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1. Radiative stability
2. Setting the values (theoretical prejudice: O(1) couplings)
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1. Radiative stability
2. Setting the values (theoretical prejudice: O(1) couplings)

• Stability of the Yukawa coupling is guaranteed by symmetries  
“We conjecture that the following dogma should be followed: 
at any scale M, a physical parameter a(M) is allowed to be very small if 
the replacement a(M)=0 would increase the symmetry of the system”  

[G. ’t Hooft, Proceedings NATO,1980]
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• Switching off the Yukawa YU , YD, YE ! 0

• Symmetry is increased,  values of  Yukawa couplings are technically natural

• (This is not the case for the Higgs Mass parameters)

• A possible approach to the SM Flavour Problem: don’t do anything

• More ambitious: understand this pattern in theories with parameters of the same 
size



Froggatt-Nielsen mechanism
• There is an Abelian symmetry that distinguishes the different families

• A scalar field (the flavon) is responsible for the spontaneous symmetry breaking of 
this symmetry

• An example with the 2HDM (adapted from 1605.00433)

A few examples of mechanisms that were proposed to explain the observed structure of the flavor
parameters are the following:

– An approximate Abelian symmetry (“The Froggatt-Nielsen mechanism" [46]);
– An approximate non-Abelian symmetry (see e.g. [47]);
– Conformal dynamics (“The Nelson-Strassler mechanism" [48]);
– Location in an extra dimension [49].

We will take as an example the Froggatt-Nielsen mechanism.

6.1 The Froggatt-Nielsen mechanism
Small numbers and hierarchies are often explained by approximate symmetries. For example, the small
mass splitting between the charged and neural pions finds an explanation in the approximate isospin
(global SU(2)) symmetry of the strong interactions.

Approximate symmetries lead to selection rules which account for the size of deviations from the
symmetry limit. Spurion analysis is particularly convenient to derive such selection rules. The Froggatt-
Nielsen mechanism postulates a U(1)H symmetry, that is broken by a small spurion ϵH . Without loss of
generality, we assign ϵH a U(1)H charge ofH(ϵH) = −1. Each SM field is assigned a U(1)H charge. In
general, different fermion generations are assigned different charges, hence the term ‘horizontal symme-
try.’ The rule is that each term in the Lagrangian, made of SM fields and the spurion should be formally
invariant under U(1)H .

The approximate U(1)H symmetry thus leads to the following selection rules:

Y u
ij = ϵ

|H(Q̄i)+H(Uj)+H(φu)|
H ,

Y d
ij = ϵ

|H(Q̄i)+H(Dj)+H(φd)|
H ,

Y e
ij = ϵ

|H(L̄i)+H(Ej)−H(φd)|
H . (64)

As a concrete example, we take the following set of charges:

H(Q̄i) = H(Ui) = H(Ei) = (2, 1, 0),

H(L̄i) = H(Di) = (0, 0, 0),

H(φu) = H(φd) = 0. (65)

It leads to the following parametric suppressions of the Yukawa couplings:

Y u ∼

⎛

⎝
ϵ4 ϵ3 ϵ2

ϵ3 ϵ2 ϵ
ϵ2 ϵ 1

⎞

⎠ , Y d ∼ (Y e)T ∼

⎛

⎝
ϵ2 ϵ2 ϵ2

ϵ ϵ ϵ
1 1 1

⎞

⎠ . (66)

We emphasize that for each entry we give the parametric suppression (that is the power of ϵ), but each
entry has an unknown (complex) coefficient of order one, and there are no relations between the order
one coefficients of different entries.

The structure of the Yukawa matrices dictates the parametric suppression of the physical observ-
ables:

Yt ∼ 1, Yc ∼ ϵ2, Yu ∼ ϵ4,

Yb ∼ 1, Ys ∼ ϵ, Yd ∼ ϵ2,

Yτ ∼ 1, Yµ ∼ ϵ, Ye ∼ ϵ2,
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• Afters spontaneous symmetry breaking 
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|Vus| ∼ ϵ, |Vcb| ∼ ϵ, |Vub| ∼ ϵ2, δKM ∼ 1. (67)

For ϵ ∼ 0.05, the parametric suppressions are roughly consistent with the observed hierarchy. In partic-
ular, this set of charges predicts that the down and charged lepton mass hierarchies are similar, while the
up hierarchy is the square of the down hierarchy. These features are roughly realized in Nature.

Exercise 13: Derive the parametric suppression and approximate numerical values of Y u, its
eigenvalues, and the three angles of V u

L , for H(Qi) = 4, 2, 0, H(Ui) = 3, 2, 0 and ϵH = 0.2

Could we explain any set of observed values with such an approximate symmetry? If we could,
then the FN mechanism cannot be really tested. The answer however is negative. Consider, for example,
the quark sector. Naively, we have 11 U(1)H charges that we are free to choose. However, the U(1)Y ×
U(1)B ×U(1)PQ symmetry implies that there are only 8 independent choices that affect the structure of
the Yukawa couplings. On the other hand, there are 9 physical parameters. Thus, there should be a single
relation between the physical parameters that is independent of the choice of charges. Assuming that the
sum of charges in the exponents of Eq. (64) is of the same sign for all 18 combinations, the relation is

|Vub| ∼ |VusVcb|, (68)

which is fulfilled to within a factor of 2. There are also interesting inequalities (here i < j):

|Vij | ∼> m(Ui)/m(Uj), m(Di)/m(Dj). (69)

All six inequalities are fulfilled. Finally, if we order the up and the down masses from light to heavy, then
the CKM matrix is predicted to be ∼ 1, namely the diagonal entries are not parametrically suppressed.
This structure is also consistent with the observed CKM structure.

6.2 The flavor of neutrinos
Five neutrino flavor parameters have been measured in recent years (see e.g. [50]): two mass-squared
differences,

∆m2
21 = (7.5 ± 0.2)× 10−5 eV2, |∆m2

32| = (2.5 ± 0.1) × 10−3 eV2, (70)

and the three mixing angles,

|Ue2| = 0.55 ± 0.01, |Uµ3| = 0.64 ± 0.02, |Ue3| = 0.15 ± 0.01. (71)

These parameters constitute a significant addition to the thirteen SM flavor parameters and provide, in
principle, tests of various ideas to explain the SM flavor puzzle.

The numerical values of the parameters show various surprising features:

– |Uµ3| > any |Vij |;
– |Ue2| > any |Vij|;
– |Ue3| is not particularly small (|Ue3| ̸≪ |Ue2Uµ3|);
– m2/m3 ∼> 1/6 > any mi/mj for charged fermions.

These features can be summarized by the statement that, in contrast to the charged fermions, neither
smallness nor hierarchy have been observed so far in the neutrino related parameters.

One way of interpretation of the neutrino data comes under the name of neutrino mass anarchy
[51–53]. It postulates that the neutrino mass matrix has no structure, namely all entries are of the same
order of magnitude. Normalized to an effective neutrino mass scale, v2/Λseesaw, the various entries are
random numbers of order one. Note that anarchy means neither hierarchy nor degeneracy.
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• How to test this idea?

• Afters spontaneous symmetry breaking 
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the quark sector. Naively, we have 11 U(1)H charges that we are free to choose. However, the U(1)Y ×
U(1)B ×U(1)PQ symmetry implies that there are only 8 independent choices that affect the structure of
the Yukawa couplings. On the other hand, there are 9 physical parameters. Thus, there should be a single
relation between the physical parameters that is independent of the choice of charges. Assuming that the
sum of charges in the exponents of Eq. (64) is of the same sign for all 18 combinations, the relation is

|Vub| ∼ |VusVcb|, (68)

which is fulfilled to within a factor of 2. There are also interesting inequalities (here i < j):

|Vij | ∼> m(Ui)/m(Uj), m(Di)/m(Dj). (69)

All six inequalities are fulfilled. Finally, if we order the up and the down masses from light to heavy, then
the CKM matrix is predicted to be ∼ 1, namely the diagonal entries are not parametrically suppressed.
This structure is also consistent with the observed CKM structure.

6.2 The flavor of neutrinos
Five neutrino flavor parameters have been measured in recent years (see e.g. [50]): two mass-squared
differences,

∆m2
21 = (7.5 ± 0.2)× 10−5 eV2, |∆m2

32| = (2.5 ± 0.1) × 10−3 eV2, (70)

and the three mixing angles,

|Ue2| = 0.55 ± 0.01, |Uµ3| = 0.64 ± 0.02, |Ue3| = 0.15 ± 0.01. (71)

These parameters constitute a significant addition to the thirteen SM flavor parameters and provide, in
principle, tests of various ideas to explain the SM flavor puzzle.

The numerical values of the parameters show various surprising features:

– |Uµ3| > any |Vij |;
– |Ue2| > any |Vij|;
– |Ue3| is not particularly small (|Ue3| ̸≪ |Ue2Uµ3|);
– m2/m3 ∼> 1/6 > any mi/mj for charged fermions.

These features can be summarized by the statement that, in contrast to the charged fermions, neither
smallness nor hierarchy have been observed so far in the neutrino related parameters.

One way of interpretation of the neutrino data comes under the name of neutrino mass anarchy
[51–53]. It postulates that the neutrino mass matrix has no structure, namely all entries are of the same
order of magnitude. Normalized to an effective neutrino mass scale, v2/Λseesaw, the various entries are
random numbers of order one. Note that anarchy means neither hierarchy nor degeneracy.
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Figure 6: Froggatt–Nielsen fields generating effective Yukawa couplings of Eq. (86).
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• Deviation from the Standard Model prediction in Higgs physics

We emphasize that the FN mechanism dictates only the parametric suppression. Each entry has an
arbitrary order one coefficient. The resulting parametric suppression of the masses and leptonic mixing
angles is given by [69]

mℓi/v ∼ ϵH(Ei)−H(Li)
H , |Uij| ∼ ϵ

H(Lj)−H(Li)
H . (90)

Since H(φ†φ) = 0, the entries of the matrix λ′ have the same parametric suppression as the
corresponding entries in λ [26], though the order one coefficients are different:

λ′ij = O(1)× λij. (91)

This structure allows us to estimate the entries of λ̂ij in terms of physical observables:

λ̂33 ∼ mτ/v,

λ̂22 ∼ mµ/v,

λ̂23 ∼ |U23|(mτ/v),

λ̂32 ∼ (mµ/v)/|U23|. (92)

We learn the following points about the Higgs-related lepton flavor parameters in this class of
models:

1. h has flavor off-diagonal couplings:

Yµτ = O
(
|U23|vmτ

Λ2

)
,

Yτµ = O
(

vmµ

|U23|Λ2

)
. (93)

2. The values of the diagonal couplings deviate from their SM values:

Yτ ≈
√
2mτ

v

[
1 +O

(
v2

Λ2

)]
. (94)

3. The ratio between the Yukawa couplings to different charged lepton flavors deviates from its SM
value:

Yµ

Yτ
=

mµ

mτ

[
1 +O

(
v2

Λ2

)]
. (95)

The predictions of the SM with FN-suppressed non-renormalizable terms are then the following:
(
σ(pp → h)SM

σ(pp → h)

Γtot

ΓSM
tot

)
Rτ+τ− = 1 +O(v2/Λ2),

Xµ+µ− = (mµ/mτ )
2(1 +O(v2/Λ2)),

Xτµ = O(v4/Λ4). (96)

Thus, FN will be excluded if experiments observe deviations from the SM of the same size in both
flavor-diagonal and flavor-changing h decays. On the other hand, FN allows non-universal deviations of
O(v2/Λ2) in the flavor-diagonal dilepton rates, and a smaller deviation of O(v4/Λ4) in the off-diagonal
rate.

