Structure of Yukawa couplings and prospects for Higgs flavour physics era

Marco Nardecchia

Outline

- Structure of the Yukawa couplings
 - I. Flavour Symmetries
 - 2. Dynamics (Partial Compositeness)
- Higgs Flavour Physics (@ LHC)
- Conclusions

• Why this pattern of masses (and mixing)?

- Understanding the hierarchy requires to address two issues
 - I. Radiative stability
 - 2. Setting the values (theoretical prejudice: O(1) couplings)

• Why this pattern of masses (and mixing)?

- Understanding the hierarchy requires to address two issues
 - I. Radiative stability
 - 2. Setting the values (theoretical prejudice: O(1) couplings)
- Stability of the Yukawa coupling is guaranteed by symmetries
 "We conjecture that the following dogma should be followed:
 at any scale M, a physical parameter a(M) is allowed to be very small if
 the replacement a(M)=0 would increase the symmetry of the system"

[G. 't Hooft, Proceedings NATO, 1980]

• Indeed in the SM:

$$\mathcal{L}_{SM} = \mathcal{L}_{kin} + V(H) + \mathcal{L}_{Yukawa}$$

$$\mathcal{L}_{\text{Yukawa}} = Y_{ij}^U \, \overline{Q}_L^i U_R^j H + Y_{ij}^D \, \overline{Q}_L^i D_R^j \tilde{H} + Y_{ij}^E \, \overline{L}_L^i E_R^j \tilde{H} + \text{h.c.}$$

• Global symmetry: $U(1)_e \times U(1)_\mu \times U(1)_\tau \times U(1)_B$

• Indeed in the SM:

$$\mathcal{L}_{SM} = \mathcal{L}_{kin} + V(H) + \mathcal{L}_{Yukawa}$$

$$\mathcal{L}_{\text{Yukawa}} = Y_{ij}^U \, \overline{Q}_L^i U_R^j H + Y_{ij}^D \, \overline{Q}_L^i D_R^j \tilde{H} + Y_{ij}^E \, \overline{L}_L^i E_R^j \tilde{H} + \text{h.c.}$$

- Global symmetry: $U(1)_e \times U(1)_u \times U(1)_\tau \times U(1)_B$
- ullet Switching off the Yukawa $Y_U,Y_D,Y_E
 ightarrow 0$

$${\cal L}_{
m kin} \supset \sum_f i f^\dagger \sigma^\mu D_\mu f$$
 invariant under $U(3)^5$

- Symmetry is increased, values of Yukawa couplings are technically natural
- (This is not the case for the Higgs Mass parameters)

Indeed in the SM:

$$\mathcal{L}_{SM} = \mathcal{L}_{kin} + V(H) + \mathcal{L}_{Yukawa}$$

$$\mathcal{L}_{\text{Yukawa}} = Y_{ij}^U \, \overline{Q}_L^i U_R^j H + Y_{ij}^D \, \overline{Q}_L^i D_R^j \tilde{H} + Y_{ij}^E \, \overline{L}_L^i E_R^j \tilde{H} + \text{h.c.}$$

- Global symmetry: $U(1)_e \times U(1)_u \times U(1)_\tau \times U(1)_B$
- Switching off the Yukawa $Y_U, Y_D, Y_E \rightarrow 0$

$${\cal L}_{
m kin} \supset \sum_f i f^\dagger \sigma^\mu D_\mu f$$
 invariant under $U(3)^5$

- Symmetry is increased, values of Yukawa couplings are technically natural
- (This is not the case for the Higgs Mass parameters)
- A possible approach to the SM Flavour Problem: don't do anything
- More ambitious: understand this pattern in theories with parameters of the same size

- There is an Abelian symmetry that distinguishes the different families
- A scalar field (the flavon) is responsible for the spontaneous symmetry breaking of this symmetry
- An example with the 2HDM (adapted from 1605.00433)

$$H(\bar{Q}_{i}) = H(U_{i}) = H(E_{i}) = (2, 1, 0), \qquad H(\phi) = -1$$

$$H(\bar{L}_{i}) = H(D_{i}) = (0, 0, 0), \qquad H(\phi) = -1$$

$$\mathcal{L} \supset c_{ij}^{U} \left(\frac{\phi}{M}\right)^{H(\bar{Q}_{i}) + H(U_{j})} \overline{Q}_{L}^{i} U_{R}^{j} H_{u} + \dots$$

