Probing the nature of the $hc\bar{c}$, $hb\bar{b}$ coupling and signals of new physics via $h \rightarrow QZ$ exclusive decays

Monalisa Patra

Institut Ruđer Bošković, Zagreb

Current Trends in Flavour Physics Institut Henri Poincare, Paris

Capabilities of 14 TeV LHC with 300 fb⁻¹ for model-independent measurements of Higgs boson couplings

Comparison of the capabilities of LHC and ILC for model-independent measurements of Higgs Boson couplings. 14 TeV, 300 fb⁻¹/250 GeV, 250 fb⁻¹/500 GeV, 500 fb⁻¹/1 TeV, 1000 fb⁻¹ [Peskin, arXiv:1207.2516]

Comparison of the capabilities of LHC and ILC for model-independent measurements of Higgs Boson couplings. 14 TeV, 300 fb⁻¹/250 GeV, 250 fb⁻¹/500 GeV, 500 fb⁻¹/1 TeV, 1000 fb⁻¹ [Peskin, arXiv:1207.2516]

• Current/Expected status of y_c, y_b at the LHC

- Current/Expected status of y_c, y_b at the LHC
- Rare exclusive Higgs decay to a quarkonium and γ or Z final state

 $0 \hspace{0.2cm} h
ightarrow V\gamma \ (V=J/\Psi, \Upsilon(nS))$ [Konig et.al. (1505.03870, 1609.06310), Bodwin et.al. 1306.5770]

- Current/Expected status of y_c, y_b at the LHC
- Rare exclusive Higgs decay to a quarkonium and γ or Z final state
 - 0 $h o V\gamma$ $(V = J/\Psi, \Upsilon(nS))$ [Konig et.al. (1505.03870, 1609.06310), Bodwin et.al. 1306.5770]

2
$$h \rightarrow PZ (P = \eta_c, \eta_b)$$

[●] $h \rightarrow Pl^+l^-$ D.Becirevic, B.Melic, MP, O.Sumensari [1704.×××××] $h
ightarrow q ar q, \ q = c, b$

- Challenges faced by the LHC
 - Yukawa coupling $\propto m_q$, SM branching ratios very small
 - Huge QCD background
 - Requires tagging to identify the flavour of the final state quark

 $h
ightarrow q ar q, \ q = c, b$

- Challenges faced by the LHC
 - Yukawa coupling $\propto m_q$, SM branching ratios very small
 - Huge QCD background
 - Requires tagging to identify the flavour of the final state quark

c tag recently used at the LHC for exclusive SUSY searches, $(\tilde{t}\tilde{t}^*), \ \tilde{t} \to c\chi_0, \ (\tilde{c}\tilde{c}^*) \ \tilde{c} \to C\tilde{\chi}$ [ATLAS arXiv:1501.01325, ATLAS-CONF-2013-063] $h \rightarrow q\bar{q}, q = c, b$

- Challenges faced by the LHC
 - Yukawa coupling $\propto m_a$, SM branching ratios very small
 - Huge QCD background
 - Requires tagging to identify the flavour of the final state guark

c tag recently used at the LHC for exclusive SUSY searches, $(ilde{t} ilde{t}^*),\; ilde{t} o c\chi_0,\;(ilde{c} ilde{c}^*)\; ilde{c} o c ilde{\chi}$ [Atlas arXiv:1501.01325, Atlas-Conf-2013-063]

- Different modes of measurement
 - Inclusive Higgs decay

- O Possible for b (Vh (Vbb), hij (bbjj)) and c final state, limited by the b, c tagging
- 2 Large statistics at the LHC

 $h \rightarrow q\bar{q}, q = c, b$

- Challenges faced by the LHC
 - Yukawa coupling $\propto m_a$, SM branching ratios very small
 - Huge QCD background
 - Requires tagging to identify the flavour of the final state guark

c tag recently used at the LHC for exclusive SUSY searches, $(ilde{t} ilde{t}^*),\; ilde{t} o c\chi_0,\;(ilde{c} ilde{c}^*)\; ilde{c} o c ilde{\chi}$ [Atlas arXiv:1501.01325, Atlas-Conf-2013-063]