23

We emphasize that the FN mechanism dictates only the parametric suppression. Each entry has an
arbitrary order one coefficient. The resulting parametric suppression of the masses and leptonic mixing
angles is given by [69]

mℓi/v ∼ ϵH(Ei)−H(Li)
H , |Uij| ∼ ϵ

H(Lj)−H(Li)
H . (90)

Since H(φ†φ) = 0, the entries of the matrix λ′ have the same parametric suppression as the
corresponding entries in λ [26], though the order one coefficients are different:

λ′ij = O(1)× λij. (91)

This structure allows us to estimate the entries of λ̂ij in terms of physical observables:

λ̂33 ∼ mτ/v,

λ̂22 ∼ mµ/v,

λ̂23 ∼ |U23|(mτ/v),

λ̂32 ∼ (mµ/v)/|U23|. (92)

We learn the following points about the Higgs-related lepton flavor parameters in this class of
models:

1. h has flavor off-diagonal couplings:

Yµτ = O
(
|U23|vmτ

Λ2

)
,

Yτµ = O
(

vmµ

|U23|Λ2

)
. (93)

2. The values of the diagonal couplings deviate from their SM values:

Yτ ≈
√
2mτ

v

[
1 +O

(
v2

Λ2

)]
. (94)

3. The ratio between the Yukawa couplings to different charged lepton flavors deviates from its SM
value:

Yµ

Yτ
=

mµ

mτ

[
1 +O

(
v2

Λ2

)]
. (95)

The predictions of the SM with FN-suppressed non-renormalizable terms are then the following:
(
σ(pp → h)SM

σ(pp → h)

Γtot

ΓSM
tot

)
Rτ+τ− = 1 +O(v2/Λ2),

Xµ+µ− = (mµ/mτ )
2(1 +O(v2/Λ2)),

Xτµ = O(v4/Λ4). (96)

Thus, FN will be excluded if experiments observe deviations from the SM of the same size in both
flavor-diagonal and flavor-changing h decays. On the other hand, FN allows non-universal deviations of
O(v2/Λ2) in the flavor-diagonal dilepton rates, and a smaller deviation of O(v4/Λ4) in the off-diagonal
rate.

23

 1. Flavour violation

2. Different diagonal couplings 

We emphasize that the FN mechanism dictates only the parametric suppression. Each entry has an
arbitrary order one coefficient. The resulting parametric suppression of the masses and leptonic mixing
angles is given by [69]

mℓi/v ∼ ϵH(Ei)−H(Li)
H , |Uij| ∼ ϵ

H(Lj)−H(Li)
H . (90)

Since H(φ†φ) = 0, the entries of the matrix λ′ have the same parametric suppression as the
corresponding entries in λ [26], though the order one coefficients are different:

λ′ij = O(1)× λij. (91)

This structure allows us to estimate the entries of λ̂ij in terms of physical observables:

λ̂33 ∼ mτ/v,

λ̂22 ∼ mµ/v,

λ̂23 ∼ |U23|(mτ/v),

λ̂32 ∼ (mµ/v)/|U23|. (92)

We learn the following points about the Higgs-related lepton flavor parameters in this class of
models:

1. h has flavor off-diagonal couplings:

Yµτ = O
(
|U23|vmτ

Λ2

)
,

Yτµ = O
(

vmµ

|U23|Λ2

)
. (93)

2. The values of the diagonal couplings deviate from their SM values:

Yτ ≈
√
2mτ

v

[
1 +O

(
v2

Λ2

)]
. (94)

3. The ratio between the Yukawa couplings to different charged lepton flavors deviates from its SM
value:

Yµ

Yτ
=

mµ

mτ

[
1 +O

(
v2

Λ2

)]
. (95)

The predictions of the SM with FN-suppressed non-renormalizable terms are then the following:
(
σ(pp → h)SM

σ(pp → h)

Γtot

ΓSM
tot

)
Rτ+τ− = 1 +O(v2/Λ2),

Xµ+µ− = (mµ/mτ )
2(1 +O(v2/Λ2)),

Xτµ = O(v4/Λ4). (96)

Thus, FN will be excluded if experiments observe deviations from the SM of the same size in both
flavor-diagonal and flavor-changing h decays. On the other hand, FN allows non-universal deviations of
O(v2/Λ2) in the flavor-diagonal dilepton rates, and a smaller deviation of O(v4/Λ4) in the off-diagonal
rate.

23

[hep-ph/9502418]



Beyond the Abelian case
• The Effective Field Theory (EFT) approach to flavour symmetry is based on 

(i) a flavour group

(ii) a set of irreducible symmetry breaking terms (spurions)

U(1)FN ◆ G ◆ SU(3)5
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FIG. 1: Allowed region in the ρ, η plane. Superimposed are the individual constraints from charmless

semileptonic B decays (|Vub/Vcb|), mass differences in the B0 (∆md) and Bs (∆ms) neutral meson systems,

and CP violation in K → ππ (εK), B → ψK (sin 2β), B → ππ, ρπ, ρρ (α), and B → DK (γ). Taken from

[6].

follow this approach in Sect. V and VI in two well-motivated SM extensions. In this and the next

section we follow the second strategy, which is less predictive but also more general.

Assuming the new degrees to be heavier than SM fields, we can integrate them out and describe

NP effects by means of a generalization of the Fermi Theory. The SM Lagrangian becomes the

renormalizable part of a more general local Lagrangian which includes an infinite tower of operators

with dimension d > 4, constructed in terms of SM fields, suppressed by inverse powers of an effective

scale Λ > MW :

Leff = LSM +
∑ c(d)i

Λ(d−4)
O(d)

i (SM fields). (3.1)

This general bottom-up approach allows us to analyse all realistic extensions of the SM in terms of a

limited number of parameters (the coefficients of the higher-dimensional operators). The drawback

of this method is the impossibility to establish correlations of NP effects at low and high energies:

the scale Λ defines the cut-off of the effective theory. However, correlations among different low-

6

• Get O(1) prediction assuming the full EFT is formally invariant with respect to the 
flavour symmetry

cdi = cdi (Xi)
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• Minimal Flavour Violation (MFV) is a special case of this approach.

G = SU(3)QL ⇥ SU(3)UR ⇥ SU(3)dR ⇥ SU(3)LL ⇥ SU(3)ER

Xi = YU , YD, YE

( )
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• Deviation in Higgs flavour observable are typically small, observable effects require a 
scale of New Physics to be very low
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Partial Compositeness in CH models
• Yukawa sector:
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Figure 3: The contribution from the exchange of heavy modes to the Yukawas and to the FCNC operators.

the estimates that follow). The way out is again MFV, i.e. the conditions Y u
1 ⇤ Y u

3 ⇤ . . . and similarly

for the downs. Interestingly, this can be automatically enforced in PNGB composite Higgs models where

selection rules of the global group G can imply, at lowest order in the proto-Yukawa couplings, a factorized

flavor structure [11]

q̄L
�
Y u
1 H̃Fu(H

†H/f2)
⇥
uR + q̄L

�
Y d
1 HFd(H

†H/f2)
⇥
dR + h.c. . (16)

This feature eliminates the leading contribution to Higgs-mediated FCNC.

Now, in the composite 2HDM the issues exemplified by eq. (14) and eq. (15) will both be present, but

at the same time one will be able to rely, as explained above, on both, discrete symmetries or ansätze

and on G selection rules. Let us discuss in more detail how these mechanisms work and protect from

Higgs-mediated flavor transitions. As previously explained, the SM fermions are coupled linearly to the

strong sector through fermionic composite operators OfL,fR . The latter describe couplings at microscopic

scales, where the breaking G ⇥ H can be neglected, and therefore correspond to some representations of

G that we denote, respectively, as rL and rR. For one generation, eq. (2) can be rewritten more explicitly

as

Lmix = (f̄L)�(yL
�)IfLOIfL

+ (f̄R)(yR)
IfROIfR

+ h.c. , (17)

where the IfL and IfR indices of yL,R are in the conjugate representation of rL,R while � denotes the

SM SU(2)L-doublet index. As the notation suggests, in eq. (17) we have uplifted the yL,R couplings to

representations (spurions) of the G� SU(2)W � U(1)Y . This will allow us to exploit fully the constraints

from G-invariance.

Adding flavor to eq. (17), amounts to adding an index i to fL, yL, yR, OIfL
, OIfR

. Notice that in general

there is no notion of orthogonality for the composite operators, meaning that the correlator ⌃Oi
IfL

Oj
IfL

⌥ is
in general non zero for any i, j pair (similarly for Oi

IfR
). E�ective Yukawa couplings, in principle of the

general form of eqs. (14) and (15), arise at low energy via the exchange of the heavy modes excited by

OfL,fR – see fig. 3. By applying power counting as depicted in the figure, we expect for the Y ij
1 , Y ij

2 and

13

Lelem = if�µDµf

L
comp

= L
comp

(g⇢, m⇢, H)

L
mix

= ✏L fLOL + ✏L fROR + h.c.

Y ij ⇠ ✏i
L✏j

Rg⇢Y ij = cij ✏i
L✏j

R g⇢

Georgi, Kaplan (1984)
Contino, 1005.4269 
Bellazzini, Csaki, Serra 1401.2457
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Figure 3: The contribution from the exchange of heavy modes to the Yukawas and to the FCNC operators.

the estimates that follow). The way out is again MFV, i.e. the conditions Y u
1 ⇤ Y u

3 ⇤ . . . and similarly

for the downs. Interestingly, this can be automatically enforced in PNGB composite Higgs models where

selection rules of the global group G can imply, at lowest order in the proto-Yukawa couplings, a factorized

flavor structure [11]

q̄L
�
Y u
1 H̃Fu(H

†H/f2)
⇥
uR + q̄L

�
Y d
1 HFd(H

†H/f2)
⇥
dR + h.c. . (16)

This feature eliminates the leading contribution to Higgs-mediated FCNC.

Now, in the composite 2HDM the issues exemplified by eq. (14) and eq. (15) will both be present, but

at the same time one will be able to rely, as explained above, on both, discrete symmetries or ansätze

and on G selection rules. Let us discuss in more detail how these mechanisms work and protect from
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IfROIfR

+ h.c. , (17)
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SM SU(2)L-doublet index. As the notation suggests, in eq. (17) we have uplifted the yL,R couplings to

representations (spurions) of the G� SU(2)W � U(1)Y . This will allow us to exploit fully the constraints

from G-invariance.