- There is an Abelian symmetry that distinguishes the different families
- A scalar field (the flavon) is responsible for the spontaneous symmetry breaking of this symmetry
- An example with the 2HDM (adapted from 1605.00433)

$$H(\bar{Q}_{i}) = H(U_{i}) = H(E_{i}) = (2, 1, 0), \qquad H(\phi) = -1$$

$$H(\bar{L}_{i}) = H(D_{i}) = (0, 0, 0), \qquad \overline{Q}_{L}^{i} U_{R}^{j} H_{u} + \dots$$

$$\mathcal{L} \supset c_{ij}^{U} \left(\frac{\phi}{M}\right)^{H(\bar{Q}_{i}) + H(U_{j})} \overline{Q}_{L}^{i} U_{R}^{j} H_{u} + \dots$$

• Afters spontaneous symmetry breaking $\epsilon \equiv \frac{\langle \phi \rangle}{M} = 0.05$

$$Y^{u} \sim \begin{pmatrix} \epsilon^{4} & \epsilon^{3} & \epsilon^{2} \\ \epsilon^{3} & \epsilon^{2} & \epsilon \\ \epsilon^{2} & \epsilon & 1 \end{pmatrix}, \quad Y^{d} \sim (Y^{e})^{T} \sim \begin{pmatrix} \epsilon^{2} & \epsilon^{2} & \epsilon^{2} \\ \epsilon & \epsilon & \epsilon \\ 1 & 1 & 1 \end{pmatrix} \qquad \begin{aligned} Y_{t} & \sim & 1, & Y_{c} \sim \epsilon^{2}, & Y_{u} \sim \epsilon^{4}, \\ Y_{b} & \sim & 1, & Y_{s} \sim \epsilon, & Y_{d} \sim \epsilon^{2}, \\ Y_{\tau} & \sim & 1, & Y_{\mu} \sim \epsilon, & Y_{e} \sim \epsilon^{2}, \\ Y_{\tau} & \sim & 1, & Y_{\mu} \sim \epsilon, & Y_{e} \sim \epsilon^{2}, \\ |V_{us}| & \sim & \epsilon, & |V_{cb}| \sim \epsilon, & |V_{ub}| \sim \epsilon^{2}, & \delta_{\text{KM}} \sim 1. \end{aligned}$$

all parameters are natural O(I)

- There is an Abelian symmetry that distinguishes the different families
- A scalar field (the flavon) is responsible for the spontaneous symmetry breaking of this symmetry
- An example with the 2HDM (adapted from 1605.00433)

$$H(\bar{Q}_{i}) = H(U_{i}) = H(E_{i}) = (2, 1, 0), \qquad H(\phi) = -1$$

$$H(\bar{L}_{i}) = H(D_{i}) = (0, 0, 0), \qquad H(\phi) = -1$$

$$\mathcal{L} \supset c_{ij}^{U} \left(\frac{\phi}{M}\right)^{H(\bar{Q}_{i}) + H(U_{j})} \overline{Q}_{L}^{i} U_{R}^{j} H_{u} + \dots$$

• Afters spontaneous symmetry breaking $\epsilon \equiv \frac{\langle \phi \rangle}{M} = 0.05$

$$Y^{u} \sim \begin{pmatrix} \epsilon^{4} & \epsilon^{3} & \epsilon^{2} \\ \epsilon^{3} & \epsilon^{2} & \epsilon \\ \epsilon^{2} & \epsilon & 1 \end{pmatrix}, \quad Y^{d} \sim (Y^{e})^{T} \sim \begin{pmatrix} \epsilon^{2} & \epsilon^{2} & \epsilon^{2} \\ \epsilon & \epsilon & \epsilon \\ 1 & 1 & 1 \end{pmatrix} \qquad \begin{aligned} Y_{t} & \sim & 1, & Y_{c} \sim \epsilon^{2}, & Y_{u} \sim \epsilon^{4}, \\ Y_{b} & \sim & 1, & Y_{s} \sim \epsilon, & Y_{d} \sim \epsilon^{2}, \\ Y_{\tau} & \sim & 1, & Y_{\mu} \sim \epsilon, & Y_{e} \sim \epsilon^{2}, \\ Y_{\tau} & \sim & 1, & Y_{\mu} \sim \epsilon, & Y_{e} \sim \epsilon^{2}, \\ |V_{us}| & \sim & \epsilon, & |V_{cb}| \sim \epsilon, & |V_{ub}| \sim \epsilon^{2}, & \delta_{\text{KM}} \sim 1. \end{aligned}$$

- all parameters are natural O(I)
- How to test this idea?

