamma_{\mu} \mathrm{d}_{\mathrm{L}}\right)\left(\bar{v}_{\mathrm{L}} \gamma^{\mu} \nu_{\mathrm{L}}\right)$

$\mathrm{K} \rightarrow \pi \bar{v} v$ at M_{W}

$$
x_{i}=\frac{m_{i}^{2}}{M_{W}^{2}}
$$

$$
\sum_{i} V_{i s}^{*} V_{i d} F\left(x_{i}\right)=V_{t s}^{*} V_{t d}\left(F\left(x_{t a t}\right)-F\left(x_{u}\right)\right)+V_{c s}^{*} V_{c d}\left(F\left(x_{c}\right)-F\left(x_{u}\right)\right)
$$

$$
\text { Quadratic GIM } \lambda^{5} \frac{m_{t}^{2}}{M_{W}^{2}}
$$

Matching (NLO +EW):
[Misiak, Urban; Buras, Buchalla;
Brod, MG, Stamou`11]
$\mathrm{Q}_{\nu}=\left(\bar{s}_{\mathrm{L}} \gamma_{\mu} \mathrm{d}_{\mathrm{L}}\right)\left(\bar{v}_{\mathrm{L}} \gamma^{\mu} \nu_{\mathrm{L}}\right)$
Matrix element from K_{13} decays
(Isospin symmetry: $\mathrm{K}^{+} \rightarrow \pi^{0} \mathrm{e}^{+} v$)
[Mescia, Smith]

$\mathrm{K} \rightarrow \pi \bar{v} v$ at M_{W}

$$
x_{i}=\frac{m_{i}^{2}}{M_{W}^{2}}
$$

$$
\sum_{i} V_{i s}^{*} V_{i d} F\left(x_{i}\right)=V_{t s}^{*} V_{t d}\left(F\left(x_{t}\right)-F\left(x_{u}\right)\right)+V_{c s}^{*} V_{c d}\left(F\left(x_{c}\right)-F\left(x_{u}\right)\right)
$$

$$
\text { Quadratic GIM } \lambda^{\lambda^{5} \frac{m_{t}^{2}}{M_{W}^{2}}}
$$

Matching (NLO +EW):
[Misiak, Urban; Buras, Buchalla;
Brod, MG, Stamou $\left.{ }^{`} 11\right]$
$\mathrm{Q}_{\nu}=\left(\bar{s}_{\mathrm{L}} \gamma_{\mu} \mathrm{d}_{\mathrm{L}}\right)\left(\bar{v}_{\mathrm{L}} \gamma^{\mu} \nu_{\mathrm{L}}\right)$

After 2011 uncertainty at 1%

$\mathrm{K} \rightarrow \pi \bar{v} v$ at M_{W}

$$
x_{i}=\frac{m_{i}^{2}}{M_{W}^{2}}
$$

$$
\sum_{i} V_{i s}^{*} V_{i d} F\left(x_{i}\right)=V_{t s}^{*} V_{t d}\left(F\left(x_{t}\right)-F\left(x_{u}\right)\right)+V_{c s}^{*} V_{c d}\left(F\left(x_{c}\right)-F\left(x_{u}\right)\right)
$$

$$
\text { Quadratic GIM } \lambda^{5} \frac{m_{t}^{2}}{M_{W}^{2}}
$$

Matching (NLO +EW):
[Misiak, Urban; Buras, Buchalla;
Brod, MG, Stamou $\left.{ }^{`} 11\right]$
$\mathrm{Q}_{\nu}=\left(\bar{s}_{\mathrm{L}} \gamma_{\mu} \mathrm{d}_{\mathrm{L}}\right)\left(\bar{v}_{\mathrm{L}} \gamma^{\mu} \nu_{\mathrm{L}}\right)$

For CP violating $\mathrm{K}_{\mathrm{L}} \rightarrow \pi^{0} \bar{v} v$ only top contribution relevant.

Clean theory and CKM suppression:

NP sensitivity

$\mathrm{K}^{+} \rightarrow \pi^{+} \bar{v} v$ at M_{W}

$$
x_{i}=\frac{m_{i}^{2}}{M_{W}^{2}}
$$

$$
\sum_{i} V_{i s}^{*} V_{i d} F\left(x_{i}\right)=V_{t s}^{*} V_{t d}\left(F\left(x_{t}\right)-F\left(x_{u}\right)\right)+V_{c s}^{*} V_{c d}\left(F\left(x_{c}\right)-F\left(x_{u}\right)\right)
$$

$$
\text { Quadratic GIM } \lambda^{5} \frac{m_{t}^{2}}{M_{W}^{2}}
$$

Matching (NLO +EW):
[Misiak, Urban; Buras, Buchalla;
Brod, MG, Stamou`11]
$\mathrm{Q}_{\nu}=\left(\bar{s}_{\mathrm{L}} \gamma_{\mu} \mathrm{d}_{\mathrm{L}}\right)\left(\bar{v}_{\mathrm{L}} \gamma^{\mu} \nu_{\mathrm{L}}\right)$