- Different modes of measurement
 - Inclusive Higgs decay

- O Possible for b (Vh (Vbb), hij (bbjj)) and c final state, limited by the b, c tagging
- 2 Large statistics at the LHC
- Exclusive Higgs Decay
 - **1** $h \rightarrow V\gamma$ (V : vector meson), $h \rightarrow MZ$ (M : vector or pseudoscalar meson)
 - possible for u, d, c, s, b quarks
 - Will have a very small branching ratio compared to the inclusive decay

 $h \rightarrow q\bar{q}, q = c, b$

- Challenges faced by the LHC
 - Yukawa coupling $\propto m_a$, SM branching ratios very small
 - Huge QCD background
 - Requires tagging to identify the flavour of the final state guark

c tag recently used at the LHC for exclusive SUSY searches, $(ilde{t} ilde{t}^*),\ ilde{t} o {\cal C}\chi_0,\ (ilde{c} ilde{c}^*)\ ilde{c} o {\cal C} ilde{\chi}$ [ATLAS arXiv:1501.01325, ATLAS-CONF-2013-063]

- Different modes of measurement
 - Inclusive Higgs decay

- O Possible for b (Vh (Vbb), hij (bbjj)) and c final state, limited by the b, c tagging
- 2 Large statistics at the LHC
- Exclusive Higgs Decay •
 - **1** $h \rightarrow V\gamma$ (V : vector meson), $h \rightarrow MZ$ (M : vector or pseudoscalar meson)
 - 2 possible for u, d, c, s, b quarks
 - Will have a very small branching ratio compared to the inclusive decay

• Recasting the vector-boson associated production, Vh, $h
ightarrow b ar{b}$ [Perez, Soreq,

Stamou, Tobioka arXiv:1503.00290]

Methods to constrain $\kappa_c = y_c / y_c^{SM}$

• Recasting the vector-boson associated production, Vh, $h
ightarrow b ar{b}$ [Perez, Soreq,

Stamou, Tobioka arXiv:1503.00290]

Diagram that modifies Vh production when the charm-quark Yukawa is enhanced, $\kappa_c \leq$ 234 at 95% CL

 95% CL allowed range for the charm Yukawa from a global analysis of the Higgs data, κ_c ≤ 6.2

Leading-order diagrams contributing to the decays $h \rightarrow VZ/\gamma$. Last graph contributes to one loop SM diagrams, $h \rightarrow Z\gamma, \gamma\gamma$

- "Direct" contribution calculated using the QCD factorization approach
- Expressed as a convolution of the calculated hard scattering amplitude with the Light Cone Distribution Amplitude of *V*
- "Indirect" contribution, meson is formed from an off-shell γ/Z through a local matrix element

Leading-order diagrams contributing to the decays $h \rightarrow VZ/\gamma$. Last graph contributes to one loop SM diagrams, $h \rightarrow Z\gamma, \gamma\gamma$

- "Direct" contribution calculated using the QCD factorization approach
- Expressed as a convolution of the calculated hard scattering amplitude with the Light Cone Distribution Amplitude of *V*
- "Indirect" contribution, meson is formed from an off-shell γ/Z through a local matrix element
- Interplay between direct and indirect contributions, leads to a strong sensitivity on the quark Yukawa couplings

Leading-order diagrams contributing to the decays $h \rightarrow VZ/\gamma$. Last graph contributes to one loop SM diagrams, $h \rightarrow Z\gamma$, $\gamma\gamma$

• The decay amplitude of the Higgs into V and γ is

$$\mathcal{M}(h \to V\gamma) = \frac{e}{v} \left(\epsilon_V^{\perp *} \cdot \epsilon_\gamma^{\perp *} \right) F_{\perp}^{V\gamma}, \quad F_{\perp}^{V\gamma} = F_{\perp(D)}^{V\gamma} + F_{\perp(D)}^{V\gamma}$$
$$= \frac{e}{v} \left(\epsilon_V \cdot \epsilon_\gamma - \frac{1}{p_V \cdot p_\gamma} (p_V \cdot \epsilon_\gamma) (p_\gamma \cdot \epsilon_V) \right) F_{\perp}^{V\gamma}$$

$$\begin{split} \Gamma(h \to V\gamma) &= \frac{\alpha}{4m_h v^2} (1 - r_V) |F_{\perp}^{V\gamma}|^2 \\ F_{\perp(D)}^{V\gamma} &= Q_q \frac{\kappa_q m_q}{m_h^2} \left[f_V^{\perp} \left(3m_h^2 + 2m_V^2 \right) \right] \\ F_{\perp(D)}^{V\gamma} &= \frac{\alpha}{\pi} \frac{m_h^2 - m_V^2}{2m_V} f_V^{\perp} \left[Q_q C_{\gamma\gamma}(p_{\gamma^*}^2) - \frac{g_V^q}{2s_W c_W} \frac{m_V^2}{m_Z^2 - m_V^2} C_{\gamma Z}(p_{Z^*}^2) \right] \end{split}$$