- The dream: directly probe the flavon interactions at the scale M
- Physics of fermion and gauge mediators

- The dream: directly probe the flavon interactions at the scale M
- Physics of fermion and gauge mediators
- ullet Unfortunately scale of the New Physics not predicted $\quad \epsilon \equiv rac{\langle \phi
 angle}{M} = 0.05$
- However possible effects in other flavour observables (analysis with spurions)

$$\mathcal{L} \supset c_{ij}^E \, \epsilon^{H(\bar{L}_i) + H(E_j)} \, \overline{L}_L^i E_R^j H + d_{ij}^E \, \epsilon^{H(\bar{L}_i) + H(E_j)} \, \overline{L}_L^i E_R^j H \frac{H^{\dagger} H}{\Lambda^2}$$

- The dream: directly probe the flavon interactions at the scale M
- Physics of fermion and gauge mediators
- ullet Unfortunately scale of the New Physics not predicted $\quad \epsilon \equiv rac{\langle \phi
 angle}{M} = 0.05$
- However possible effects in other flavour observables (analysis with spurions)

$$\mathcal{L} \supset c_{ij}^E \, \epsilon^{H(\bar{L}_i) + H(E_j)} \, \overline{L}_L^i E_R^j H + d_{ij}^E \, \epsilon^{H(\bar{L}_i) + H(E_j)} \, \overline{L}_L^i E_R^j H \frac{H^{\dagger} H}{\Lambda^2}$$

- Deviation from the Standard Model prediction in Higgs physics [hep-ph/9502418]
 - I. Flavour violation $Y_{\mu\tau} = \mathcal{O}\left(\frac{|U_{23}|vm_{ au}}{\Lambda^2}\right)$ $Y_{ au\mu} = \mathcal{O}\left(\frac{vm_{\mu}}{|U_{23}|\Lambda^2}\right)$
 - 2. Different diagonal couplings $Y_{ au} pprox rac{\sqrt{2m_{ au}}}{v} \left[1 + \mathcal{O}\left(rac{v^2}{\Lambda^2}
 ight)
 ight]$

Beyond the Abelian case

- The Effective Field Theory (EFT) approach to flavour symmetry is based on
- (i) a flavour group $U(1)_{\rm FN}\supseteq G\supseteq SU(3)^5$
- (ii) a set of irreducible symmetry breaking terms (spurions)
- Get O(I) prediction assuming the full EFT is formally invariant with respect to the flavour symmetry

$$\mathcal{L}_{\text{eff}} = \mathcal{L}_{\text{SM}} + \sum \frac{c_i^{(d)}}{\Lambda^{(d-4)}} O_i^{(d)} (\text{SM fields}). \qquad c_i^d = c_i^d(X_i)$$

Beyond the Abelian case

- The Effective Field Theory (EFT) approach to flavour symmetry is based on
- (i) a flavour group $U(1)_{\mathrm{FN}} \supseteq G \supseteq SU(3)^5$
- (ii) a set of irreducible symmetry breaking terms (spurions)
- Get O(1) prediction assuming the full EFT is formally invariant with respect to the flavour symmetry

$$\mathcal{L}_{\text{eff}} = \mathcal{L}_{\text{SM}} + \sum \frac{c_i^{(d)}}{\Lambda(d-4)} O_i^{(d)} \text{(SM fields)}. \qquad c_i^d = c_i^d(X_i)$$

$$\left(\begin{array}{c} \bullet \text{ Minimal Flavour Violation (MFV) is a special case of this approach.} \\ G = SU(3)_{Q_L} \times SU(3)_{U_R} \times SU(3)_{d_R} \times SU(3)_{L_L} \times SU(3)_{E_R} \\ X_i = Y_U, Y_D, Y_E \end{array} \right)$$