$\mathrm{K}^{+} \rightarrow \pi^{+} \bar{v} v$ at M_{W}

$$
x_{i}=\frac{m_{i}^{2}}{M_{W}^{2}}
$$

$$
\sum_{i} V_{i s}^{*} V_{i d} F\left(x_{i}\right)=V_{t s}^{*} V_{t d}\left(F\left(x_{t}\right)-F\left(x_{u}\right)\right)+V_{c s}^{*} V_{c d}\left(F\left(x_{c}\right)-F\left(x_{u}\right)\right)
$$

$$
\mathrm{Q}_{v}=\left(\bar{s}_{\mathrm{L}} \gamma_{\mu} \mathrm{d}_{\mathrm{L}}\right)\left(\bar{v}_{\mathrm{L}} \gamma^{\mu} v_{\mathrm{L}}\right)
$$

Mixing (RGE)

$\mathrm{K}^{+} \rightarrow \pi^{+} \bar{v} v$ at M_{W}

$$
x_{i}=\frac{m_{i}^{2}}{M_{W}^{2}}
$$

$\mathrm{K}^{+} \rightarrow \pi^{+} \bar{v} v$ from M_{W} to m_{C}
P_{c} : charm quark contribution to $\mathrm{K}^{+} \rightarrow \pi^{+} \bar{v} v(30 \%$ to BR$)$ Series converges very well (NNLO: $10 \% \rightarrow 2.5 \%$ uncertainty)

NNLO + EW $\begin{gathered}{[\text { Buras, MG, Haisch, }} \\ \text { Nierste; Brod MG] }\end{gathered}$

$\mathrm{K}^{+} \rightarrow \pi^{+} \bar{v} v$ from M_{w} to m_{c}

P_{c} : charm quark contribution to $\mathrm{K}^{+} \rightarrow \pi^{+} \bar{v} v(30 \%$ to BR) Series converges very well (NNLO: $10 \% \rightarrow 2.5 \%$ uncertainty)

NNLO+EW ${ }_{\substack{[B u r a s, ~ M G, ~ H a i s c h, ~}}^{\text {Nieste } ; \text { Brod MG] }}$

No GIM below the charm quark mass scale higher dimensional operators UV scale dependent One loop ChiPT calculation approximately cancels this scale dependence $\quad \delta P_{c, u}=0.04 \pm 0.02$
[Isidori, Mescia, Smith `05]

$\mathrm{K}^{+} \rightarrow \pi^{+} \bar{v} v$ from M_{w} to m_{c}

P_{c} : charm quark contribution to $\mathrm{K}^{+} \rightarrow \pi^{+} \bar{v} v(30 \%$ to BR) Series converges very well (NNLO: $10 \% \rightarrow 2.5 \%$ uncertainty)

NNLO+EW $\begin{gathered}\text { [Buras, MG, Haisch, } \\ \text { Nieste } ; \text { Brod MG] }\end{gathered}$

No GIM below the charm quark mass scale higher dimensional operators UV scale dependent One loop ChiPT calculation approximately cancels this scale dependence $\quad \delta P_{c, u}=0.04 \pm 0.02$
[Isidori, Mescia, Smith `05] Explorative (unphysical) Lattice calculation: \(\delta \mathrm{P}_{\mathrm{c}, \mathrm{u}}=0.004 \underset{8}{ }(\pm 13)(\pm 32)(-45)\) [Bai et.al. \(\left.{ }^{`} 17\right]\)

$\mathrm{K} \rightarrow \pi \bar{v} v$: Error Budget

$\mathrm{BR}^{\text {th }}\left(\mathrm{K}^{+} \rightarrow \pi^{+} \bar{v} v\right)=7.8(8)(3) \cdot 10^{-11}$ $\mathrm{BR}^{\exp }\left(\mathrm{K}^{+} \rightarrow \pi^{+} \bar{v} v\right)=17(11) \cdot 10^{-11}$
[E787, E949 08] NA62 \rightarrow 10\% accuracy
$\mathrm{BR}^{\operatorname{th}}\left(\mathrm{K}_{\mathrm{L}} \rightarrow \pi^{0} \bar{v} v\right)=2.43(39)(6) \cdot 10^{-11}$ $B R \exp \left(K_{L} \rightarrow \pi^{0} \bar{v} v\right)<6.7 \cdot 10^{-8}$ [E391a '08]

[Brod, MG, Stamou `2011]

K Meson Mixing

Schrödinger type equation for meson mixing

$$
\begin{aligned}
& \mathfrak{i} \frac{\mathrm{d}}{\mathrm{dt}}\binom{\left|\mathrm{~K}^{0}(\mathrm{t})\right\rangle}{\left|\overline{\mathrm{K}}^{0}(\mathrm{t})\right\rangle}=\left[\left(\begin{array}{ll}
\mathrm{M}_{11} & \mathrm{M}_{12} \\
\mathrm{M}_{12}^{*} & \mathrm{M}_{11}
\end{array}\right)-\frac{\mathfrak{i}}{2}\left(\begin{array}{cc}
\Gamma_{11} & \Gamma_{12} \\
\Gamma_{12}^{*} & \Gamma_{11}
\end{array}\right)\right]\binom{\left|\mathrm{K}^{0}(\mathrm{t})\right\rangle}{\left|\overline{\mathrm{K}}^{0}(\mathrm{t})\right\rangle} \\
& \text { Diagonalise } \\
& \left|K_{s}\right\rangle=p\left|K^{0}\right\rangle+q\left|\bar{K}^{0}\right\rangle \\
& \left|K_{L}\right\rangle=p\left|K^{0}\right\rangle-q\left|\bar{K}^{0}\right\rangle
\end{aligned}
$$