Adding flavor to eq. (17), amounts to adding an index i to fL, yL, yR, OIfL
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IfL
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IfR
). E�ective Yukawa couplings, in principle of the

general form of eqs. (14) and (15), arise at low energy via the exchange of the heavy modes excited by

OfL,fR – see fig. 3. By applying power counting as depicted in the figure, we expect for the Y ij
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Mixing parameters
• Mixing parameters are related to values of fermion masses and mixing

⇥ai to reproduce the SM masses and would thus lead to larger e⇥ects in flavor-violating processes,
e.g. in meson-meson mixing. We will emphasize in section 3 that in order to avoid danger-
ous tree-level Higgs corrections to �F = 2 processes it helps to realize the Higgs as a pseudo
Nambu-Goldstone boson (NGB) of the strong sector.

The NDA Lagrangian (2.2) predicts the following structure for the SM Yukawa matrices of the
up and down quarks:

(Yu)ij ⇥ g⇥⇥
q
i ⇥

u
j , (Yd)ij ⇥ g⇥⇥

q
i ⇥

d
j . (2.4)

(We use ⇥ throughout the text to indicate that the equalities hold up to unknown O(1) matrices
in flavor space.) Eq. (2.4) suggests that the non-trivial hierarchies of the SM fermion masses could
follow from hierarchical mixing parameters ⇥ai , as anticipated above. Taking as a phenomenological
input ⇥a1 < ⇥a3 < ⇥a3, and keeping only the leading terms in the expansion, the Yukawa matrices can
be straightforwardly diagonalized by unitary matrices:

(Lu)ij ⇥ (Ld)ij ⇥ min

�
⇥qi
⇥qj
,
⇥qj
⇥qi

⇥
, (Ru,d)ij ⇥ min

⇤
⇥u,di

⇥u,dj

,
⇥u,dj

⇥u,di

⌅
. (2.5)

The resulting quark masses, renormalized at the scale m⇥, read mu,d
i = yu,di v, with:

(L†
uYuRu)ij = g⇥⇥

u
i ⇥

q
i �ij � yui �ij , (L†

dYdRd)ij = g⇥⇥
d
i ⇥

q
i �ij � ydi �ij , (2.6)

and v(mZ) ⇤ 174 GeV.
Furthermore, noticing that VCKM = L†

dLu ⇥ Lu,d we see that the present framework can
naturally explain the hierarchical structure of the mixing matrix provided that:

⇥q1
⇥q2

⇥ ⇤
⇥q2
⇥q3

⇥ ⇤2 ⇥q1
⇥q3

⇥ ⇤3, (2.7)

where ⇤ ⇤ 0.22 is the Cabibbo angle. In the following we assume that the approximate equalities
in (2.7) hold. With these identifications the mixing parameters of the left-handed quarks are
completely determined up to an overall normalization factor, whereas the ⇥u,di ’s are constrained
by (2.6):

⇥u,di

⇥u,dj

=
yu,di

yu,dj

⇥qj
⇥qi
. (2.8)

We are thus left with two free parameters that can be ⇥q3 and ⇥u3 or equivalently one of the two
and g⇥.

The above discussion generalizes to the lepton sector, with the important di⇥erence that the
neutrinos are much lighter than the charged leptons. As a consequence, it is plausible that the
neutrino masses come from a di⇥erent source, and there is more arbitrariness in the determination
of the ⇥ai ’s.

In fact there is overwhelming experimental evidence indicating that the mixing matrix VPMNS =
L†
eL� is non-hierarchical. Because this latter feature generically occurs whenever L� is anarchic,

and whatever the structure of the charged lepton matrix is, we argue that in order to accommo-
date current data in the lepton sector it su⇧ces to generate hierarchical Yukawa couplings for the
charged leptons:

(Ye)ij ⇥ g⇥⇥
↵
i⇥

e
j , (2.9)

3• In the lepton sector parameters cannot be univocally connected to physical inputs, due to 
our ignorance on neutrino masses, will assume that left and right mixing have similar size

Fermion Mass

e 0.487 MeV

µ 103 MeV

⌧ 1.78 GeV

d 2.50+1.08
�1.03 MeV

s 47+14
�13 MeV

b 2.43± 0.08 GeV

u 1.10+0.43
�0.37 MeV

c 0.53± 0.07 GeV

t 150.7± 3.4 GeV

Figure 1. Values of running fermion masses at the scale µ = 1 TeV [40].

Mixing Parameter Value

✏q1 = �3✏q3 1.15⇥ 10�2 ✏q3
✏q2 = �2✏q3 5.11⇥ 10�2 ✏q3

✏u1 = mu
vg⇢

1
�3✏q3

5.48⇥ 10�4/(g⇢✏
q
3)

✏u2 = mc
vg⇢

1
�2✏q3

5.96⇥ 10�2/(g⇢✏
q
3)

✏u3 = mt
vg⇢

1
✏q3

0.866/(g⇢✏
q
3)

✏d1 = md
vg⇢

1
�3✏q3

1.24⇥ 10�3/(g⇢✏
q
3)

✏d2 = ms
vg⇢

1
�2✏q3

5.29⇥ 10�3/(g⇢✏
q
3)

✏d3 = mb
vg⇢

1
✏q3

1.40⇥ 10�2(g⇢✏
q
3)

✏`1 = ✏e1 =
⇣

me
g⇢v

⌘1/2
1.67⇥ 10�3/g1/2⇢

✏`2 = ✏e2 =
⇣
mµ

g⇢v

⌘1/2
2.43⇥ 10�2/g1/2⇢

✏`3 = ✏e3 =
⇣

m⌧
g⇢v

⌘1/2
0.101/g1/2⇢

Figure 2. Partial compositeness mixing parameters and values.

Evidently, this condition is implied by (but does not imply) our assumption that the left

and right leptonic mixings are equal.

In this way, we are able to fix all parameters in the lepton sector in terms of g⇢, and so

all the NP e↵ects of the model are parameterized by M , g⇢, and ✏3q . The phenomenological

inputs and the expressions of the various mixing parameters are summarised in Figs. 1

and 2.

We may now determine the leptoquark couplings, as follows. Similarly to [41], below the

scale of the strongly-coupled resonances we can describe the low energy physics by an
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⇥ai to reproduce the SM masses and would thus lead to larger e⇥ects in flavor-violating processes,
e.g. in meson-meson mixing. We will emphasize in section 3 that in order to avoid danger-
ous tree-level Higgs corrections to �F = 2 processes it helps to realize the Higgs as a pseudo
Nambu-Goldstone boson (NGB) of the strong sector.

The NDA Lagrangian (2.2) predicts the following structure for the SM Yukawa matrices of the
up and down quarks:

(Yu)ij ⇥ g⇥⇥
q
i ⇥

u
j , (Yd)ij ⇥ g⇥⇥

q
i ⇥

d
j . (2.4)

(We use ⇥ throughout the text to indicate that the equalities hold up to unknown O(1) matrices
in flavor space.) Eq. (2.4) suggests that the non-trivial hierarchies of the SM fermion masses could
follow from hierarchical mixing parameters ⇥ai , as anticipated above. Taking as a phenomenological
input ⇥a1 < ⇥a3 < ⇥a3, and keeping only the leading terms in the expansion, the Yukawa matrices can
be straightforwardly diagonalized by unitary matrices:

(Lu)ij ⇥ (Ld)ij ⇥ min

�
⇥qi
⇥qj
,
⇥qj
⇥qi

⇥
, (Ru,d)ij ⇥ min

⇤
⇥u,di

⇥u,dj

,
⇥u,dj

⇥u,di

⌅
. (2.5)

The resulting quark masses, renormalized at the scale m⇥, read mu,d
i = yu,di v, with:

(L†
uYuRu)ij = g⇥⇥

u
i ⇥

q
i �ij � yui �ij , (L†

dYdRd)ij = g⇥⇥
d
i ⇥

q
i �ij � ydi �ij , (2.6)

and v(mZ) ⇤ 174 GeV.
Furthermore, noticing that VCKM = L†

dLu ⇥ Lu,d we see that the present framework can
naturally explain the hierarchical structure of the mixing matrix provided that:

⇥q1
⇥q2

⇥ ⇤
⇥q2
⇥q3

⇥ ⇤2 ⇥q1
⇥q3

⇥ ⇤3, (2.7)

where ⇤ ⇤ 0.22 is the Cabibbo angle. In the following we assume that the approximate equalities
in (2.7) hold. With these identifications the mixing parameters of the left-handed quarks are
completely determined up to an overall normalization factor, whereas the ⇥u,di ’s are constrained
by (2.6):

⇥u,di

⇥u,dj

=
yu,di

yu,dj

⇥qj
⇥qi
. (2.8)

We are thus left with two free parameters that can be ⇥q3 and ⇥u3 or equivalently one of the two
and g⇥.

The above discussion generalizes to the lepton sector, with the important di⇥erence that the
neutrinos are much lighter than the charged leptons. As a consequence, it is plausible that the
neutrino masses come from a di⇥erent source, and there is more arbitrariness in the determination
of the ⇥ai ’s.

In fact there is overwhelming experimental evidence indicating that the mixing matrix VPMNS =
L†
eL� is non-hierarchical. Because this latter feature generically occurs whenever L� is anarchic,

and whatever the structure of the charged lepton matrix is, we argue that in order to accommo-
date current data in the lepton sector it su⇧ces to generate hierarchical Yukawa couplings for the
charged leptons:

(Ye)ij ⇥ g⇥⇥
↵
i⇥

e
j , (2.9)

3

⇥ai to reproduce the SM masses and would thus lead to larger e⇥ects in flavor-violating processes,
e.g. in meson-meson mixing. We will emphasize in section 3 that in order to avoid danger-
ous tree-level Higgs corrections to �F = 2 processes it helps to realize the Higgs as a pseudo
Nambu-Goldstone boson (NGB) of the strong sector.

The NDA Lagrangian (2.2) predicts the following structure for the SM Yukawa matrices of the
up and down quarks:

(Yu)ij ⇥ g⇥⇥
q
i ⇥

u
j , (Yd)ij ⇥ g⇥⇥

q
i ⇥

d
j . (2.4)

(We use ⇥ throughout the text to indicate that the equalities hold up to unknown O(1) matrices
in flavor space.) Eq. (2.4) suggests that the non-trivial hierarchies of the SM fermion masses could
follow from hierarchical mixing parameters ⇥ai , as anticipated above. Taking as a phenomenological
input ⇥a1 < ⇥a3 < ⇥a3, and keeping only the leading terms in the expansion, the Yukawa matrices can
be straightforwardly diagonalized by unitary matrices:

(Lu)ij ⇥ (Ld)ij ⇥ min

�
⇥qi
⇥qj
,
⇥qj
⇥qi

⇥
, (Ru,d)ij ⇥ min

⇤
⇥u,di

⇥u,dj

,
⇥u,dj

⇥u,di

⌅
. (2.5)

The resulting quark masses, renormalized at the scale m⇥, read mu,d
i = yu,di v, with:

(L†
uYuRu)ij = g⇥⇥

u
i ⇥

q
i �ij � yui �ij , (L†

dYdRd)ij = g⇥⇥
d
i ⇥

q
i �ij � ydi �ij , (2.6)

and v(mZ) ⇤ 174 GeV.
Furthermore, noticing that VCKM = L†

dLu ⇥ Lu,d we see that the present framework can
naturally explain the hierarchical structure of the mixing matrix provided that:

⇥q1
⇥q2

⇥ ⇤
⇥q2
⇥q3

⇥ ⇤2 ⇥q1
⇥q3

⇥ ⇤3, (2.7)

where ⇤ ⇤ 0.22 is the Cabibbo angle. In the following we assume that the approximate equalities
in (2.7) hold. With these identifications the mixing parameters of the left-handed quarks are
completely determined up to an overall normalization factor, whereas the ⇥u,di ’s are constrained
by (2.6):

⇥u,di

⇥u,dj

=
yu,di

yu,dj

⇥qj
⇥qi
. (2.8)

We are thus left with two free parameters that can be ⇥q3 and ⇥u3 or equivalently one of the two
and g⇥.