Beyond the Abelian case

- The Effective Field Theory (EFT) approach to flavour symmetry is based on
- (i) a flavour group $U(1)_{\rm FN}\supseteq G\supseteq SU(3)^5$
- (ii) a set of irreducible symmetry breaking terms (spurions)
- Get O(I) prediction assuming the full EFT is formally invariant with respect to the flavour symmetry

$$\mathcal{L}_{\text{eff}} = \mathcal{L}_{\text{SM}} + \sum \frac{c_i^{(d)}}{\Lambda^{(d-4)}} O_i^{(d)} \text{(SM fields)}. \qquad c_i^d = c_i^d(X_i)$$

$$\left(\begin{array}{c} \bullet \text{ Minimal Flavour Violation (MFV) is a special case of this approach.} \\ G = SU(3)_{Q_L} \times SU(3)_{U_R} \times SU(3)_{d_R} \times SU(3)_{L_L} \times SU(3)_{E_R} \\ X_i = Y_U, Y_D, Y_E \end{array} \right)$$

• Deviation in Higgs flavour observable are typically small, observable effects require a scale of New Physics to be very low

$$Y^{NP} = Y^{SM} \left(1 + \mathcal{O} \left(\frac{v^2}{\Lambda^2} \right) \right)$$

Partial Compositeness in CH models

Yukawa sector:

$$\mathcal{L}_{\text{elem}} = i \overline{f} \gamma^{\mu} D_{\mu} f$$

$$\mathcal{L}_{\text{comp}} = \mathcal{L}_{\text{comp}}(g_{\rho}, m_{\rho}, H)$$

$$\mathcal{L}_{\text{mix}} = \epsilon_L f_L \mathcal{O}_L + \epsilon_L f_R \mathcal{O}_R + h.c.$$

$$Y^{ij} = c_{ij} \, \epsilon_L^i \epsilon_R^j \, g_\rho$$

$$Y^{ij} \sim \epsilon_L^i \epsilon_R^j g_{\rho}$$

Partial Compositeness in CH models

Yukawa sector:

Georgi, Kaplan (1984) Contino, 1005.4269 Bellazzini, Csaki, Serra 1401.2457

$$\mathcal{L}_{\text{elem}} = i \overline{f} \gamma^{\mu} D_{\mu} f$$

$$\mathcal{L}_{\text{comp}} = \mathcal{L}_{\text{comp}}(g_{\rho}, m_{\rho}, H)$$

$$\mathcal{L}_{\text{mix}} = \epsilon_L f_L \mathcal{O}_L + \epsilon_L f_R \mathcal{O}_R + h.c.$$

$$Y^{ij} = c_{ij} \, \epsilon_L^i \epsilon_R^j \, g_\rho \quad \longrightarrow \quad$$

$$Y^{ij} \sim \epsilon_L^i \epsilon_R^j g_\rho$$

• Flavor violation beyond the CKM one is generated:

$$\sim rac{g_{
ho}^2}{m_{
ho}^2} \epsilon_L^i \epsilon_R^i \epsilon_L^j \epsilon_R^j$$

FV related to the SM one but not in a Minimal FV way

Mixing parameters

• Mixing parameters are related to values of fermion masses and mixing

$$(Y_u)_{ij} \sim g_\rho \epsilon_i^q \epsilon_j^u$$
 $(Y_d)_{ij} \sim g_\rho \epsilon_i^q \epsilon_j^d$ $(Y_e)_{ij} \sim g_\rho \epsilon_i^\ell \epsilon_j^e$,

- ullet In the quarks sector everything is fixed up to 2 parameters, $(g_
 ho,\epsilon_3^q)$
- In the lepton sector parameters cannot be univocally connected to physical inputs, due to our ignorance on neutrino masses, will assume that left and right mixing have similar size