M_{12} from $\Delta_{\mathrm{s}}=2$ Box \longleftrightarrow Electroweak process
$\Gamma_{12} \longleftrightarrow \Delta \Gamma$ maximal and $\Delta \mathrm{I}=1 / 2$ saturates $\Gamma_{12}=\mathrm{A}_{0} \overline{\mathrm{~A}}_{0}$

CP violation in Kaons

CP violation in mixing, interference \& decay \rightarrow non-zero

$$
\eta_{+-}=\frac{\left\langle\pi^{+} \pi^{-} \mid K_{L}^{0}\right\rangle}{\left\langle\pi^{+} \pi^{-} \mid K_{S}^{0}\right\rangle} \quad \eta_{00}=\frac{\left\langle\pi^{0} \pi^{0} \mid K_{L}^{0}\right\rangle}{\left\langle\pi^{0} \pi^{0} \mid K_{S}^{0}\right\rangle}
$$

Only CP violation in mixing ($\operatorname{Re} \varepsilon$), interference of mixing and decay $\left(\operatorname{Im} \varepsilon, \operatorname{Im} \varepsilon^{\prime}\right)$ and direct CP violation $\left(\operatorname{Re} \varepsilon^{\prime}\right)$

$$
\begin{gathered}
\epsilon_{K}=\left(\eta_{00}+2 \eta_{+-}\right) / 3 \quad \epsilon^{\prime}=\left(\eta_{+-}-\eta_{00}\right) / 3 \\
\epsilon_{\mathrm{K}} \simeq \frac{\left\langle(\pi \pi)_{\mathrm{I}=0} \mid \mathrm{K}_{\mathrm{L}}\right\rangle}{\left\langle(\pi \pi)_{\mathrm{I}=0} \mid \mathrm{K}_{\mathrm{S}}\right\rangle} \quad \epsilon_{\mathrm{K}}=e^{i \phi_{\epsilon}} \sin \phi_{\epsilon}\left(\frac{\mathrm{Im}\left(M_{12}^{K}\right)}{\Delta M_{\mathrm{K}}}+\underset{\uparrow}{\dagger}\right) \\
\text { from experiment, Lattice }
\end{gathered}
$$

$\xi=\operatorname{Im} A_{0} / \operatorname{Re} A_{0}$ Individual: phase convention dependent

$\varepsilon_{K}:$ CP violation in Kaon Mixing

$$
2 \mathrm{M}_{\mathrm{K}} \mathrm{M}_{12}=\left\langle\mathrm{K}^{0}\right| \mathrm{H}^{|\Delta \mathrm{S}|=2}\left|\overline{\mathrm{~K}}^{0}\right\rangle-\frac{\mathfrak{i}}{2} \int \mathrm{~d}^{4} \chi\left\langle\mathrm{~K}^{0}\right| \mathrm{H}^{|\Delta \mathrm{S}|=1}(\mathrm{x}) \mathrm{H}^{|\Delta \mathrm{S}|=1}(0)\left|\overline{\mathrm{K}}^{0}\right\rangle
$$

$(+75(1) \%): \lambda_{\mathrm{t}} \lambda_{\mathrm{t}} \mathrm{m}_{\mathrm{t}}{ }^{2} / \mathrm{M}_{W^{2}}+$
$(+40(6) \%): \lambda_{\mathrm{C}} \lambda_{\mathrm{t}} \mathrm{m}_{\mathrm{c}}{ }^{2} / \mathrm{Mw}^{2}$ $\log \left(\mathrm{m}_{\mathrm{c}}{ }^{2} / \mathrm{Mw}^{2}\right)+$
$(-15(6) \%): \lambda_{c} \lambda_{c} \mathrm{~m}_{\mathrm{c}}{ }^{2} / \mathrm{Mw}^{2}$

Local Interaction:
$\tilde{\mathrm{Q}}=\left(\bar{s}_{\mathrm{L}} \gamma_{\mu} \mathrm{d}_{\mathrm{L}}\right)\left(\bar{s}_{\mathrm{L}} \gamma^{\mu} \mathrm{d}_{\mathrm{L}}\right)$
Lattice: $\quad\left\langle\mathrm{K}^{0}\right| \tilde{\mathrm{Q}}\left|\overline{\mathrm{K}}^{0}\right\rangle$
Only known at NLO $\eta_{\text {ct: }}$ 3-loop RGE, 2-loop Matching [Brod, MG `10] $\eta_{\text {cc }}$ 3-loop RGE, 3-loop Matching

Long Distance contributions ε_{K}

Lattice + charm could reduce dominant error from η_{cc}

$\int d^{4} x d^{4} y\left\langle K^{0}\right| T\{H(x) H(y)\}\left|\bar{K}^{0}\right\rangle$
Integrate over $\mathrm{t}_{\mathrm{A}}<\mathrm{t}_{\mathrm{x}, \mathrm{y}}<\mathrm{t}_{\mathrm{B}}$ on the Lattice, see talk by Jüttner

Comment on in my opinion not useful approach:
With a phase convention where $\mathrm{V}_{\mathrm{cs}}{ }^{*} \mathrm{~V}_{\mathrm{cd}}$ is real, η_{cc} vanishes
\rightarrow new LD contributions for ε_{K} via modified ξ
(standard convention: 2π loop leading contribution to ξ, $\mathrm{V}_{\mathrm{cs}}{ }^{*} \mathrm{~V}_{\mathrm{cd}}$ real conventions: ξ dominated by $\Delta \mathrm{M}_{\mathrm{K}}{ }^{(\mathrm{LD})}$)