• The direct and the indirect contributions to $h \rightarrow V \gamma$ decay amplitude interfere destructively in the SM [Konig, Neubert, arXiv:1505.03870]

 $\begin{array}{l} \mathcal{B}(h \to J/\Psi, \gamma)|_{\mathrm{SM}} = (2.8 \pm 0.2) \times 10^{-6}, \\ \mathcal{B}(h \to \Upsilon(nS), \gamma)|_{\mathrm{SM}} = (6.1^{+17.4}_{-6.1}, \ 2.0^{+1.9}_{-1.3}, \ 2.4^{+1.8}_{-1.3}) \times 10^{-10} \ (\textit{n}=1,2,3) \end{array}$

• The direct and the indirect contributions to $h \rightarrow V \gamma$ decay amplitude interfere destructively in the SM [Konig, Neubert, arXiv:1505.03870]

 $\begin{array}{l} \mathcal{B}(h \to J/\Psi, \gamma)|_{\mathrm{SM}} = (2.8 \pm 0.2) \times 10^{-6}, \\ \mathcal{B}(h \to \Upsilon(nS), \gamma)|_{\mathrm{SM}} = (6.1^{+17.4}_{-6.1}, \ 2.0^{+1.9}_{-1.3}, \ 2.4^{+1.8}_{-1.3}) \times 10^{-10} \ (\textit{n}=1,2,3) \end{array}$

ATLAS has recently analysed these rare decays [arXiv:1501.03276 [hep-ex]],

 $\mathcal{B}(h \to J/\Psi, \gamma) = 1.5 \times 10^{-3}, \ \mathcal{B}(h \to \Upsilon(nS), \gamma) = (1.3, 1.9, 1.3) \times 10^{-3}$

• The direct and the indirect contributions to $h \rightarrow V \gamma$ decay amplitude interfere destructively in the SM [Konig, Neubert, arXiv:1505.03870]

 $\begin{array}{l} \mathcal{B}(h \to J/\Psi, \gamma)|_{\mathrm{SM}} = (2.8 \pm 0.2) \times 10^{-6}, \\ \mathcal{B}(h \to \Upsilon(nS), \gamma)|_{\mathrm{SM}} = (6.1^{+17.4}_{-6.1}, \ 2.0^{+1.9}_{-1.3}, \ 2.4^{+1.8}_{-1.3}) \times 10^{-10} \ (\textit{n}=1,2,3) \end{array}$

ATLAS has recently analysed these rare decays [arXiv:1501.03276 [hep-ex]],

[[]Perez, Soreq, Stamou, Tobioka arXiv:1503.00290]

 $h \rightarrow PZ (P = \eta_c, \eta_b)$

$$\begin{split} \Gamma(h \to PZ) &= \frac{1}{16\pi v^4 m_h^3} \lambda^{3/2} (m_h^2, m_Z^2, m_P^2) |F^{PZ}|^2, \quad \lambda(x, y, z) = (x - y - z)^2 - 4yz \\ F_D^{PZ} &= -f_P g_A^q \left[m_P^2 - 3m_q^2 \right] \frac{m_h^4 - m_Z^4 + 4m_Z^2 m_h^2 \ln \frac{m_Z}{m_h}}{(m_h^2 - m_Z^2)^3} \\ F_{ID}^{PZ} &= -\frac{m_Z^2}{m_Z^2 - m_P^2} f_P g_A^q \end{split}$$

 $\mathcal{B}(h \to \eta_c Z)|_{\text{SM}} \approx (1.08 \pm 0.01) \times 10^{-5}, \quad \mathcal{B}(h \to \eta_b Z)|_{\text{SM}} \approx (2.97 \pm 0.05) \times 10^{-5}$

 $h \rightarrow PZ \ (P = \eta_c, \eta_b)$

- The strong suppression of the direct contributions sensitive to y_c , y_b , makes $\mathbf{h} \rightarrow \eta_{\mathbf{b},\mathbf{c}}\mathbf{Z}$ unsuitable for searches for new-physics effects on light quark Yukawa couplings
- The theoretical calculation of these decay rates yields highly accurate predictions, subject to electroweak corrections only
- Could serve as a standard channel to look for effects from models giving additional contribution to h → η_b,cZ

Two Higgs Doublet Model Potential : Ideal Candidate?