Mixing Parameter	Value
$\epsilon_1^q = \lambda^3 \epsilon_3^q$	$1.15 \times 10^{-2} \epsilon_3^q$
$\epsilon_2^q = \lambda^2 \epsilon_3^q$	$5.11 \times 10^{-2} \epsilon_3^q$
$\epsilon_1^u = \frac{m_u}{vg_\rho} \frac{1}{\lambda^3 \epsilon_3^q}$	$5.48 \times 10^{-4}/(g_{\rho}\epsilon_3^q)$
$\epsilon_2^u = \frac{m_c}{vg_{ ho}} \frac{1}{\lambda^2 \epsilon_3^q}$	$5.96 \times 10^{-2}/(g_{\rho}\epsilon_3^q)$
$\epsilon_3^u = rac{m_t}{vg_ ho}rac{1}{\epsilon_3^q}$	$0.866/(g_{ ho}\epsilon_3^q)$
$\epsilon_1^d = \frac{m_d}{vg_\rho} \frac{1}{\lambda^3 \epsilon_3^q}$	$1.24 \times 10^{-3}/(g_{\rho}\epsilon_3^q)$
$\epsilon_2^d = rac{m_s}{vg_ ho} rac{1}{\lambda^2 \epsilon_3^q}$	$5.29 \times 10^{-3}/(g_{\rho}\epsilon_3^q)$
$\epsilon_3^d = rac{m_b}{vg_ ho}rac{1}{\epsilon_3^q}$	$1.40 \times 10^{-2} (g_{\rho} \epsilon_3^q)$
$\epsilon_1^{\ell} = \epsilon_1^e = \left(\frac{m_e}{g_{\rho}v}\right)^{1/2}$	$1.67 \times 10^{-3}/g_{\rho}^{1/2}$
$\epsilon_2^\ell = \epsilon_2^e = \left(\frac{m_\mu}{g_\rho v}\right)^{1/2}$	$2.43 \times 10^{-2}/g_{ ho}^{1/2}$
$\epsilon_3^{\ell} = \epsilon_3^e = \left(\frac{m_{\tau}}{g_{\rho}v}\right)^{1/2}$	$0.101/g_{ ho}^{1/2}$

The 4D picture

Use Naive Dimensional Analysis to estimate the Wilson Coefficients:

$$\mathcal{L}_{\text{NDA}} = \frac{m_{\rho}^{4}}{g_{\rho}^{2}} \left[\mathcal{L}^{(0)} \left(\frac{g_{\rho} \epsilon_{i}^{a} f_{i}^{a}}{m_{\rho}^{3/2}}, \frac{D_{\mu}}{m_{\rho}}, \frac{g_{\rho} H}{m_{\rho}} \right) + \frac{g_{\rho}^{2}}{16\pi^{2}} \mathcal{L}^{(1)} \left(\frac{g_{\rho} \epsilon_{i}^{a} f_{i}^{a}}{m_{\rho}^{3/2}}, \frac{D_{\mu}}{m_{\rho}}, \frac{g_{\rho} H}{m_{\rho}} \right) + \dots \right]$$

The 5D picture

$0 \longrightarrow S \ell \ell \ell$

A leptoquark interpretation

• Quantum number of the new states, uniquely determined by the the Left-Left structure

$$\Pi \sim (\overline{\bf 3}, {\bf 3}, 1/3)$$

$$\lambda_{ij} \, \overline{q}_{Lj}^c i \tau_2 \tau_a \ell_{Li} \, \Pi$$

$$ullet$$
 Anomalies are fitted when $\dfrac{\lambda_{b\mu}\lambda_{s\mu}}{m_\Pi^2}pprox \dfrac{1}{\left(30\,\mathrm{TeV}
ight)^2}$

- Just two, non-vanishing leptoquark coupling
- Scale of New Physics not predicted
- No connection with FV in the SM

Flavour Violation & Leptoquarks

• Partial compositeness predicts the strength of the couplings

1412.5942, JHEP, With B. Gripaios and S. Renner

• Relevant Lagrangian

$$\mathcal{L} = \mathcal{L}_{SM} + (D^{\mu}\Pi)^{\dagger} D_{\mu}\Pi - M^{2}\Pi^{\dagger}\Pi + \lambda_{ij} \, \overline{q}_{Lj}^{c} i\tau_{2}\tau_{a}\ell_{Li} \Pi + \text{ h.c.}$$