Effectively, one would estimate η_{13} from $\Delta \mathrm{M}_{K} \exp -\Delta \mathrm{M}_{K}{ }^{\text {SD }}$

Residual Theory Uncertainty

 After Lattice QCD \& NNLO progress: $\eta_{\text {cc }}$ dominant uncertainty ε_{K} is very important for phenomenology: Future improvements are expected from Lattice QCD and interplay with perturbative QCD

$$
\begin{gathered}
\text { [Brod, MG }{ }^{12]} \text { V } \mathrm{cb} \text { dominates } \\
\text { parametric uncertainty: } \\
2012\left|\varepsilon_{\mathrm{K}}\right|=1.81(28) 10^{-3} \\
\text { CKMFitter 2016: } \\
\left|\varepsilon_{\mathrm{K}}\right|=2.27[+0.21-0.42] 10^{-3}
\end{gathered}
$$

Experimental:

$$
\left|\varepsilon_{\mathrm{K}}\right|=2.22(1) 10^{-3}
$$

CP violation in Kaons

CP violation in mixing, interference \& decay \rightarrow non-zero

$$
\eta_{+-}=\frac{\left\langle\pi^{+} \pi^{-} \mid K_{L}^{0}\right\rangle}{\left\langle\pi^{+} \pi^{-} \mid K_{S}^{0}\right\rangle} \quad \eta_{00}=\frac{\left\langle\pi^{0} \pi^{0} \mid K_{L}^{0}\right\rangle}{\left\langle\pi^{0} \pi^{0} \mid K_{S}^{0}\right\rangle}
$$

Only CP violation in mixing ($\operatorname{Re} \varepsilon$), interference of mixing and decay $\left(\operatorname{Im} \varepsilon, \operatorname{Im} \varepsilon^{\prime}\right)$ and direct CP violation $\left(\operatorname{Re} \varepsilon^{\prime}\right)$

$$
\epsilon_{K}=\left(\eta_{00}+2 \eta_{+-}\right) / 3 \quad \epsilon^{\prime}=\left(\eta_{+-}-\eta_{00}\right) / 3
$$

Using: $\quad \lambda_{i j}=\frac{q}{p} \frac{\left\langle\pi^{i} \pi^{j} \mid \bar{K}^{0}\right\rangle}{\left\langle\pi^{i} \pi^{j} \mid K^{0}\right\rangle} \quad$ and $\quad\left|1-\lambda_{i j}\right| \ll 1$

$$
\epsilon^{\prime} \approx \frac{1}{6}\left(\lambda_{00}-\lambda_{+-}\right)+\frac{1}{12}\left(\lambda_{00}-\lambda_{+-}\right)\left(2-\lambda_{00}-\lambda_{+-}\right)+\ldots
$$

Formula for $\varepsilon^{\prime} / \varepsilon$

$\mathrm{a}_{0}, \mathrm{a}_{2} \& \mathrm{a}_{2}{ }^{+}$from experiment $\left\langle\pi^{0} \pi^{0} \mid K^{0}\right\rangle=a_{0} e^{i \chi_{0}}+a_{2} e^{i \chi_{2}} / \sqrt{2}$
[Cirigliano, et.al. `11]
$\mathrm{a}_{0} \& \mathrm{a}_{2}$: isospin amplitudes
$\left\langle\pi^{+} \pi^{-} \mid K^{0}\right\rangle=a_{0} e^{i \chi_{0}}-a_{2} e^{i \chi_{2}} \sqrt{2}$ for isospin conservation $\left\langle\pi^{+} \pi^{0} \mid K^{+}\right\rangle=3 a_{2}^{+} e^{i \chi_{2}^{+}} / 2$

Formula for $\varepsilon^{\prime} / \varepsilon$

$\mathrm{a}_{0}, \mathrm{a}_{2} \& \mathrm{a}_{2}{ }^{+}$from experiment $\left\langle\pi^{0} \pi^{0} \mid K^{0}\right\rangle=a_{0} e^{i \chi_{0}}+a_{2} e^{i \chi_{2}} / \sqrt{2}$ [Cirigliano, et.al. `11] $a_{0} \& a_{2}$: isospin amplitudes $\left\langle\pi^{+} \pi^{-} \mid K^{0}\right\rangle=a_{0} e^{i \chi_{0}}-a_{2} e^{i \chi_{2}} \sqrt{2}$ for isospin conservation $\left\langle\pi^{+} \pi^{0} \mid K^{+}\right\rangle=3 a_{2}^{+} e^{i \chi_{2}^{+}} / 2$

Current theory gives us only: $A_{I}=\left\langle(\pi \pi)_{I}\right| \mathcal{H}_{\text {eff }}|K\rangle$
Normalise to K^{+}decay $\left(\omega_{+}, \mathrm{a}\right)$ and ε_{K}, expand in $\mathrm{A}_{2} / \mathrm{A}_{0}$ and CP violation:

Formula for $\varepsilon^{\prime} / \varepsilon$

$\mathrm{a}_{0}, \mathrm{a}_{2} \& \mathrm{a}_{2}{ }^{+}$from experiment $\left\langle\pi^{0} \pi^{0} \mid K^{0}\right\rangle=a_{0} e^{i \chi_{0}}+a_{2} e^{i \chi_{2}} / \sqrt{2}$ [Cirigliano, et.al. `11] $\mathrm{a}_{0} \& \mathrm{a}_{2}$: isospin amplitudes $\left\langle\pi^{+} \pi^{-} \mid K^{0}\right\rangle=a_{0} e^{i \chi_{0}}-a_{2} e^{i \chi_{2}} \sqrt{2}$ for isospin conservation

$$
\left\langle\pi^{+} \pi^{0} \mid K^{+}\right\rangle=3 a_{2}^{+} e^{i \chi_{2}^{+}} / 2
$$

Current theory gives us only: $A_{I}=\left\langle(\pi \pi)_{I}\right| \mathcal{H}_{\text {eff }}|K\rangle$
Normalise to K^{+}decay $\left(\omega_{+}, \mathrm{a}\right)$ and ε_{K}, expand in $\mathrm{A}_{2} / \mathrm{A}_{0}$ and CP violation:

$$
\operatorname{Re}\left(\frac{\epsilon^{\prime}}{\epsilon}\right) \simeq \frac{\epsilon^{\prime}}{\epsilon}=-\frac{\omega_{+}}{\sqrt{2}\left|\epsilon_{K}\right|}\left[\frac{\operatorname{Im} A_{0}}{\operatorname{Re} A_{0}}\left(1-\hat{\Omega}_{\mathrm{eff}}\right)-\frac{1}{a} \frac{\operatorname{Im} A_{2}}{\operatorname{Re} A_{2}}\right]
$$

[Buras, MG, Jäger, Jamin `15]
Adjusted to keep electroweak penguins in $\operatorname{Im} \mathrm{A}_{0}$ [Cirigliano, et.al. '11]

Current-Current \& CKM

Study Unitarity \& CKM Elements to get $\operatorname{Im} \mathrm{A}_{\mathrm{I}} \& \operatorname{Re} \mathrm{~A}_{\mathrm{I}}$

We use unitarity to eliminate

$$
V_{c s}^{*} V_{c d}=-V_{u s}^{*} V_{u d}-V_{t s}^{*} V_{t d} Q_{2}^{c}
$$

Current-current interactions:
Two contributions if $\mu>\mathrm{m}_{\mathrm{c}}$.

$\left(\propto \mathrm{V}_{\mathrm{ts}}{ }^{*} \mathrm{~V}_{\mathrm{td}}\right.$ and $\left.\propto \mathrm{V}_{\mathrm{us}}{ }^{*} \mathrm{~V}_{\mathrm{ud}}\right) \quad V_{u s}^{*} V_{u d} Q_{1 / 2}^{u}+V_{c s}^{*} V_{c d} Q_{1 / 2}^{c} \rightarrow$

$$
V_{u s}^{*} V_{u d}\left(Q_{1 / 2}^{u}-Q_{1 / 2}^{c}\right)-V_{t s}^{*} V_{t d} Q_{1 / 2}^{c}
$$

For $\mu<\mathrm{m}_{\mathrm{c}}: \mathrm{V}_{\mathrm{ts}}{ }^{*} \mathrm{~V}_{\mathrm{td}}$ is absent: $\quad V_{u s}^{*} V_{u d} Q_{1 / 2}^{u}$

Penguin \& CKM

Penguins: $\mathrm{f}\left(\mathrm{m}_{\mathrm{u}}\right)-\mathrm{f}\left(\mathrm{m}_{\mathrm{c}}\right)=0$:
Only $\mathrm{V}_{\mathrm{ts}}{ }^{*} \mathrm{~V}_{\mathrm{td}}$ contribution

$\left\{V_{u s}^{*} V_{u d} f\left(m_{u}\right)+V_{c s}^{*} V_{c d} f\left(m_{c}\right)+V_{t s}^{*} V_{t d} f\left(m_{t}\right)\right\} Q_{\text {Penguin }} \rightarrow$
$\left\{V_{u s}^{*} V_{u d}\left[f\left(m_{u}\right)-f\left(m_{c}\right)\right]+V_{t s}^{*} V_{t d}\left[f\left(m_{t}\right)-f\left(m_{c}\right)\right]\right\} Q_{\text {Penguin }}$

Penguin \& CKM

Penguins: $\mathrm{f}\left(\mathrm{m}_{\mathrm{u}}\right)-\mathrm{f}\left(\mathrm{m}_{\mathrm{c}}\right)=0$:
Only $\mathrm{V}_{\text {ts }}{ }^{*} \mathrm{~V}_{\text {td }}$ contribution