Most general $SU(2) \times U(1)$ potential

$$\begin{split} V(\Phi_{1},\Phi_{2}) &= m_{11}^{2} \Phi_{1}^{\dagger} \Phi_{1} + m_{22}^{2} \Phi_{2}^{\dagger} \Phi_{2} + m_{12}^{2} (\Phi_{1}^{\dagger} \Phi_{2} + \Phi_{2}^{\dagger} \Phi_{1}) + \frac{\lambda_{1}}{2} (\Phi_{1}^{\dagger} \Phi_{1})^{2} \\ &+ \frac{\lambda_{2}}{2} (\Phi_{2}^{\dagger} \Phi_{2})^{2} + \lambda_{3} \Phi_{1}^{\dagger} \Phi_{1} \Phi_{2}^{\dagger} \Phi_{2} + \lambda_{4} \Phi_{1}^{\dagger} \Phi_{2} \Phi_{2}^{\dagger} \Phi_{1} \\ &+ \frac{\lambda_{5}}{2} \left[(\Phi_{1}^{\dagger} \Phi_{2})^{2} + (\Phi_{2}^{\dagger} \Phi_{1})^{2} \right] \end{split}$$

Most frequently studied model : softly broken with a \mathbb{Z}_2 symmetry $(\Phi_1\to\Phi_1,\ \Phi_2\to-\Phi_2)$

- Type Ι : All the fermions couple to only Φ₂
- Type II : The up-type quarks couple to Φ₂, whereas the down type quarks and the leptons couple to Φ₁
- Type X : All the quarks couple to Φ₂, whereas all the leptons couple to Φ₁ ('lepton specific')
- Type Z : The up-type quarks and the leptons couple to Φ₂, whereas the down-type quarks couple to Φ₁ ('flipped')

 $h \rightarrow QV$ exclusive decays

2 CP-even Higgs : h, H1 CP-odd Higgs : AA pair of charged Higgs : H^{\pm}

```
2 CP-even Higgs : h, H
1 CP-odd Higgs : A
A pair of charged Higgs : H^{\pm}
```



```
2 CP-even Higgs : h, H
1 CP-odd Higgs : A
A pair of charged Higgs : H^{\pm}
```



```
2 CP-even Higgs : h, H
1 CP-odd Higgs : A
A pair of charged Higgs : H^{\pm}
```

Model	ξ ^d	ξA	ξ^ℓ_A
Туре І	$-\cot\beta$	$\cot \beta$	$-\cot\beta$
Type II	$\tan \beta$	$\cot \beta$	$\tan \beta$
Type X (lepton specific)	$-\cot\beta$	$\cot \beta$	tan β
Type Z (flipped)	tan β	$\cot \beta$	$-\cot\beta$

$$F_{NP}^{PZ} = rac{f_P}{m_A^2 - m_P^2 + im_A\Gamma_A} rac{m_P^2}{2} \, \xi_A^{m q} \, \cos(eta - lpha),$$

$$\begin{split} & \tan \beta \in (0.2, 50), \qquad \alpha \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right), \qquad \left|M^2\right| \le (1.2 \text{ TeV})^2, \\ & m_{H^{\pm}} \in (m_W, 1.2 \text{ TeV}), \qquad m_H \in (m_h, 1.2 \text{ TeV}), \qquad m_A \in (20 \text{ GeV}, 1.2 \text{ TeV}) \end{split}$$

• Concentrating on the alignment limit, $|\cos(\beta - \alpha)| \le 0.3$

$$\begin{split} & \tan\beta\in(0.2,50), \qquad \qquad \alpha\in\left(-\frac{\pi}{2},\frac{\pi}{2}\right), \qquad \qquad \left|M^2\right|\leq(1.2~{\rm TeV})^2, \\ & m_{H^\pm}\in(m_W,1.2~{\rm TeV}), \qquad m_H\in(m_h,1.2~{\rm TeV}), \qquad m_A\in(20~{\rm GeV},1.2~{\rm TeV}) \end{split}$$