The above discussion generalizes to the lepton sector, with the important di⇥erence that the
neutrinos are much lighter than the charged leptons. As a consequence, it is plausible that the
neutrino masses come from a di⇥erent source, and there is more arbitrariness in the determination
of the ⇥ai ’s.

In fact there is overwhelming experimental evidence indicating that the mixing matrix VPMNS =
L†
eL� is non-hierarchical. Because this latter feature generically occurs whenever L� is anarchic,

and whatever the structure of the charged lepton matrix is, we argue that in order to accommo-
date current data in the lepton sector it su⇧ces to generate hierarchical Yukawa couplings for the
charged leptons:

(Ye)ij ⇥ g⇥⇥
↵
i⇥

e
j , (2.9)

3

• In the quarks sector everything is fixed up to 2 parameters, (g⇢, ✏
q
3)
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L = ✏ifiOi + . . .
2 Partial Compositeness

Let us start by briefly reviewing the paradigm of Partial Compositeness, and how this idea can
be used to explain the SM flavor hierarchy. The basic assumption is that at the UV cuto⇤ ⇥UV

the SM fermions fa
i couple linearly to operators Oa

i of a confining, flavorful sector:

⇤a
i f

a
i Oa

i , (2.1)

where hereafter a, b, · · · = q, u, d, ↵, e and i, j, · · · = 1, 2, 3 denote flavor and family indices, respec-
tively. In addition to (2.1) the two sectors communicate via the weak gauging of the SM group,
taken to be a subgroup of the chiral symmetry of the new dynamics.

Using naive dimensional analysis (NDA), and adopting the notation of [35], one finds that
the low energy e⇤ective Lagrangian renormalized at the confinement scale m⇤ of the flavor sector
schematically reads:

LNDA =
m4

⇤

g2⇤

⇧
L(0)

⇤
g⇤⇥ai f

a
i

m3/2
⇤

,
Dµ

m⇤
,
g⇤H

m⇤

⌅
+

g2⇤
16⌅2

L(1)

⇤
g⇤⇥ai f

a
i

m3/2
⇤

,
Dµ

m⇤
,
g⇤H

m⇤

⌅
+ . . .

⌃
(2.2)

where ⇤a
i (m⇤) = g⇤⇥ai , and the L(n)’s are O(1) functions.

The form (2.2) follows from the assumption that the only mass scale of the problem is m⇤

and that all the couplings among the resonances of the flavor sector can be parametrized by a
single parameter g⇤. One can equivalently derive (2.2) by first matching the UV theory with a low
energy Lagrangian for the composites of masses ⇥ m⇤. In this case the leading term L(0) would
arise from the tree-level exchange of the resonances, whereas the remainder from loop processes.

While in generic theories L(0) already contains all possible operators compatible with the
symmetries, it turns out that in all known tractable realizations the resonance spectrum is such
that the dipole operators first arise at 1-loop from L(1). In the following we will assume this is the
case.

The spurions ⇥ai � 1 measure the amount of compositeness of the field fa
i , and are such that

for ⇥ai ⇥ 1 the corresponding SM fermion can be interpreted as a fully composite, massless state.
We will see shortly that the SM mass hierarchy can elegantly arise in theories where the ⇥ai ’s are
hierarchical. One can justify the existence of a hierarchy among the flavor-violating parameters
⇥ai if one postulates that the operators Oa

i have large, flavor-dependent scaling dimensions �a
i =

5/2 + �ai ⇥ 5/2 at the UV cuto⇤. In this case we expect:

g⇤⇥
a
i = ⇤a

i (m⇤) ⇥ ⇤a
i (⇥UV)

�
m⇤

⇥UV

⇥�ai

, (2.3)

and hence for �ai = O(1) hierarchical relations can arise in the deep IR even when the ⇤a
i ’s

are generic, anarchic matrices in the UV. More generally, a controllable explanation of the SM
fermion hierarchy can only be given when ⇥UV ⇤ m⇤, since when ⇥UV ⇥ m⇤ the hierarchy merely
represents an assumption on the unknown cuto⇤ theory rather than a prediction of the framework.

In general, also the Higgs doublet should be accompanied by the corresponding “composite-
ness” parameter ⇥H . This quantity does not appear in LNDA since we have taken H to be fully
composite, and accordingly set ⇥H = 1 in (2.2). From a genuinely phenomenological perspective,
the assumption of a weakly coupled Higgs at the scale m⇤ would require larger mixing parameters

2

• Use Naive Dimensional Analysis to estimate the Wilson Coefficients:

✏i (µ) ⇠ ✏i (⇤)
⇣µ

⇤

⌘�Oi�5/2

✏1 ⌧ ✏2 ⌧ ✏3
natural explanation of flavor hierarchy!

✏i = O(1)
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• A leptoquark interpretation

• Quantum number of the new states, uniquely 
determined  by the the Left-Left structure

⇧ ⇠ (3,3, 1/3)

�ij/(cijg
1/2
⇢ ✏q3) j = 1 j = 2 j = 3

i = 1 1.92⇥ 10�5 8.53⇥ 10�5 1.67⇥ 10�3

i = 2 2.80⇥ 10�4 1.24⇥ 10�3 2.43⇥ 10�2

i = 3 1.16⇥ 10�3 5.16⇥ 10�3 0.101

Figure 3. Values of leptoquark couplings, �ij , where i denotes the lepton generation label and j
the quark generation label.

e↵ective field theory (EFT) of the form

L =
m4

⇢

g2⇢
L(0)

 
g⇢✏ai f

a
i

m3/2
⇢

,
Dµ

m⇢
,
g⇢H

m⇢
,
g⇢⇧

m⇢

!
. (3.6)

In the strongly-coupled, UV theory we expect the presence of an operator of the form

g⇢⇧OLOQ, where OQ (or OL) is a composite operator with the same quantum numbers as

a SM quark (or lepton). Below the scale m⇢, this operator generates a contribution to L
of the form ⇠ g⇢✏`i✏

q
j⇧`iqj . At low energies, the renormalizable lagrangian of the model is

L = LSM + (Dµ⇧)†Dµ⇧�M2⇧†⇧+ �ij q
c
Lji⌧2⌧a`Li⇧+ h.c., (3.7)

with �ij = g⇢cij✏
q
i ✏

`
j , where we have omitted quartic terms involving H and ⇧ that are not

relevant to our discussion. Note that we have explicitly re-introduced the cij parameters

that are expected to be of O(1), but are otherwise unknown. We summarise the values of

the leptoquark couplings in Fig. 3.

3.2 Coset structure

Here we supply a coset space construction that gives rise to the required SM quantum

numbers for the Higgs and leptoquark fields. First we describe the pattern of spontaneous

breaking of the symmetry of the strong sector G/H, and the embedding of the SM gauge

group SU(3)C ⇥ SU(2)L ⇥U(1)Y therein. We then discuss additional symmetry structure

required to avoid constraints from nucleon decay and neutron-antineutron oscillations.

To build a coset, we start from the minimal composite Higgs model [10], in which

a single SM Higgs doublet arises from the spontaneous breaking of SO(5) to SU(2)H ⇥
SU(2)R, with H transforming as a (2,2) of the unbroken subgroup. We must now enlarge

the coset space somehow to include the leptoquark ⇧ and its conjugate ⇧†. To see how

this may be achieved, consider first a model with just the leptoquark and no Higgs boson.

This can be achieved using SO(9) broken to SU(4) ⇥ SU(2)⇧. The 6 Goldstone bosons,

(⇧,⇧†), transform as (6,3).

Now form the direct product of SO(5) and SO(9) and consider the coset space

SO(9)⇥ SO(5)

SU(4)⇥ SU(2)⇧ ⇥ SU(2)H ⇥ SU(2)R
. (3.8)

This has, of course, the same Goldstone boson content as the two models above. The trick

is to somehow embed the SM gauge group in H so as to get the right charges for H and ⇧.
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• Anomalies are fitted when 

• Just two, non-vanishing leptoquark coupling

• Scale of New Physics not predicted

�bµ�sµ

m2
⇧

⇡ 1
(30 TeV)2

• No connection with FV in the SM

b! s``



Flavour Violation & Leptoquarks
• Partial compositeness predicts the strength of the couplings
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In the strongly-coupled, UV theory we expect the presence of an operator of the form

g⇢⇧OLOQ, where OQ (or OL) is a composite operator with the same quantum numbers as

a SM quark (or lepton). Below the scale m⇢, this operator generates a contribution to L
of the form ⇠ g⇢✏`i✏

q
j⇧`iqj . At low energies, the renormalizable lagrangian of the model is

L = LSM + (Dµ⇧)†Dµ⇧�M2⇧†⇧+ �ij q
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3.2 Coset structure

Here we supply a coset space construction that gives rise to the required SM quantum

numbers for the Higgs and leptoquark fields. First we describe the pattern of spontaneous

breaking of the symmetry of the strong sector G/H, and the embedding of the SM gauge

group SU(3)C ⇥ SU(2)L ⇥U(1)Y therein. We then discuss additional symmetry structure

required to avoid constraints from nucleon decay and neutron-antineutron oscillations.

To build a coset, we start from the minimal composite Higgs model [10], in which

a single SM Higgs doublet arises from the spontaneous breaking of SO(5) to SU(2)H ⇥
SU(2)R, with H transforming as a (2,2) of the unbroken subgroup. We must now enlarge

the coset space somehow to include the leptoquark ⇧ and its conjugate ⇧†. To see how

this may be achieved, consider first a model with just the leptoquark and no Higgs boson.