$\left\{V_{u s}^{*} V_{u d} f\left(m_{u}\right)+V_{c s}^{*} V_{c d} f\left(m_{c}\right)+V_{t s}^{*} V_{t d} f\left(m_{t}\right)\right\} Q_{\text {Penguin }} \rightarrow$ $\left\{V_{u s}^{*} V_{u d}\left[f\left(m_{u}\right)-f\left(m_{c}\right)\right]+V_{t s}^{*} V_{t d}\left[f\left(m_{t}\right)-f\left(m_{c}\right)\right]\right\} Q_{\text {Penguin }}$ $\mu>\mathrm{m}_{\mathrm{c}}: \mathrm{V}_{\mathrm{ts}}{ }^{*} \mathrm{~V}_{\mathrm{td}} \mathrm{Q}^{\mathrm{c}_{1 / 2}}$ mixes into $\mathrm{V}_{\mathrm{ts}}{ }^{*} \mathrm{~V}_{\mathrm{td}} \mathrm{Q}_{\text {Penguin }}$ (like usual).
$\mu>\mathrm{m}_{\mathrm{c}}: \mathrm{V}_{\mathrm{us}}{ }^{*} \mathrm{~V}_{\mathrm{ud}}\left(\mathrm{Q}^{\mathrm{u}_{1 / 2}}-\mathrm{Q}^{\mathrm{c}} 1 / 2\right)$ does not mix into $Q_{\text {Penguin }}$.
$\mu<\mathrm{m}_{\mathrm{c}}$: Match $\mathrm{V}_{\mathrm{ts}}{ }^{*} \mathrm{~V}_{\mathrm{td}} \mathrm{Q}^{\mathrm{c}_{1 / 2}}$ onto $\mathrm{V}_{\mathrm{ts}}{ }^{*} \mathrm{~V}_{\mathrm{td}} \mathrm{Q}_{\text {Penguin }}$
$\rightarrow \mathrm{CP}$ violation from $Q_{\text {Penguin }}$
$\rightarrow C P$ conserving from $Q^{u_{1 / 2}}$ (plus small $Q_{\text {Penguin }}$)

Effective Hamiltonian

Currently we use the effective Hamiltonian below the charm:

$$
\mathcal{H}_{\mathrm{eff}}=\frac{G_{F}}{\sqrt{2}} V_{u d} V_{u s}^{*} \sum_{i=1}^{10}\left(z_{i}(\mu)+\tau y_{i}(\mu)\right) Q_{i}(\mu), \quad \tau \equiv-\frac{V_{t d} V_{t s}^{*}}{V_{u d} V_{u s}^{*}}
$$

Effective Hamiltonian

Currently we use the effective Hamiltonian below the charm:

$$
\mathcal{H}_{\mathrm{eff}}=\frac{G_{F}}{\sqrt{2}} V_{u d} V_{u s}^{*} \sum_{i=1}^{10}\left(z_{i}(\mu)+\tau y_{i}(\mu)\right) Q_{i}(\mu), \quad \tau \equiv-\frac{V_{t d} V_{t s}^{*}}{V_{u d} V_{u s}^{*}}
$$

current-current

$$
Q_{1,2 / \pm}=\left(\bar{s}_{i} u_{j}\right)_{V-A}\left(\bar{u}_{k} d_{l}\right)_{V-A}
$$

QCD \&
electroweak

$$
Q_{3, \ldots, 6}=\left(\bar{s}_{i} d_{j}\right)_{V-A} \sum_{q=u, d, s}\left(\bar{q}_{k} q_{l}\right)_{V \pm A}
$$ penguins

$$
Q_{7, \ldots, 10}=\left(\bar{s}_{i} d_{j}\right)_{V-A} \sum_{q=u, d, s} e_{q}\left(\bar{q}_{k} q_{l}\right)_{V \pm A}
$$

Effective Hamiltonian

Currently we use the effective Hamiltonian below the charm:

$$
\mathcal{H}_{\mathrm{eff}}=\frac{G_{F}}{\sqrt{2}} V_{u d} V_{u s}^{*} \sum_{i=1}^{10}\left(z_{i}(\mu)+\tau y_{i}(\mu)\right) Q_{i}(\mu), \quad \tau \equiv-\frac{V_{t d} V_{t s}^{*}}{V_{u d} V_{u s}^{*}}
$$

current-current
QCD \&

$$
\begin{aligned}
Q_{1,2 / \pm} & =\left(\bar{s}_{i} u_{j}\right)_{V-A}\left(\bar{u}_{k} d_{l}\right)_{V-A} \\
Q_{3, \ldots, 6} & =\left(\bar{s}_{i} d_{j}\right)_{V-A} \sum_{q=u, d, s}\left(\bar{q}_{k} q_{l}\right)_{V \pm A}
\end{aligned}
$$

electroweak penguins

$$
Q_{7, \ldots, 10}=\left(\bar{s}_{i} d_{j}\right)_{V-A} \sum_{q=u, d, s} e_{q}\left(\bar{q}_{k} q_{l}\right)_{V \pm A}
$$

We have $z_{i} \& y_{i}$ at NLO [Buras et.al., Ciuchini et. al. `92 \({ }^{`} 93\)]
And now also a Lattice QCD calculation of: $\left\langle(\pi \pi)_{\mathrm{I}}\right| \mathrm{Q}_{\mathrm{i}}|\mathrm{K}\rangle=\left\langle\mathrm{Q}_{\mathrm{i}}\right\rangle_{\mathrm{I}}$ by RBC-UKQCD [Blum et. al., Bai et. al. `15]

$\mathrm{Im}_{2} / \operatorname{Re} \mathrm{A}_{2}-(\mathrm{V}-\mathrm{A})(\mathrm{V}-\mathrm{A})$

A_{2} only contributes in the ratio $\operatorname{Im} \mathrm{A}_{2} / \operatorname{Re} \mathrm{A}_{2}$ Let us first consider only (V-A)x(V-A) operators:

$$
\begin{aligned}
Q_{1}=\left(\bar{s}_{\alpha} u_{\beta}\right)_{V-A}\left(\bar{u}_{\beta} d_{\alpha}\right)_{V-A} & Q_{2}=(\bar{s} u)_{V-A}(\bar{u} d)_{V-A} \\
Q_{9}=\frac{3}{2}(\bar{s} d)_{V-A} \sum_{q=u, d, s, c, b} e_{q}(\bar{q} q)_{V-A} & Q_{10}=\frac{3}{2}\left(\bar{s}_{\alpha} d_{\beta}\right)_{V-A} \sum_{q=u, d, s, c, b} e_{q}\left(\bar{q}_{\beta} q_{\alpha}\right)_{V-A}
\end{aligned}
$$