- Concentrating on the alignment limit, $|\cos(\beta \alpha)| \le 0.3$
- Constraint from $\Gamma_h/\Gamma_h^{SM} \ge 4.2$ due to the additional decay channel provided $m_A \le m_h/2$

$$\begin{split} \Gamma(h \to AA) &= \frac{|\lambda_{hAA}|^2}{32\pi} \frac{v^2}{m_h} \sqrt{1 - \frac{4m_A^2}{m_h^2}} \\ \Gamma(h \to ZA) &= \frac{1}{16\pi} \frac{\cos^2(\beta - \alpha)}{m_h^3 v^2} \lambda^{3/2}(m_h, m_Z, m_A) \,. \end{split}$$

Results of the scan of parameters after imposing theoretical and experimental constraints. Darker/lighter points correspond to the *free/fine-tuned* scan. Red points are forbidden by the flavor bounds

- Moderate and small values of $\tan \beta \in (0.2, 15]$ favored Fine tuning scans designed to focus on "hard to reach" regions with $m_H \approx |M|$
- Strongly constrained by measurements of the inclusive radiative *B*-meson decay branching ratio ($B \rightarrow X_s \gamma$, $b \rightarrow s \mu \mu$) [Arnan et.al. arXiv:1703.03426]
- In Type I models, constraints are obtained only for $\tan \beta \le 4$
- In Type II models, bounds are tan β independent and constrains $m_H^{\pm} \ge 439$ GeV

Results of the scan of parameters after imposing theoretical and experimental constraints. Darker/lighter points correspond to the *free/fine-tuned* scan. Red points are forbidden by the flavor bounds

 $h \rightarrow QV$ exclusive decays

Monalisa Patra

$$F_{NP}^{PZ} = rac{f_P}{m_A^2 - m_P^2 + im_A\Gamma_A} rac{m_P^2}{2} \, \xi_A^q \, \cos(eta - lpha),$$

$$\begin{split} F_{NP}^{PZ} &= \frac{f_P}{m_A^2 - m_P^2 + im_A\Gamma_A} \frac{m_P^2}{2} \, \xi_A^q \, \cos(\beta - \alpha), \\ R_{\eta_{cb}}^Z &= \frac{\mathcal{B}(h \to \eta_{cb}Z)^{2\text{HDM}}}{\mathcal{B}(h \to \eta_{cb}Z)^{\text{SM}}} = \frac{\Gamma(h \to \eta_{cb}Z)^{2\text{HDM}}}{\Gamma(h \to \eta_{cb}Z)^{\text{SM}}} \frac{\Gamma_{\text{tot}}^{\text{SM}}}{\Gamma_{\text{tot}}^{2\text{HDM}}} \end{split}$$

$$F_{NP}^{PZ} = \frac{f_P}{m_A^2 - m_P^2 + im_A \Gamma_A} \frac{m_P^2}{2} \xi_A^q \cos(\beta - \alpha),$$

$$R_{\eta_{cb}}^{Z} = \frac{\mathcal{B}(h \to \eta_{cb}Z)^{\text{2HDM}}}{\mathcal{B}(h \to \eta_{cb}Z)^{\text{SM}}} = \frac{\Gamma(h \to \eta_{cb}Z)^{\text{2HDM}}}{\Gamma(h \to \eta_{cb}Z)^{\text{SM}}} \begin{bmatrix} \frac{\Gamma_{\text{tot}}^{\text{SM}}}{\Gamma_{\text{tot}}^{\text{2HDM}}} \\ 0.7 \end{bmatrix}$$

$$\begin{split} F_{NP}^{PZ} &= \frac{f_P}{m_A^2 - m_P^2 + im_A\Gamma_A} \frac{m_P^2}{2} \, \xi_A^q \, \cos(\beta - \alpha), \\ R_{\eta_{cb}}^Z &= \frac{\mathcal{B}(h \to \eta_{cb}Z)^{2\text{HDM}}}{\mathcal{B}(h \to \eta_{cb}Z)^{\text{SM}}} = \frac{\Gamma(h \to \eta_{cb}Z)^{2\text{HDM}}}{\Gamma(h \to \eta_{cb}Z)^{\text{SM}}} \left[\frac{\Gamma_{\text{tot}}^{\text{SM}}}{\Gamma_{\text{tot}}^{2\text{HDM}}} \right] \\ 0.7 \end{split}$$

....2

Ratio	$R^Z_{\eta_c}$	$R^{Z}_{\eta_{b}}$
Type I	(0.7, 1.0)	(0.7, 1.0)
Type II	(0.7, 1.1)	(0.7, 1.0)
Туре Х	(0.7, 1.0)	(0.7, 1.0)
Type Z	(0.7, 1.0)	(0.7, 1.0)

Resulting intervals for the ratios obtained from the scans in various types of $h \rightarrow \mathcal{Q}V$ exclusive decays 2HDM.