This can be achieved using SO(9) broken to SU(4) ⇥ SU(2)⇧. The 6 Goldstone bosons,
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Now form the direct product of SO(5) and SO(9) and consider the coset space
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This has, of course, the same Goldstone boson content as the two models above. The trick

is to somehow embed the SM gauge group in H so as to get the right charges for H and ⇧.
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Figure 3. Values of leptoquark couplings, �ij , where i denotes the lepton generation label and j
the quark generation label.

e↵ective field theory (EFT) of the form

L =
m4

⇢

g2⇢
L(0)

 
g⇢✏ai f

a
i

m3/2
⇢

,
Dµ

m⇢
,
g⇢H

m⇢
,
g⇢⇧

m⇢

!
. (3.6)

In the strongly-coupled, UV theory we expect the presence of an operator of the form

g⇢⇧OLOQ, where OQ (or OL) is a composite operator with the same quantum numbers as

a SM quark (or lepton). Below the scale m⇢, this operator generates a contribution to L
of the form ⇠ g⇢✏`i✏

q
j⇧`iqj . At low energies, the renormalizable lagrangian of the model is

L = LSM + (Dµ⇧)†Dµ⇧�M2⇧†⇧+ �ij q
c
Lji⌧2⌧a`Li⇧+ h.c., (3.7)

with �ij = g⇢cij✏
q
i ✏

`
j , where we have omitted quartic terms involving H and ⇧ that are not

relevant to our discussion. Note that we have explicitly re-introduced the cij parameters

that are expected to be of O(1), but are otherwise unknown. We summarise the values of

the leptoquark couplings in Fig. 3.

3.2 Coset structure

Here we supply a coset space construction that gives rise to the required SM quantum

numbers for the Higgs and leptoquark fields. First we describe the pattern of spontaneous

breaking of the symmetry of the strong sector G/H, and the embedding of the SM gauge

group SU(3)C ⇥ SU(2)L ⇥U(1)Y therein. We then discuss additional symmetry structure

required to avoid constraints from nucleon decay and neutron-antineutron oscillations.

To build a coset, we start from the minimal composite Higgs model [10], in which

a single SM Higgs doublet arises from the spontaneous breaking of SO(5) to SU(2)H ⇥
SU(2)R, with H transforming as a (2,2) of the unbroken subgroup. We must now enlarge

the coset space somehow to include the leptoquark ⇧ and its conjugate ⇧†. To see how

this may be achieved, consider first a model with just the leptoquark and no Higgs boson.

This can be achieved using SO(9) broken to SU(4) ⇥ SU(2)⇧. The 6 Goldstone bosons,

(⇧,⇧†), transform as (6,3).

Now form the direct product of SO(5) and SO(9) and consider the coset space

SO(9)⇥ SO(5)

SU(4)⇥ SU(2)⇧ ⇥ SU(2)H ⇥ SU(2)R
. (3.8)

This has, of course, the same Goldstone boson content as the two models above. The trick

is to somehow embed the SM gauge group in H so as to get the right charges for H and ⇧.

– 8 –

⇧
Leptonsp

Y`

`L

• c are O(1) parameters

• Only 3 fundamental parameters reduced to a single 
combination in all the flavour observable

(g⇢, ✏
q
3, M)! pg⇢✏

q
3/M

1412.5942, JHEP,
With B. Gripaios and S. Renner



A bottom up approach
• Regardless of any theoretical input/prejudice, it is crucial to extract as the maximum 
information as possible from experiment.

• From a  bottom up approach we can place bound on the Yukawa coupling of the 
following EFT:

large deviations from the SM do not require very exotic flavor structures. A branching ratio

for h ! ⌧µ comparable to the one for h ! ⌧⌧ , or a h ! µ+µ� branching ratio a few

times larger than in the SM can arise in many models of flavor (for instance in models with

continuous and/or discrete flavor symmetries [28], or in Randall-Sundrum models [29]) as

long as there is new physics at the electroweak scale and not just the SM. The lepton flavor

violating decay h ! ⌧µ has been studied in [11], and it was found that the branching ratio

for this decay can be up to 10% in certain Two Higgs Doublet Models (2HDMs).

In fact, there may already be experimental hints that the Higgs couplings to fermions

may not be SM-like. For instance, the BaBar collaboration recently announced a 3.4�

indication of flavor universality violation in b ! c⌧⌫ transitions [30], which can be explained

for instance by an extended Higgs sector with nontrivial flavor structure [31].

The paper is organized as follows. In Sec. II we introduce the theoretical framework we

will use to parameterize the flavor violating decays of the Higgs. In Sec. III we derive bounds

on flavor violating Higgs couplings to leptons and translate these bounds into limits on the

Higgs decay branching fractions to the various flavor violating final states. In Sec. IV we

do the same for flavor violating couplings to quarks. We shall see that decays of the Higgs

to ⌧µ and to ⌧e with sizeable branching fractions are allowed, and that also flavor violating

couplings of the Higgs to top quarks are only weakly constrained. Motivated by this we

turn to the LHC in Section V and estimate the current bounds on Higgs decays to ⌧µ and

⌧e using data from an existing h ! ⌧⌧ search. We also discuss a strategy for a dedicated

h ! ⌧µ search and comment on di↵erences with the SM h ! ⌧⌧ searches. We will see

that the LHC can make significant further progress in probing the Higgs’ flavor violating

parameters space with existing data. We conclude in Section VI. In the appendices, we give

more details on the calculation of constraints from low-energy observables.

II. THE FRAMEWORK

After electroweak symmetry breaking (EWSB) the fermionic mass terms and the cou-

plings of the Higgs boson to fermion pairs in the mass basis are in general

LY = �mif̄
i
Lf

i
R � Yij(f̄

i
Lf

j
R)h+ h.c.+ · · · , (1)
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• Possible deformations respect to the Standard Model :

Yij 6=
mi

v
�ij• In general 

1. Proportionality 

2. Flavour Violation 

3. CP violation

Yii 6=
mi

v

Yij 6= 0

Im(Yij) 6= 0



Coupling to the top quark

ttH production 
•  ttH production is the best direct way to probe the 

coupling between top quark and Higgs boson 
–  tree-level process, cross section prop. to λt

2 

–  complementary evidence to loop-induced ggH,   
which in the SM is also dominated by the λt

2  
contribution from the top quark loop 

•  SM ttH cross section at 13 TeV: 507 fb: ~1/96th of ggH 
–  small, but top quarks in the final state provide  

good handles to trigger and select the events 

Moriond EWK, 2017 G. Petrucciani (CERN) 2 

λq λt 

G. Petrucciani,
Moriond EW 2017

Moriond EWK, 2017 G. Petrucciani (CERN) 22 

ATLAS Run 2 CMS Run 2 

bb 2.1 +1.0 −0.2 +0.8 
−0.9 −0.8 

multilep 2.5 +1.3 1.5 +0.5 
−1.1 −0.5 

γγ −0.3 +1.2 1.9 +1.5 
−1.0 −1.2 

4ℓ 0.0 +1.2* 
−0.0* 

comb. 1.8 
+0.7 
−0.7 

Run1 comb. 2.3 +1.2 
−1.0 JHEP 08(2016) 045 

PAS HIG 
16-038 

PAS HIG 
17-004 

(35.9 fb−1) 

PAS HIG 
16-020 

PAS HIG 
16-041 

(35.9 fb−1) 

* 

(*)  −2ΔlnL = 1 interval  
with μ ≥ 0 constraint  ATLAS-CONF-2016-068 



Status after Moriond EW
2nd, 3rd generation couplings
Measured signal strength µ and 95% CL limit on � ⇥ Br relative to
the SM expectation for mH = 125 GeV:

CMS H ! µµ 7 + 8 TeV
[Phys. Lett. B 744 (2015) 184]

ATLAS+CMS H!µµ 7+8 TeV
[JHEP08(2016)045]

ATLAS H!µµ 7 + 8 + 13 TeV
[ATLAS-CONF-2017-014]

0.8+3.5
�3.4

0.1 ± 2.5

�0.13 ± 1.4

< 7.4

< 2.8

ATLAS H ! ⌧⌧ 7 + 8 TeV
[JHEP 04 (2015) 117]

CMS H ! ⌧⌧ 7 + 8 TeV
[JHEP 05 (2014) 104]

ATLAS+CMS H!⌧⌧ 7+8 TeV
[JHEP08(2016)045]

1.43+0.42
�0.37

0.78 ± 0.27

1.11+0.24
�0.22

ATLAS VH H ! bb 7+ 8 TeV
[JHEP01(2015)069]

CMS VH H ! bb 7 + 8 TeV
[Phys. Rev. D 89, 012003 (2014)]

ATLAS VBF H ! bb 8 TeV
[JHEP 11 (2016) 112]

ATLAS+CMS H!bb 7+8 TeV
[JHEP08(2016)045]

ATLAS VH H ! bb 13 TeV
[ATLAS-CONF-2016-091]

ATLAS VBF� H ! bb 13 TeV
[ATLAS-CONF-2016-063]

CMS VBF H ! bb 8 + 13 TeV
[CMS-PAS-HIG-16-003]

0.52 ± 0.4

1.0 ± 0.5

�0.8 ± 2.3

0.7+0.29
�0.27

0.21 ± 0.50

�3.9+2.8
�2.7

1.3+1.2
�1.1

0 0.5 1 1.5 2 3 5 7
µ

< 1.4

< 1.89

< 4.4

< 1.2

< 4.0

< 3.4

G. Gaycken Toward the observation of 2nd and 3rd generation BEH couplings with 13 TeV data La Thuile, March 19, 2017 20



Charm Yukawa

CKM 2016, Dec 2 2016J. Zupan   Flavor and high pT…

charm yukawa
• 3fb-1 HL-LHC could  

probe models of  
O(1) enhanced  
charm Yukawas

• compare with LHCb

• present  
(8 TeV, 1.98fb-1): κc<80

• future HL-LHCb (13 TeV, 300fb-1, simple 
scaling): κc≲4

10

Bishara, Haisch, Monni, Re, 1606.09253

LHCb-CONF-2016-006

using LHCb-CONF-2016-006+C.Parkes’s talk



Flavour Violation
• If                various indirect probes have to be considered Yij 6= 0

Constraints on Higgs couplings to light quarks
Tight constraints from neutral meson oscillations

h

d̄

b

b̄

dY ⇤
bdPL + YdbPR

Y ⇤
bdPL + YdbPR

t

h

h

t

ū

c

c̄

uY ⇤
ctPL + YtcPR

Y ⇤
tuPL + YutPR Y ⇤

ctPL + YtcPR

Y ⇤
tuPL + YutPR

Work in Effective Field Theory:

Heff = Cdb
2 (b̄RdL)

2 + C̃db
2 (b̄LdR)2 + Cdb

4 (b̄LdR)(b̄RdL) + . . .