Isospin limit: $2<\mathrm{Q}_{9}>_{2}=2<\mathrm{Q}_{10}>_{2}=3<\mathrm{Q}_{1}>_{2}=3<\mathrm{Q}_{2}>_{2}$
$\operatorname{Re} \mathrm{A}_{2}:\left(\mathrm{z}_{1}+\mathrm{z}_{2}\right)<\mathrm{Q}_{1}+\mathrm{Q}_{2}>_{2}=\mathrm{z}_{+}<\mathrm{Q}_{+}>_{2} \quad \operatorname{Im} \mathrm{~A}_{2}: \mathrm{y}_{9}<\mathrm{Q}_{9}>_{2}+\mathrm{y}_{10}<\mathrm{Q}_{10}>_{2}$

$$
\left(\frac{\operatorname{Im} A_{2}}{\operatorname{Re} A_{2}}\right)_{V-A}=\operatorname{Im} \tau \frac{3\left(y_{9}+y_{10}\right)}{2 z_{+}}, \quad \tau=\frac{V_{t s}^{*} V_{t d}}{V_{u s}^{*} V_{u d}}
$$

$\mathrm{Im}_{0} \mathrm{~A}^{\operatorname{Re}} \mathrm{A}_{0}-(\mathrm{V}-\mathrm{A})(\mathrm{V}-\mathrm{A})$

More operators contribute to $\operatorname{Im} \mathrm{A}_{0} / \operatorname{Re} \mathrm{A}_{0}$

$$
\operatorname{Re} A_{0}=\frac{G_{F}}{\sqrt{2}} V_{u d} V_{u s}^{*}\left(z_{+}\left\langle Q_{+}\right\rangle_{0}+z_{-}\left\langle Q_{-}\right\rangle_{0}\right)
$$

Fierz relations for (V-A)x(V-A) give, e.g.: $\left\langle\mathrm{Q}_{4}\right\rangle_{0}=\left\langle\mathrm{Q}_{3}\right\rangle_{0}+2\langle\mathrm{Q}-\rangle_{0}$

$$
\left(\frac{\operatorname{Im} A_{0}}{\operatorname{Re} A_{0}}\right)_{V-A}=\operatorname{Im} \tau \frac{2 y_{4}}{(1+q) z_{-}}+\mathcal{O}\left(p_{3}\right)
$$

Is only a function of Wilson coefficients and of the ratio

$$
q=\left(z_{+}(\mu)\left\langle Q_{+}(\mu)\right\rangle_{0}\right) /\left(z_{-}(\mu)\left\langle Q_{-}(\mu)\right\rangle_{0}\right)
$$

Expression with $\mathrm{p}_{3}=\left\langle\mathrm{Q}_{3}\right\rangle_{0} /\left\langle\mathrm{Q}_{4}\right\rangle_{0}$ and EW penguins given in [Buras, MG, Jäger \& Jamin `15]

(V-A)x(V+A) Contributions

$Q_{6} \& Q_{8}$ give the leading contribution to $\operatorname{Im} A_{0} \& \operatorname{ImA} A_{2}$ respectively

$$
\begin{aligned}
& \left(\frac{\operatorname{Im} A_{0}}{\operatorname{Re} A_{0}}\right)_{6}=-\frac{G_{F}}{\sqrt{2}} \operatorname{Im} \lambda_{t} y_{6} \frac{\left\langle Q_{6}\right\rangle_{0}}{\operatorname{Re} A_{0}} \\
& \left(\frac{\operatorname{Im} A_{2}}{\operatorname{Re} A_{2}}\right)_{8}=-\frac{G_{F}}{\sqrt{2}} \operatorname{Im} \lambda_{t} y_{8}^{\text {eff }} \frac{\left\langle Q_{8}\right\rangle_{2}}{\operatorname{Re} A_{2}}
\end{aligned}
$$

Here: Take Re A_{0} from data
One can re-express $<\mathrm{Q}_{6}>_{0} \&<\mathrm{Q}_{8}>_{2}$ in terms of $\mathrm{B}_{6} \& \mathrm{~B}_{8}$

Prediction for $\varepsilon^{\prime} / \varepsilon$

$\mathrm{I}=2$ Similarly for $(\mathrm{V}-\mathrm{A}) \mathrm{x}(\mathrm{V}-\mathrm{A})$:
$\frac{\varepsilon^{\prime}}{\varepsilon}=10^{-4}\left[\frac{\operatorname{Im} \lambda_{\mathrm{t}}}{1.4 \cdot 10^{-4}}\right]\left[a\left(1-\hat{\Omega}_{\mathrm{eff}}\right)\left(-4.1(8)+24.7 B_{6}^{(1 / 2)}\right)+1.2(1)-10.4 B_{8}^{(3 / 2)}\right]$
$(\mathrm{V}-\mathrm{A}) \mathrm{x}(\mathrm{V}+\mathrm{A})$ Matrix elements $\mathrm{B}_{6}=0.57(19)$ and $\mathrm{B}_{8}=0.76(5)$
from Lattice QCD [Blum et. al., Bai et. al. $\left.{ }^{1} 15\right]$

$$
\begin{aligned}
& \left(\frac{\epsilon^{\prime}}{\epsilon}\right)_{\mathrm{SM}}=1.9(4.5) \times 10^{-4} \\
& \left(\frac{\epsilon^{\prime}}{\epsilon}\right)_{\exp }=16.9(2.3) \times 10^{-4}
\end{aligned}
$$