Monalisa Patra

$$F_{NP}^{PZ} = \frac{f_P}{m_A^2 - m_P^2 + im_A\Gamma_A} \frac{m_P^2}{2} \xi_A^q \cos(\beta - \alpha),$$
$$R_{\eta_{cb}}^Z = \frac{\mathcal{B}(h \to \eta_{cb}Z)^{2\text{HDM}}}{\mathcal{B}(h \to \eta_{cb}Z)^{\text{SM}}} = \frac{\Gamma(h \to \eta_{cb}Z)^{2\text{HDM}}}{\Gamma(h \to \eta_{cb}Z)^{\text{SM}}} \boxed{\frac{\Gamma_{\text{tot}}^{\text{SM}}}{\Gamma_{\text{tot}}^{2\text{HDM}}}}{0.7}$$

<u>m</u>2

Ratio	$R^Z_{\eta_c}$	$R^Z_{\eta_b}$
Type I	(0.7, 1.0)	(0.7, 1.0)
Type II	(0.7, 1.1)	(0.7, 1.0)
Туре Х	(0.7, 1.0)	(0.7, 1.0)
Type Z	(0.7, 1.0)	(0.7, 1.0)

Model	ξ ^d	ξ ^u _A
Type I	$-\cot\beta$	$\cot \beta$
Type II	tan β	$\cot \beta$
Туре Х	$-\cot\beta$	$\cot \beta$
Type Z	tan β	$\cot \beta$

Resulting intervals for the ratios obtained from the scans in various types of $h \rightarrow \mathcal{Q}V$ exclusive decays 2HDM.

Monalisa Patra

 $h \rightarrow P l^+ l^-$ decay

 $\mathcal{B}(h \to \eta_c l^+ l^-)|_{\rm SM} = (3.26 \pm 0.07) \times 10^{-7}, \ \mathcal{B}(h \to \eta_b l^+ l^-)|_{\rm SM} = (8.67 \pm 0.06) \times 10^{-7}$

Exclusive $h \rightarrow Pl^+l^-$ decay

Exclusive $h \rightarrow Pl^+l^-$ decay

(b)

$$\begin{split} \Gamma(h \to PZ^* \to P\ell^+\ell^-) = & \frac{f_P^2 m_Z^3}{384\pi^2 \Gamma_Z m_h^3 v^6} \left[\cos^2(2\theta_W) + 4\sin^4\theta_W\right] \\ & \left(\frac{\left[g_A^q\right]}{SM} - \frac{\xi_A^q m_P^2 \left[\cos(\beta - \alpha)\right]}{2(m_A^2 - m_P^2)}\right)^2 \lambda^{3/2}(m_h^2, m_P^2, m_Z^2), \end{split}$$

Exclusive $h \rightarrow Pl^+l^-$ decay

$$\begin{split} \Gamma(h \to PZ^* \to P\ell^+\ell^-) = & \frac{f_P^2 m_Z^3}{384\pi^2 \Gamma_Z m_h^3 v^6} \left[\cos^2(2\theta_W) + 4\sin^4\theta_W\right] \\ & \left(\frac{g_A^q}{SM} - \frac{\xi_A^q m_P^2 \left[\cos(\beta - \alpha)\right]}{2(m_A^2 - m_P^2)} \right)^2 \lambda^{3/2}(m_h^2, m_P^2, m_Z^2), \\ \Gamma(h \to PA^* \to P\ell^+\ell^-) = & \frac{f_P^2 m_A}{512\pi^2 \Gamma_A m_h^3 v^2} \left(\frac{m_\ell \xi_A^\ell}{v}\right)^2 \left[\frac{\lambda_{hAA}}{m_A^2 - m_P^2} \frac{m_P^2}{v} \frac{\xi_A^q}{v} v^2 \right. \\ & \left. + 2 \left[\cos(\beta - \alpha)\right] \frac{g_A^q}{v}(m_h^2 - m_A^2) \right]^2 \lambda^{1/2}(m_h^2, m_P^2, m_A^2). \end{split}$$