Wilson coefficients constrained by UTfit (Bona et al.), arXiv:0707.0636
see also Blankenburg Ellis Isidori, arXiv:1202.5704

Joachim Kopp, MPIK Flavor Violating Higgs Decays 14

CKM 2016, Dec 2 2016J. Zupan   Flavor and high pT…

meson mixing

• will induce K0-K̄0, Bd-B̄d, Bs-B̄s, D0-D̄0  at 
tree level

13

• Rate                    suppressed, 
also difficult to discriminate among 
jets of different flavour

h ! qiqj

Harnik, Kopp, Zupan 1209.1397
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•Bounds in the lepton sector

8

Channel Coupling Bound on coupling Bound on BR C.L.

h ! ⌧+⌧� |Y h
⌧⌧ | 8.3⇥ 10�3 0.083 95%

h ! µ+µ� |Y h
µµ| 1.1⇥ 10�3 1.6⇥ 10�3 95%

h ! ⌧µ
q
|Y h

⌧µ|2 + |Y h
µ⌧ |2 0.011 0.13 95%

h ! ⌧e
p|Y h

⌧e|2 + |Y h
e⌧ |2 0.011 0.13 95%

µ ! e�
q

|Y h
µe|2 + |Y h

eµ|2 3.6⇥ 10�6 2.4⇥ 10�12 90%

µ ! e�
�|Y h

⌧µY
h
⌧e|2 + |Y h

µ⌧Y
h
e⌧ |2

�1/4
3.4⇥ 10�4 2.4⇥ 10�12 90%

⌧ ! e�
p

|Y h
⌧e|2 + |Y h

e⌧ |2 0.014 3.3⇥ 10�8 90%

⌧ ! µ�
q
|Y h

⌧µ|2 + |Y h
µ⌧ |2 0.016 4.4⇥ 10�8 90%

Table I: Direct and indirect constraints on flavor conserving and flavor violating Yukawa couplings of the SM
Higgs bosons. We have assumed that Higgs couplings to quarks and gauge bosons are unmodified compared
to the SM.

accompanied by two neutrinos. Since this is not the case for h ! ⌧µ and h ! ⌧e events, we expect
the Higgs mass reconstruction to be very poor for the flavor violating decay channels, leading to
significant smearing of our signal and a corresponding loss of sensitivity.

The direct bounds on the flavor-diagonal and flavor-o↵-diagonal Yukawa couplings are summa-
rized in the upper part of table I. In the lower part, we also show indirect constraints from the
radiative decays `i ! `j + � [11, 13]. Other indirect observables like the electric and magnetic
moments of the electron and the muon give weaker bounds. (The electric dipole moment of the
electron leads, however, to a strong constraint on Im(Ye⌧Y⌧e.) A more detailed discussion can be
found, for example, in [11, 13, 17].

3.2. Type-III Higgs doublet model

Constraining the high dimensional parameter space of the general type-III Higgs doublet model
discussed in sec. 2.2 is a formidable task. Here, our goal is only to explore the region of parameter
space where large CP violating e↵ects in Higgs decays are possible and detectable at the LHC.
We therefore simplify our analysis by assuming the mixing angles ✓

12

and ✓
13

in the scalar sector
to be small, and we set ✓

23

to zero (cf. sec. 2.2, case 2). We will also assume that Y⌧µ and Yµ⌧
are the only nonzero element of the Yukawa matrix Y . This means that the second Higgs doublet
couples to SM fermions only through Y⌧µ and Yµ⌧ , and that the dominant decay modes of the

heavy Higgs mass eigenstates will be h
2

, h
3

! ⌧±µ⌥, H± ! µ±(–)

⌫ ⌧ , H± ! ⌧±
(–)

⌫ µ. Decays to other
combinations of SM fermions are possible due to Higgs mixing, but since their rate is suppressed
by the square of a small mixing angle, we will neglect them.

The couplings of the SM-like Higgs mass eigenstate h
1

are constrained in the same way as in
sec. 3.1. The bounds from table I translate into the limit

q
|Y⌧µ|2 + |Yµ⌧ |2

q
✓2
12

+ ✓2
13

< 0.011 . (32)

We see from eqs. (14), (15), (27) and (30) that the largest observable CP violating e↵ects, as
measured by

�(h ! ⌧+µ�)⇥Aµ⌧
CP ' � mh

64⇡2

✓
12

✓
13

�|Y⌧µ|2 � |Yµ⌧ |2
��|Yµ⌧ |2 + |Y⌧µ|2 + |Y⌧⌧ |2

�

⇥
X

↵=2,3

(�1)↵

g

✓
m2

h

m2

h↵

◆
+

m2

h

m2

h �m2

h↵

�
, (33)
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Lepton Flavour Violation
• An interesting anomaly in the Higgs sector h ! ⌧µ

• CMS :

• ATLAS :

• Run 2 data, CMS

Br(h ! ⌧µ) = (0.89± 0.39)%

Br(h ! ⌧µ) = (0.53± 0.51)%

Br(h ! ⌧µ) < 1.20% (1.62% expected)

1502.07400

1604.07730

CMS-PAS-
HIG-16-005



Lepton Flavour Violation
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large fv higgs decays?

• Can one have large flavor violating 
Higgs decays in  
reasonable NP  
models?

• What is so special  
about type III  
2HDM?

15

Dorsner et al., 1502.07784

Low-energy constraints on LFV in the Higgs sector
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•Model building severely 
constricted by LFV 
radiative decay

•Only one motivated 
model survive: type III 
2HDM

• An interesting anomaly in the Higgs sector h ! ⌧µ

• CMS :

• ATLAS :

• Run 2 data, CMS

Br(h ! ⌧µ) = (0.89± 0.39)%

Br(h ! ⌧µ) = (0.53± 0.51)%

Br(h ! ⌧µ) < 1.20% (1.62% expected)

1502.07400

1604.07730

CMS-PAS-
HIG-16-005



Flavour Violation
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Flavor Violating Couplings Summary
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H→τμ 

H→τe 

H→eμ 
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CMS ATLAS

not available

t→cH

t→uH
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CMS ATLAS

Lepton Couplings Quark Couplings

95% C.L. upper limits on BR [%] 

95% C.L. upper limits on BR [%] 

h
t*

q
Both are sensitive to |Ytq|2+|Yqt|2

h
t

qCMS arXiv:1502.07400, arXiv:1607.03561, CMS-PAS-HIG-16-005  
ATLAS arXiv:1508.03372, arXiv:1601.03567, arXiv:1604.07737 

CMS arXiv:1410.2751, arXiv:1610.04857 
ATLAS arXiv:1403.6293, arXiv:1509.06047



CP violation
• Indirect, example neutron/electron EDM

Johns Hopkins U., Nov 12 2013J. Zupan     On Flavor- and CPV Higgs...

electron EDM
• dominant contribution from 

2-loop Barr-Zee type diagram

• depends on electron yukawa

• setting ye=1 is then quite constraining

• the constraint vanishes, if the Higgs does not couple to electrons 

• e.g. if it only couples to the 3rd gen.

22

exp• T-violation

Johns Hopkins U., Nov 12 2013J. Zupan     On Flavor- and CPV Higgs...

measuring cpv
• need to measure photon polarizations 
• a thought experiment
• imagine we have perfect 

linear polariz. analyzers

• where
• CPV causes a shift in the modulation of the rate

• the shift is linear in CPV (

• more sensitive than the total rate

38

Johns Hopkins U., Nov 12 2013J. Zupan     On Flavor- and CPV Higgs...

cpv in diphoton higgs 
decays

• from now on focus on h→%%

• how to measure CPV coupl. ?

• in the rate quadratic sensitivity

• here cSM=-0.81

• CP conserving and CPV always add up

• how about differential h→%% rate?

36

•Direct
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Figure 1: Feynman diagrams contributing to flavor and CP violating Higgs boson decays h1 ! `�`0+. In
the e↵ective theory model (sec. 2.1), only one Higgs boson h1 exists and the bubble diagram (c) does not
contribute to the CP asymmetry A``0

CP . In the two Higgs doublet model (sec. 2.2, there are three physical
neutral Higgs mass eigenstates h1, h2, h3, and all three diagrams contribute to A``0

CP .

Here we bring the two topics together by investigating Higgs decays that violate flavor and CP.
In particular, we consider possible asymmetries between the processes h! `i�`j+ and h! `i+`j�,
as parameterized by the observable

A`i`j

CP ⌘
�(h! `i�`j+)� �(h! `i+`j�)
�(h! `i�`j+) + �(h! `i+`j�)

, (1)

where `i, `j = {e, µ, ⌧} and i 6= j. This observable o↵ers perhaps the most direct way of searching
for CP violation in Higgs decays and does not require considering any di↵erential cross sections.
On the downside, a measurement of A`i`j

CP requires large integrated luminosity due to the smallness
of (usually loop-induced) CP violating e↵ects in general, and due to the possible smallness of
the decay rates �(h ! `i±`i⌥) themselves. The current 95% CL upper limit on the branching
ratios BR(h ! ⌧µ) and BR(h ! ⌧e) is 13% from LHC searches [15, 40], while the indirect limit
on BR(h ! µe) is 2 ⇥ 10�8 [15].1 We will therefore not consider the decay h ! µe in our
phenomenological analysis.

In sec. 2, we derive analytic expressions for A`i`j

CP in e↵ective theories of CP violation in the
Higgs sector induced by new particles above the electroweak scale and in several classes of Two
Higgs Doublet Models. We will argue that these scenarios are very generic and encompass very
large classes of extensions of the SM. We then constrain combined flavor and CP violation in Higgs
decays from low-energy observables in sec. 3, and we estimate the sensitivity of the LHC in sec. 4.
Finally, we summarize and conclude in sec. 5.

2. FLAVOR AND CP VIOLATION IN THE HIGGS SECTOR

2.1. Low energy e↵ective field theory with only one Higgs boson

We begin by considering the simplest low energy e↵ective field theory (EFT) description of
flavor and CP violation in the Higgs sector,

L
EFT

� �mi
¯̀i
L`i

R � Y h
ij (¯̀

i
L`j

R)h + h.c. , (2)

1 Here and in the following, we denote by BR(h ! ``0) the combined branching ratio for the processes h ! `+`0�

and h! `�`0+. When referring to the branching ratio into only one of these CP-conjugate final states, we use the
notation BR(h! `+`0�).
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neutral Higgs mass eigenstates h1, h2, h3, and all three diagrams contribute to A``0
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Here we bring the two topics together by investigating Higgs decays that violate flavor and CP.
In particular, we consider possible asymmetries between the processes h! `i�`j+ and h! `i+`j�,
as parameterized by the observable

A`i`j
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, (1)

where `i, `j = {e, µ, ⌧} and i 6= j. This observable o↵ers perhaps the most direct way of searching
for CP violation in Higgs decays and does not require considering any di↵erential cross sections.
On the downside, a measurement of A`i`j

CP requires large integrated luminosity due to the smallness
of (usually loop-induced) CP violating e↵ects in general, and due to the possible smallness of
the decay rates �(h ! `i±`i⌥) themselves. The current 95% CL upper limit on the branching
ratios BR(h ! ⌧µ) and BR(h ! ⌧e) is 13% from LHC searches [15, 40], while the indirect limit
on BR(h ! µe) is 2 ⇥ 10�8 [15].1 We will therefore not consider the decay h ! µe in our
phenomenological analysis.

In sec. 2, we derive analytic expressions for A`i`j

CP in e↵ective theories of CP violation in the
Higgs sector induced by new particles above the electroweak scale and in several classes of Two
Higgs Doublet Models. We will argue that these scenarios are very generic and encompass very
large classes of extensions of the SM. We then constrain combined flavor and CP violation in Higgs
decays from low-energy observables in sec. 3, and we estimate the sensitivity of the LHC in sec. 4.
Finally, we summarize and conclude in sec. 5.