Similar findings by Kitahara et.al. 16

quantity	error on $\varepsilon^{\prime} / \varepsilon$
$B_{6}^{(1 / 2)}$	4.1
NNLO	1.6
$\hat{\Omega}_{\text {eff }}$	0.7
p_{3}	0.6
$B_{8}^{(3 / 2)}$	0.5
p_{5}	0.4
$m_{s}\left(m_{c}\right)$	0.3
$m_{t}\left(m_{t}\right)$	0.3

NLO vs NNLO

Theory prediction only at NLO at the moment
Convergence at m_{c} is not clear - should calculate next order

Long term use Lattice QCD
Also the error estimate does not include $\mathrm{O}\left(\mathrm{p}^{2} / \mathrm{m}_{\mathrm{c}}{ }^{2}\right)$ corrections which for $\mathrm{K} \rightarrow \pi \pi$ are expected to be small

Status of $\varepsilon^{\prime} / \varepsilon$ NNLO

Energy	Fields	Order
μ_{W}	$\mathrm{g}, \gamma, \mathrm{W}, \mathrm{Z}, \mathrm{h}$, $\mathrm{u}, \mathrm{d}, \mathrm{s}, \mathrm{c}, \mathrm{b}, \mathrm{t}$	NNLO $\mathrm{Q}_{1}-\mathrm{Q}_{6} \& \mathrm{Q}_{8 \mathrm{~g}}$ i) NNLO EW Penguins (traditional Basis) ii)
RGE	$\gamma, \mathrm{g}, \mathrm{u}, \mathrm{d}, \mathrm{s}, \mathrm{c}, \mathrm{b}$	NNLO $\mathrm{Q}_{1}-\mathrm{Q}_{6} \& \mathrm{Q}_{8 \mathrm{~g}}$ iii)

RG-invariant factorisation

Traditional the contribution of running $\left(U\left(\mu, \mu_{0}\right)\right)$ and matching $(M(\mu))$ are combined as:

$$
\begin{aligned}
\langle\vec{Q}\rangle^{(3)}\left(\mu_{L}\right) \vec{C}^{(3)}\left(\mu_{L}\right)= & \langle\vec{Q}\rangle\left(\mu_{L}\right) U^{(3)}\left(\mu_{L}, \mu_{c}\right) M^{(34)}\left(\mu_{c}\right) U^{(4)}\left(\mu_{c}, \mu_{b}\right) \\
& M^{(45)}\left(\mu_{b}\right) U^{(5)}\left(\mu_{b}, \mu_{W}\right) \vec{C}^{(5)}\left(\mu_{W}\right)
\end{aligned}
$$

Alternatively we can also factorise as

$$
\begin{aligned}
\langle\vec{Q}\rangle^{(3)}\left(\mu_{L}\right) \vec{C}^{(3)}(\mu)= & \langle\vec{Q}\rangle\left(\mu_{L}\right)^{(3)} u^{(3)}\left(\mu_{L}\right) \\
& u^{(3)^{-1}}\left(\mu_{c}\right) M^{(34)}\left(\mu_{c}\right) u^{(4)}\left(\mu_{c}\right) \\
& u^{(4)^{-1}}\left(\mu_{b}\right) M^{(45)}\left(\mu_{b}\right) u^{(5)}\left(\mu_{b}\right) \\
& u^{(5)^{-1}}\left(\mu_{W}\right) \vec{C}^{(5)}\left(\mu_{W}\right)
\end{aligned}
$$

or write in terms of scheme and scale independent quantities:

RG-invariant factorisation

All hatted quantities $\langle\hat{\vec{Q}}\rangle^{(3)}, \hat{M}^{(34)}, \hat{M}^{(45)}$ and $\hat{\vec{C}}^{(5)}$ and also their products

$$
\hat{\vec{C}}^{(3)}=\hat{M}^{(34)} \hat{M}^{(45)} \hat{\vec{C}}^{(5)}
$$

are formally scheme and scale independent.
The matrix elements $\langle\hat{\vec{Q}}\rangle$ satisfy $d=4$ Fierz identities.
$\hat{\vec{C}}^{(3)}$ is μ independent, but shows residual μ dependence. Plot this for the $\hat{y}\left(\mu_{c}\right)$ (the ones $\propto \operatorname{Im}\left(V_{t s}^{*} V_{t d}\right)$):

Residual μ_{c} dependence

Residual μ_{c} dependence

Conclusion

Perturbative calculations for $\mathrm{K} \rightarrow \pi \bar{v} v$ under very good control, with only sub-leading non-perturbative effects.

Ongoing Lattice efforts improve the estimate of nonperturbative effects for $K \rightarrow \pi \bar{v} v$ and ε_{K}.

New perturbative NNLO calculation removes large part of the perturbative uncertainty in ε^{\prime} к.

Interesting tension with experiment.