 $h \rightarrow \mathcal{Q} V$ exclusive decays

Monalisa Patra

$$egin{aligned} R^{ au au}_{\eta_{cb}} &= rac{\mathcal{B}(h o \eta_{cb} au^+ au^-)^{2 ext{HDM}}}{\mathcal{B}(h o \eta_{cb} au^+ au^-)^{S ext{M}}} \;, \ R^{\mu\mu}_{\eta_{cb}} &= rac{\mathcal{B}(h o \eta_{cb} \mu^+ \mu^-)^{2 ext{HDM}}}{\mathcal{B}(h o \eta_{cb} \mu^+ \mu^-)^{S ext{M}}} \;, \end{aligned}$$

Ratio	$R^{\mu\mu}_{\eta_c}$	$R^{\mu\mu}_{\eta_b}$	$m{R}_{\eta_{m{c}}}^{ au au}$	$R_{\eta_b}^{ au au}$
Type I	(0.7, 1.0)	(0.7, 1.0)	(0.7, 3.3)	(0.7, 3.6)
Type II	(0.7, 1.0)	(0.7, 1.1)	(1.0, 3.2)	(0.9, 27)
Туре Х	(0.7, 1.1)	(0.7, 1.1)	(0.7, 20.8)	(0.7, 23.0)
Type Z	(0.7, 1.0)	(0.7, 1.1)	(0.7, 1.1)	(0.8, 1.2)

Resulting intervals for the ratios obtained from the scans in various types of 2HDM

- Type II model is far more constrained than Type X because of $B \rightarrow X_s \gamma$ constraint
- Similar enhancement for $R_{\eta_b}^{\tau\tau}$, due to $\Gamma(h \rightarrow PA^* \rightarrow P\ell^+\ell^-) \propto m_\ell^2 \tan^2 \beta$

- Type II model is far more constrained than Type X because of $B \rightarrow X_s \gamma$ constraint
- Similar enhancement for $R_{\eta_b}^{\tau\tau}$, due to $\Gamma(h \rightarrow PA^* \rightarrow P\ell^+\ell^-) \propto m_\ell^2 \tan^2 \beta$
- These decay modes can serve as possible probes of the light CP-odd Higgs ($m_A \lesssim m_h$)

Large enhancements possible in allowed region of the parameter space, making $h \rightarrow P \ell^+ \ell^-$ the ideal channel to look for CP-odd Higgs *A*

• Correlation of the ratios $R_{\eta_c}^{\tau\tau}$ and $R_{\eta_b}^{\tau\tau}$ in Type I and Type X models

• Correlation of the ratios $R_{\eta_c}^{\tau\tau}$ and $R_{\eta_b}^{\tau\tau}$ in Type I and Type X models

• $\Gamma(h \to PA^* \to P\ell^+\ell^-) \propto (m_\ell \xi_A^I)^2 \xi_A^q$, $\xi_A^c = \xi_A^b$

Model	ξ ^d	ξ ^u	ξ^ℓ_A
Туре І	$-\cot\beta$	$\cot \beta$	$-\cot\beta$
Type X (lepton specific)	$-\cot\beta$	$\cot \beta$	$\tan \beta$

 $h \rightarrow \mathcal{Q}V$ exclusive decays

Monalisa Patra

 Higgs decaying to bb, cc can be efficiently looked for in the LHC, with improved b, c tagging

- Higgs decaying to bb, cc can be efficiently looked for in the LHC, with improved b, c tagging
- Exclusive Higgs decay mode (h → QV) will be a promising channel to look for at the LHC

- Higgs decaying to bb, cc can be efficiently looked for in the LHC, with improved b, c tagging
- Exclusive Higgs decay mode (h → QV) will be a promising channel to look for at the LHC
- $h \rightarrow Q\gamma$, $Q = J/\psi$, Υ , can serve as an alternative to constrain y_c , y_b

- Higgs decaying to bb, cc can be efficiently looked for in the LHC, with improved b, c tagging
- Exclusive Higgs decay mode (h → QV) will be a promising channel to look for at the LHC
- $h \rightarrow Q\gamma$, $Q = J/\psi$, Υ , can serve as an alternative to constrain y_c , y_b
- $h \rightarrow \eta_{c,b} \ell \bar{\ell}$ which has escaped attention this far, we find will be efficient channel to test 2HDMs