2. FLAVOR AND CP VIOLATION IN THE HIGGS SECTOR

2.1. Low energy e↵ective field theory with only one Higgs boson

We begin by considering the simplest low energy e↵ective field theory (EFT) description of
flavor and CP violation in the Higgs sector,
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1 Here and in the following, we denote by BR(h ! ``0) the combined branching ratio for the processes h ! `+`0�

and h! `�`0+. When referring to the branching ratio into only one of these CP-conjugate final states, we use the
notation BR(h! `+`0�).



Flavour and CP violating H decays

10

100. 150. 200. 250. 300. 350. 400.

10-1

100

101

mh2 @GeVD

Y
uk

aw
a

co
up

lin
g

Y t
m

Ymt=Ytt=0
q12=q13=0.01
mh3 = mh2

BRHh1ÆmtL limit
tÆmg limit

100. 150. 200. 250. 300. 350. 400.

10-1

100

101

mh2 @GeVD

Y
uk

aw
a

co
up

lin
g

Y t
m

Ymt=Ytt=0
q12=q13=0.01
mh3 = 2mh2

BRHh1ÆmtL limit tÆmg limit

Sensitivity to CPV H±1s,2sL û 300 fb-1

»BRHhÆmtL ACP»=10-1

10-2

10-3

10-6

10-7

Figure 2: Direct and indirect constraints on the flavor violating Yukawa couplings Y⌧µ in the general
type-III 2HDM. We have assumed all other entries of the Yukawa matrix Y (including in particular Yµ⌧ ) to
vanish. In the left panel, we have assumed mh2 = mh3 , a situation in which no CP violation is expected,
while in the right panel, we consider a benchmark scenario with mh3 > mh2 . We show the region excluded
by the direct limit on BR(h1 ! ⌧µ) from LHC data [15] (orange) together with indirect limits from ⌧ ! µ�
(black dashed). In the right panel, the “Brazilian band” (black curve with green and yellow ±1� and ±2�
bands) indicates the expected 95% C.L. limit from a search for CP violation at the 13 TeV LHC with an
integrated luminosity of 300 fb�1 (see sec. 4 for details). The regions above the band is approximately equal
to the region in which evidence for CP violation can be found. The blue dotted contours indicate constant
values of the quantity |BR(h1 ! ⌧µ)⇥Aµ⌧

CP |, which is a measure for the observability of CP violation. The
largest CP violating e↵ects are expected for mh2 similar to the SM-like Higgs boson. (Note that in this case,
our plots are only approximate since the underlying analytic expansion from eq. (15) breaks down.)

(magnetic) dipole moment dµ (aµ) of the muon are proportional to <(Y⌧µYµ⌧ ) (=(Y⌧µYµ⌧ )). They
are, however not suppressed by the mixing angles ✓

12

and ✓
13

. However, as we have seen above,
large CP violation in h

1

! ⌧µ is only possible if Y⌧µ and Yµ⌧ are very di↵erent in magnitude. In
this case, dipole moment constraints deteriorate rapidly and we will therefore not consider them
further here.

In figs. 2 and 3, we compare the indirect ⌧ ! µ� constraints on the Yukawa couplings (black
dashed curves) and the direct constraint BR(h

1

! ⌧µ) < 0.13 [15] (orange shaded region) to
the expected BR(h ! ⌧µ)Aµ⌧

CP (blue dotted contours). The latter quantity is a measure for the
observability of CP violation in h

1

! ⌧µ decays. We also show the expected sensitivity of the LHC
to CP violation in h

1

! ⌧µ decays (see sec. 4 for details). For illustration, we have here assumed
that Y⌧µ is the only nonzero element of the Yukawa matrix Y since we see from eqs. (16) and (17)
that a large asymmetry between |Y⌧µ| and |Yµ⌧ | maximizes the CP asymmetry. Note that in the
left panel of fig. 2, no CP violation is expected because we have assumed mh3 = mh2 there. We see
from figs. 2 and 3 that the largest observable CP violation is expected when mh2 ⇠ mh1 and mh3

much heavier. Moreover, the Higgs mixing angles ✓
12

and ✓
13

should be small—a situation that is
actually preferred by the current LHC data which is very SM-like.

Finally, we comment on constraints on the charged Higgs bosons H± whose quantum numbers
are the same as those of a left-handed slepton in supersymmetry. Therefore, limits on slepton
masses from direct production at the LHC can in principle be recast into limits on the charge
Higgs boson mass mH± . The ATLAS slepton search in 20.3 fb�1 of 8 TeV data [50] constrains

9

always subdominant.
The couplings of the SM-like Higgs mass eigenstate h

1

are constrained in the same way as in
sec. 3.1. The bounds from table I translate into the limit

q
|Y⌧µ|2 + |Yµ⌧ |2

q
✓2

12

+ ✓2

13

< 0.011 . (33)

We see from eqs. (15), (16), (28) and (31) that the largest observable CP violating e↵ects, as
measured by

�(h
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! ⌧+µ�)⇥Aµ⌧
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are obtained if either Yµ⌧ = 0, Y⌧µ 6= 0 or Yµ⌧ 6= 0, Y⌧µ = 0. Moreover, to obtain large CP violation,
the limit from eq. (33) should be saturated, |Y⌧⌧ | should be of order 0.1/

p
✓2

12

+ ✓2

13

(larger values
are excluded by measurements of BR(h

1

! ⌧⌧)) and ✓
12

= ✓
13

. Finally, h
2

and h
3

should be very
di↵erent in mass since there is no CP violation if mh2 = mh3 . Most interesting to us is therefore
the limit mh3 � mh2 ⇡ mh1 .

Constraints on h
2

and h
3

from direct production are not important in the small mixing angle
limit since the production of the heavy Higgs mass eigenstates is suppressed by ✓2

12

or ✓2

13

. If
the dominant decay mode of h

2

and h
3

is to ⌧ + µ as assumed here, conventional searches for
flavor conserving final states are su↵ering from an additional mixing angle suppression in the flavor
conserving branching ratios. The strongest limits on h

2

and h
3

are therefore coming from indirect
searches, in particular ⌧ ! µ�. We obtain these limits following the procedure outlined in ref. [?
]. We match the full 2HDM onto the e↵ective Lagrangian

L = cLQL� + cRQR� + h.c. , (35)

with the operators

QL�,R� =
e

8⇡2

m⌧

�
µ̄ �↵�PL,R⌧

�
F↵� . (36)

Here, F↵� is the electromagnetic field strength tensor. The Wilson coe�cients cL, cR receive
contributions from one-loop diagrams involving neutral Higgs boson–charged lepton bubbles and
from two-loop diagrams containing top or W loops. For simplicity, we neglect diagrams involving
the charged Higgs bosons H±, assuming they are su�ciently heavy. The contributions of h

1

to cL

and cR are given by the expressions summarized in the appendix of [? ], with the modification that,
following eq. (27), Y⌧µ and Yµ⌧ are replaced by Y⌧µ(✓

12

+ i✓
13

) and Yµ⌧ (✓12

+ i✓
13

), respectively.
Similarly, for the contribution of diagrams containing h

2

(h
3

), the flavor-diagonal Yukawa couplings
as well as the Higgs couplings to gauge bosons have to be multiplied by �✓

12

(�✓
13

). For the h
3

contributions, moreover, Y⌧µ is replaced by iY⌧µ and Yµ⌧ by iYµ⌧ .
A second set of indirect limits on 2HDMs arises from measurements of the electric and magnetic

dipole moments of the electron and muon. If the only non-negligible Yukawa couplings of the second
Higgs doublet are Y⌧µ and Yµ⌧ , the one-loop contributions of the heavy Higgs bosons to the electric
(magnetic) dipole moment dµ (aµ) of the muon are proportional to <(Y⌧µYµ⌧ ) (=(Y⌧µYµ⌧ )). They
are, however not suppressed by the mixing angles ✓

12

and ✓
13

. However, as we have seen above,
large CP violation in h

1

! ⌧µ is only possible if Y⌧µ and Yµ⌧ are very di↵erent in magnitude. In
this case, dipole moment constraints deteriorate rapidly and we will therefore not consider them
further here.

In figs. 2 and 3, we compare the indirect ⌧ ! µ� constraints on the Yukawa couplings (black
dashed curves) and the direct constraint BR(h

1

! ⌧µ) < 0.13 [? ] (orange shaded region) to
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Figure 1: Feynman diagrams contributing to flavor and CP violating Higgs boson decays h1 ! `�`0+. In
the e↵ective theory model (sec. 2.1), only one Higgs boson h1 exists and the bubble diagram (c) does not
contribute to the CP asymmetry A``0

CP . In the two Higgs doublet model (sec. 2.2, there are three physical
neutral Higgs mass eigenstates h1, h2, h3, and all three diagrams contribute to A``0

CP .

Here we bring the two topics together by investigating Higgs decays that violate flavor and CP.
In particular, we consider possible asymmetries between the processes h! `i�`j+ and h! `i+`j�,
as parameterized by the observable

A`i`j

CP ⌘
�(h! `i�`j+)� �(h! `i+`j�)
�(h! `i�`j+) + �(h! `i+`j�)

, (1)

where `i, `j = {e, µ, ⌧} and i 6= j. This observable o↵ers perhaps the most direct way of searching
for CP violation in Higgs decays and does not require considering any di↵erential cross sections.
On the downside, a measurement of A`i`j

CP requires large integrated luminosity due to the smallness
of (usually loop-induced) CP violating e↵ects in general, and due to the possible smallness of
the decay rates �(h ! `i±`i⌥) themselves. The current 95% CL upper limit on the branching
ratios BR(h ! ⌧µ) and BR(h ! ⌧e) is 13% from LHC searches [15, 40], while the indirect limit
on BR(h ! µe) is 2 ⇥ 10�8 [15].1 We will therefore not consider the decay h ! µe in our
phenomenological analysis.

In sec. 2, we derive analytic expressions for A`i`j

CP in e↵ective theories of CP violation in the
Higgs sector induced by new particles above the electroweak scale and in several classes of Two
Higgs Doublet Models. We will argue that these scenarios are very generic and encompass very
large classes of extensions of the SM. We then constrain combined flavor and CP violation in Higgs
decays from low-energy observables in sec. 3, and we estimate the sensitivity of the LHC in sec. 4.
Finally, we summarize and conclude in sec. 5.