- c are O(I) parameters
- Only 3 fundamental parameters reduced to a single combination in all the flavour observable

$$(g_{\rho}, \epsilon_3^q, M) \to \sqrt{g_{\rho}} \epsilon_3^q / M$$

A bottom up approach

- Regardless of any theoretical input/prejudice, it is crucial to extract as the maximum information as possible from experiment.
- From a bottom up approach we can place bound on the Yukawa coupling of the following EFT:

$$\mathcal{L}_Y = -m_i \bar{f}_L^i f_R^i - Y_{ij} (\bar{f}_L^i f_R^j) h + h.c. + \cdots$$

A bottom up approach

- Regardless of any theoretical input/prejudice, it is crucial to extract as the maximum information as possible from experiment.
- From a bottom up approach we can place bound on the Yukawa coupling of the following EFT:

$$\mathcal{L}_Y = -m_i \bar{f}_L^i f_R^i - Y_{ij} (\bar{f}_L^i f_R^j) h + h.c. + \cdots$$

- In general $Y_{ij}
 eq rac{m_i}{v} \delta_{ij}$
- Possible deformations respect to the Standard Model:
 - I. Proportionality $Y_{ii} \neq \frac{m_i}{v}$
 - 2. Flavour Violation $Y_{ij} \neq 0$
 - 3. CP violation $\operatorname{Im}(Y_{ij}) \neq 0$

Coupling to the top quark

• SM ttH cross section at 13 TeV: **507 fb**: ~1/96th of ggH

G. Petrucciani, Moriond EW 2017

 small, but top quarks in the final state provide good handles to trigger and select the events

	ATLAS Run 2		2 CI	CMS Run 2		
bb	2.1	+1.0 -0.9	_	0.2	+0.8 -0.8	PAS HIG 16-038
multilep	2.5	+1.3 -1.1		1.5	+0.5 -0.5	PAS HIG 17-004 (35.9 fb -1)
γγ	-0.3	+1.2 -1.0		1.9	+1.5 -1.2	PAS HIG 16-020
48				0.0*	+1.2* -0.0*	PAS HIG 16-041 (35.9 fb -1)
comb.	1.8 ATLAS-CON	+0.7 -0.7 F-2016-068	1			L = 1 interval 0 constraint
	1 comb	•	2.3 ^{+1.2} _{-1.0}			

Status after Moriond EW

2nd, 3rd generation couplings

Measured signal strength μ and 95% CL limit on $\sigma \times$ Br relative to the SM expectation for $m_{\rm H}=125\,{\rm GeV}$:

Charm Yukawa

- 3fb⁻¹ HL-LHC could probe models of O(1) enhanced charm Yukawas
- compare with LHCb
 - present LHCb-CONF-2016-006 $(8 \text{ TeV}, 1.98 \text{fb}^{-1}): \kappa_c < 80$

• future HL-LHCb (13 TeV, 300fb⁻¹, simple scaling): $\kappa_c \leq 4$

using LHCb-CONF-2016-006+C.Parkes's talk

Flavour Violation

ullet If $Y_{ij}
eq 0$ various indirect probes have to be considered

Harnik, Kopp, Zupan 1209.1397

• Rate $h \to q_i q_j$ suppressed, also difficult to discriminate among jets of different flavour

Technique	Coupling	Constraint
70 - 11 [40]	$ y_{uc} ^2, y_{cu} ^2$	$< 1.0 \times 10^{-8}$
D^0 oscill. [48]	$\left y_{uc}y_{cu} ight $	$<1.5\times10^{-9}$
D0 age:11 [40]	$ y_{db} ^2, y_{bd} ^2$	$<4.6\times10^{-8}$
B_d^0 oscill. [48]	$\left y_{db}y_{bd} ight $	$<6.6\times10^{-9}$
D0 cas:11 [40]	$ y_{sb} ^2, y_{bs} ^2$	$<3.6\times10^{-6}$
B_s^0 oscill. [48]	$\left y_{sb}y_{bs} ight $	$<5.0\times10^{-7}$
	$\operatorname{Re}(y_{ds}^2), \operatorname{Re}(y_{sd}^2)$	$[-1.2\dots1.2] \times 10^{-9}$
K^0 oscill. [48]	$\mathrm{Im}(y_{ds}^2),\mathrm{Im}(y_{sd}^2)$	$[-5.8\dots 3.2]\times 10^{-12}$
	$\operatorname{Re}(y_{ds}^*y_{sd})$	$[-1.11.1] \times 10^{-10}$
	$\mathrm{Im}(y_{ds}^*y_{sd})$	$[-2.8\dots 5.6]\times 10^{-13}$

Flavour Violation

• If $Y_{ij} \neq 0$ various indirect probes have to be considered

Harnik, Kopp, Zupan 1209.1397

• Rate $h \to q_i q_j$ suppressed, also difficult to discriminate among jets of different flavour

Technique	Coupling	Constraint
D0 age:11 [49]	$ y_{uc} ^2$, $ y_{cu} ^2$	$< 1.0 \times 10^{-8}$
D^0 oscill. [48]	$\left y_{uc}y_{cu} ight $	$<1.5\times10^{-9}$
D0 ogg:11 [49]	$ y_{db} ^2, y_{bd} ^2$	$<4.6\times10^{-8}$
B_d^0 oscill. [48]	$\left y_{db}y_{bd} ight $	$<6.6\times10^{-9}$
B_s^0 oscill. [48]	$ y_{sb} ^2, y_{bs} ^2$	$<3.6\times10^{-6}$
D_s° OSCIII. [40]	$\left y_{sb}y_{bs} ight $	$<5.0\times10^{-7}$
	$\mathrm{Re}(y_{ds}^2),\mathrm{Re}(y_{sd}^2)$	$[-1.2 \dots 1.2] \times 10^{-9}$
K^0 oscill. [48]	$\mathrm{Im}(y_{ds}^2),\mathrm{Im}(y_{sd}^2)$	$[-5.8\dots 3.2]\times 10^{-12}$
A 08cm. [40]	$\operatorname{Re}(y_{ds}^*y_{sd})$	$[-1.1\dots 1.1]\times 10^{-10}$
	$\mathrm{Im}(y_{ds}^*y_{sd})$	$[-2.8\dots 5.6]\times 10^{-13}$

Bounds in the lepton sector

Channel	Coupling	Bound on coupling	Bound on BR	C.L.
$\mu \to e \gamma$	$\sqrt{ Y_{\mu e}^h ^2 + Y_{e\mu}^h ^2}$	3.6×10^{-6}	2.4×10^{-12}	90%
$\mu \to e \gamma$	$(Y_{\tau\mu}^h Y_{\tau e}^h ^2 + Y_{\mu\tau}^h Y_{e\tau}^h ^2)^{1/4}$	3.4×10^{-4}	2.4×10^{-12}	90%
$ au ightarrow e \gamma$	$\sqrt{ Y_{\tau e}^h ^2 + Y_{e\tau}^h ^2}$	0.014	3.3×10^{-8}	90%
$\tau \to \mu \gamma$	$\sqrt{ Y_{\tau\mu}^{h} ^2 + Y_{\mu\tau}^{h} ^2}$	0.016	4.4×10^{-8}	90%

Lepton Flavour Violation

ullet An interesting anomaly in the Higgs sector $h o au\mu$

• CMS :
$$Br(h \to \tau \mu) = (0.89 \pm 0.39)\%$$
 1502.07400

• ATLAS :
$$Br(h \to au\mu) = (0.53 \pm 0.51)\%$$

• Run 2 data, CMS
$$Br(h \to au\mu) < 1.20\% \quad (1.62\% \ {
m expected})$$
 CMS-PAS-HIG-16-005

Lepton Flavour Violation

ullet An interesting anomaly in the Higgs sector $h o au\mu$

• CMS : $Br(h \to \tau \mu) = (0.89 \pm 0.39)\%$ 1502.07400

• ATLAS : $Br(h \to au\mu) = (0.53 \pm 0.51)\%$

• Run 2 data, CMS $Br(h \rightarrow \tau \mu) < 1.20\%$ $(1.62\% \ \mathrm{expected})$

CMS-PAS-HIG-16-005

- Model building severely constricted by LFV radiative decay
- Only one motivated model survive: type III2HDM

Flavour Violation

Lepton Couplings

95% C.L. upper limits on BR [%]

CMS arXiv:1502.07400, arXiv:1607.03561, CMS-PAS-HIG-16-005 ATLAS arXiv:1508.03372, arXiv:1601.03567, arXiv:1604.07737 CMS arXiv:1410.2751, arXiv:1610.04857 ATLAS arXiv:1403.6293, arXiv:1509.06047