2. FLAVOR AND CP VIOLATION IN THE HIGGS SECTOR

2.1. Low energy e↵ective field theory with only one Higgs boson

We begin by considering the simplest low energy e↵ective field theory (EFT) description of
flavor and CP violation in the Higgs sector,

L
EFT

� �mi
¯̀i
L`i

R � Y h
ij (¯̀

i
L`j

R)h + h.c. , (2)

1 Here and in the following, we denote by BR(h ! ``0) the combined branching ratio for the processes h ! `+`0�

and h! `�`0+. When referring to the branching ratio into only one of these CP-conjugate final states, we use the
notation BR(h! `+`0�).
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Conclusions

• Structure of the Yukawa couplings calls for a (non-compulsory!) 
explanation

• Symmetries or dynamics could explain this pattern

• Possible anomalous effects in flavour observables might shed some 
light on the SM flavour puzzle

• The Higgs is now a new probe for flavour physics

• With Run 2 we are testing the Yukawa coupling of the SM (third 
family at 20-30%)



Predictions
• We expect large effects coming from third families of leptons

�ij/(cijg
1/2
⇢ ✏q3) j = 1 j = 2 j = 3

i = 1 1.92⇥ 10�5 8.53⇥ 10�5 1.67⇥ 10�3

i = 2 2.80⇥ 10�4 1.24⇥ 10�3 2.43⇥ 10�2

i = 3 1.16⇥ 10�3 5.16⇥ 10�3 0.101

Figure 3. Values of leptoquark couplings, �ij , where i denotes the lepton generation label and j
the quark generation label.

e↵ective field theory (EFT) of the form

L =
m4

⇢

g2⇢
L(0)

 
g⇢✏ai f

a
i

m3/2
⇢

,
Dµ

m⇢
,
g⇢H

m⇢
,
g⇢⇧

m⇢

!
. (3.6)

In the strongly-coupled, UV theory we expect the presence of an operator of the form

g⇢⇧OLOQ, where OQ (or OL) is a composite operator with the same quantum numbers as

a SM quark (or lepton). Below the scale m⇢, this operator generates a contribution to L
of the form ⇠ g⇢✏`i✏

q
j⇧`iqj . At low energies, the renormalizable lagrangian of the model is

L = LSM + (Dµ⇧)†Dµ⇧�M2⇧†⇧+ �ij q
c
Lji⌧2⌧a`Li⇧+ h.c., (3.7)

with �ij = g⇢cij✏
q
i ✏

`
j , where we have omitted quartic terms involving H and ⇧ that are not

relevant to our discussion. Note that we have explicitly re-introduced the cij parameters

that are expected to be of O(1), but are otherwise unknown. We summarise the values of

the leptoquark couplings in Fig. 3.

3.2 Coset structure

Here we supply a coset space construction that gives rise to the required SM quantum

numbers for the Higgs and leptoquark fields. First we describe the pattern of spontaneous

breaking of the symmetry of the strong sector G/H, and the embedding of the SM gauge

group SU(3)C ⇥ SU(2)L ⇥U(1)Y therein. We then discuss additional symmetry structure

required to avoid constraints from nucleon decay and neutron-antineutron oscillations.

To build a coset, we start from the minimal composite Higgs model [10], in which

a single SM Higgs doublet arises from the spontaneous breaking of SO(5) to SU(2)H ⇥
SU(2)R, with H transforming as a (2,2) of the unbroken subgroup. We must now enlarge

the coset space somehow to include the leptoquark ⇧ and its conjugate ⇧†. To see how

this may be achieved, consider first a model with just the leptoquark and no Higgs boson.

This can be achieved using SO(9) broken to SU(4) ⇥ SU(2)⇧. The 6 Goldstone bosons,

(⇧,⇧†), transform as (6,3).

Now form the direct product of SO(5) and SO(9) and consider the coset space

SO(9)⇥ SO(5)

SU(4)⇥ SU(2)⇧ ⇥ SU(2)H ⇥ SU(2)R
. (3.8)

This has, of course, the same Goldstone boson content as the two models above. The trick

is to somehow embed the SM gauge group in H so as to get the right charges for H and ⇧.

– 8 –

Leptonp
Y`

• Decay channels with taus are difficult to be reconstructed b! s⌧+⌧�

• More interesting are channels with tau neutrinos in the final state

these processes, discussing implications of current measurements on our model, as well as

highlighting promising channels for probing our scenario with future measurements.

4.2.1 b ! s⌫⌫

Due to the SU(2)L structure of the leptoquark, it will couple to neutrinos as well as

charged leptons and thus induce b ! s⌫⌫ transitions. The importance of this channel in

general for pinning down NP has been recently emphasised in [45]. These B ! K⇤⌫⌫ and

B ! K⌫⌫ decays are good channels to look for large e↵ects from the composite leptoquark

we consider. Indeed, since the identity of the neutrino cannot be determined in these

experiments, large contributions from the processes involving tau neutrinos are expected

in our model. Thus our model predicts a much larger rate than that expected in models

where NP couples only to the second generation lepton doublet.

Current NP bounds from these decays can be found in [45], which are quoted in terms

of ratios to Standard Model predictions. With a slight alteration of the notation of [45],

so as not to cause confusion with the notation used here, the relevant quantities, and the

limits thereon, are

R⇤⌫⌫
K ⌘ B (B ! K⇤⌫⌫)

B (B ! K⇤⌫⌫)SM
< 3.7, (4.13)

and

R⌫⌫
K ⌘ B (B ! K⌫⌫)

B (B ! K⌫⌫)SM
< 4.0. (4.14)

The leptoquark can in principle induce transitions involving any combination of neutrino

flavours, since it couples to all generations and also has flavour-violating couplings. There

will be interference between NP and SM processes only in flavour-conserving transitions.

The NP contributions to the ⌫⌧⌫⌧ and ⌫µ⌫µ processes will induce a shift from unity in R⌫⌫
K

and R(⇤)⌫⌫
K given by
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(The expression for �(R(⇤)
K )µµ is approximate, because we have kept only the interference

term with the Standard Model, which is large compared to the term from purely NP

contributions.) The next biggest contribution comes from ⌫µ⌫⌧ and ⌫⌧⌫µ final states. In

these cases, there is no interference with the SM and the contribution is
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(4.15)

As is clear from these equations, the most important contribution comes from the ⌫⌧⌫⌧
process. It is possible to pass the bound �(R(⇤)⌫⌫

K )⌧⌧ < 2.7 in a large fraction of the param-

eter space. Furthermore, large deviations in R⌫⌫
K and R⇤⌫⌫

K (⇠ 50% of the SM contribution)

represent an interesting prediction of our composite leptoquarks scenario, which will be
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Predictions

• Rare Kaon decay

testable at the upcoming Belle II experiment [45, 46]. Our prediction can be compared

with the case in which the leptoquark has only muonic couplings, in which the contributions

to �(R(⇤)⌫⌫
K ) are . 5% (see section 4.5 of [45]).

4.2.2 K+ ! ⇡+⌫⌫

Given that measurements involving neutrinos have the ability to probe some of the largest

couplings in our model – those involving third generation leptons – it is necessary to check

other rare meson decays with final state neutrinos.

Following [47], (but rescaling the bound given there to match the slightly more recent

measurement in [42]), the measurement of B(K+ ! ⇡+⌫⌫) produces a bound (at 95%

confidence level) on the real NP coe�cient �C⌫⌫̄ (defined in [47]) of

�C⌫⌫̄ 2 [�6.3, 2.3]. (4.16)

The branching ratio is given in terms of �C⌫⌫̄ by

B(K+ ! ⇡+⌫⌫) = 8.6(9)⇥ 10�11[1 + 0.96�C⌫⌫̄ + 0.24(�C⌫⌫̄)
2]. (4.17)

Our leptoquark contributes to �C⌫⌫̄ as

�C⌫⌫̄ = 0.62 Re(c31c
⇤
32)
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, (4.18)

via the dominant process involving a pair of tau neutrinos. So with c31 ⇠ c32 ⇠ O(1), and

M ⇠ TeV, our scenario passes current bounds.

However the NA62 experiment, due to begin data-taking in 2015, will measure B(K+ !
⇡+⌫⌫) to an accuracy of 10% of the SM prediction [48]. This means it will be able to shrink

the bounds on �C⌫⌫̄ to

�C⌫⌫̄ 2 [�0.2, 0.2] (4.19)

at 95%. Thus, if c31 ⇠ c32 ⇠ O(1) and M ⇠ TeV, measurements at NA62 will be sensitive

to our leptoquark.

4.2.3 Meson mixing

The leptoquark we consider can mediate mixing between neutral mesons via box diagrams.

This e↵ect will be largest in Bs mesons. From [35], the bound produced on the leptoquark

couplings when both leptons exchanged in the box are taus (the dominant contribution in

our scenario) is

|�33�
⇤
32|2 <

196⇡2M2�mNP
B0

s

f2
B0

s
mB0

s

. (4.20)

From [49], fB0
s
= 0.231 GeV, and

�mSM
B0

s
= (17.3± 2.6)⇥ 1012~s�1 = (1.14± 0.17)⇥ 10�8MeV, (4.21)

while from [42], the measured value of the mass splitting is

�mB0
s
= 17.69⇥ 1012~s�1 = 1.2⇥ 10�8MeV. (4.22)
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Composite leptoquark prediction

• Radiative decay µ! e�

Taking the uncertainty in the prediction to be roughly the size of the NP contribution,

|�mNP
B0

s
/�mSM

B0
s
| < 0.15 (as in [14]), then

|�33�
⇤
32|2 < 0.017
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. (4.23)

In terms of the parameters of our model this becomes

|c33c⇤23| < 4.2

✓
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g⇢

◆2✓ M

TeV

◆2✓ 1

✏q3

◆4

. (4.24)

We are able to pass this bound taking O (1) values for c33 and c23 and taking the other

parameters at values necessary to fit the anomalies as discussed above. The leptoquark will

also contribute to mixing of other neutral mesons. However bounds from the measurement

of mixing observables are generally weaker than bounds from meson decays (see eg. [50]).

4.2.4 µ ! e� and other radiative processes

The leptoquark has only left handed couplings, meaning that we will not get chiral en-

hancements to the branching ratio of µ ! e�. Nevertheless, the bound on B(µ ! e�) is

tight enough to be relevant for the model. The largest contributions come from diagrams

with a loop containing either a top or a bottom quark, together with the leptoquark. The

most recent measurement was performed by the MEG collaboration [51], who found a

bound at 90% confidence level of B(µ+ ! e+�) < 5.7 ⇥ 10�13. Using the formula for the

rate given in [35], and neglecting all but the processes involving 3rd generation quarks in

the loop,

|�⇤
23�13| < 7.3⇥ 10�4
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, (4.25)

which amounts to a bound on c⇤23c13 of

|c⇤23c13| < 1.4
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✏q3

◆2

. (4.26)

This turns out to be a strong constraint for our model. Given that our EFT paradigm

assumes cij ⇠ O(1), the bound is, roughly, saturated.

Given our flavour structure we expect an even larger contribution to ⌧ ! µ� than to

µ ! e�. However the current bound on the branching ratio of this process is B(⌧ ! µ�) <

4.4⇥ 10�8 [42], which is several orders of magnitude larger than the model prediction.

The process b ! s� can be generated via similar diagrams. Current bounds on this

process, which leave room for NP contributions up to about 30% of the SM prediction,

lead to a bound on the combination |c⇤33c32| of roughly |c⇤33c32| . 100
⇣
4⇡
g⇢

⌘ �
M
TeV

�2 ⇣ 1
✏q3

⌘2
.

4.2.5 Comments on other constraints and predictions

Despite the fact that contributions from leptoquark diagrams will be largest for processes

containing taus (or tau neutrinos) in the final state, we have not yet mentioned any bounds

from meson decays with ⌧ leptons in the final state. This is because existing bounds are
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