Quark Couplings

h t t

Both are sensitive to $|Y_{tq}|^2 + |Y_{qt}|^2$

Verena Martinez Outschoorn — March 19th, 2017

CP violation

• Indirect, example neutron/electron EDM

• T-violation

$$\mathcal{H}_{\text{eff}} = -\hat{c}\frac{\alpha}{\pi v}hF_{\mu\nu}F^{\mu\nu} - \frac{\tilde{c}}{2}\frac{\alpha}{\pi v}hF_{\mu\nu}\tilde{F}^{\mu\nu}$$

Direct

$$A_{CP}^{\ell^{i}\ell^{j}} \equiv \frac{\Gamma(h \to \ell^{i-}\ell^{j+}) - \Gamma(h \to \ell^{i+}\ell^{j-})}{\Gamma(h \to \ell^{i-}\ell^{j+}) + \Gamma(h \to \ell^{i+}\ell^{j-})}$$

Flavour and CP violating H decays

$$\Gamma(h_1 \to \tau^+ \mu^-) \times A_{CP}^{\mu\tau} \simeq -\frac{m_{h_1}}{64\pi^2} \theta_{12} \theta_{13} |Y_{\tau\mu}|^4 \times \sum_{\alpha=2,3} (-1)^{\alpha} \left[g\left(\frac{m_{h_1}^2}{m_{h_{\alpha}}^2 a}\right) + \frac{m_{h_1}^2}{m_{h_1}^2 - m_{h_{\alpha}}^2} \right]$$

Conclusions

- Structure of the Yukawa couplings calls for a (non-compulsory!)
 explanation
- Symmetries or dynamics could explain this pattern
- Possible anomalous effects in flavour observables might shed some light on the SM flavour puzzle
- The Higgs is now a new probe for flavour physics
- With Run 2 we are testing the Yukawa coupling of the SM (third family at 20-30%)

Predictions

We expect large effects coming from third families of leptons

- ullet Decay channels with taus are difficult to be reconstructed $b o s au^+ au^-$
- More interesting are channels with tau neutrinos in the final state

Buras et al. arXiv:1409.4557
$$R_K^{*\nu\nu} \equiv \frac{\mathcal{B}\left(B \to K^*\nu\overline{\nu}\right)}{\mathcal{B}\left(B \to K^*\nu\overline{\nu}\right)_{SM}} < 3.7, \qquad \textbf{Considering just} \quad B \to K^*\overline{\nu}_{\mu}\nu_{\mu} \text{ gives} \\ \Delta R_K^{(*)\nu\nu} < \text{ few } \% \\ R_K^{\nu\nu} \equiv \frac{\mathcal{B}\left(B \to K\nu\overline{\nu}\right)}{\mathcal{B}\left(B \to K\nu\overline{\nu}\right)_{SM}} < 4.0.$$

• Including ${
m BR}(B o K
u_{ au} \overline{
u}_{ au})$, large deviation $\ \Delta R^{(*)
u
u}_{\,
u} \sim 50\%$

Predictions

Rare Kaon decay

Hurt et al 0807.5039 NA62 1411.0109

$$\mathcal{B}(K^+ \to \pi^+ \nu \nu) = 8.6(9) \times 10^{-11} [1 + 0.96 \delta C_{\nu\bar{\nu}} + 0.24 (\delta C_{\nu\bar{\nu}})^2]$$

Present bound $\delta C_{\nu\bar{\nu}} \in [-6.3, 2.3]$

NA62 expected sensitivity $\delta C_{
u\bar{
u}} \in [-0.2, 0.2]$

Composite leptoquark prediction

$$\delta C_{\nu\bar{\nu}} = 0.62 \text{ Re}(c_{31}c_{32}^*) \left(\frac{g_{\rho}}{4\pi}\right) (\epsilon_3^q)^2 \left(\frac{M}{\text{TeV}}\right)^{-2}$$

ullet Radiative decay $\ \mu
ightarrow e \gamma$

$$|c_{23}^*c_{13}| < 1.4 \left(\frac{4\pi}{g_\rho}\right) \left(\frac{M}{\text{TeV}}\right)^2 \left(\frac{1}{\epsilon_3^q}\right)^2$$