
Overview of TReqS

Bernard Chambon, CC-IN2P3

FJPPL meeting, LYON
14-15 February 2017

Overview on TReqS, bernard.chambon@cc.in2p3.fr 1/10

Outline

Reminder about TReqS : motivation, positioning, history

Overview
• Features

• Architecture

• Current status

• Development process

Next plans

Overview on TReqS, bernard.chambon@cc.in2p3.fr 2/10

Reminder about TReqS = Tape Request Scheduler

Motivation
It’s a software companion to HPSS, that re-organize HPSS staging requests

• Decrease number of tape movements, by grouping files per name of tape

• Increase staging throughput, by re-ordering files to be staged from same tape, according to
FPOT 1

• Control number of allocated drives for staging

Positioning
• Between storage middleware and HPSS (current clients of TReqS are dCache, XRootD)

• For HPSS staging only (tape → disk)

History
• Running old implementation developed 7 years ago, but not fully reliable nor maintainable

• New implementation, started from scratch at fall 2015 (sometimes called TReqS-2)

Numbers
• HPSS : 45 PB TAPE, 600 TB DISK. 2000 tape mounts per day, up to 5 times in peak

• TReqS : 10 K staging requests per day, up to 5 times in peak

1. FPOT: logical File Position On Tape + file offset (if exists)
Overview on TReqS, bernard.chambon@cc.in2p3.fr 3/10

Main features

Business point of view
• Aggregate requests over time per tape, sorting files according to FPOT : → queue

• Limit number of simultaneous running queues, per tape model
(ex 10 drives allocated for T10K-D)

• Provide role management (user’s role = ADMIN, USER or NONE)

• Provide control (on/off) on tape, on tape-model, on HPSS access, on queues processing, on
submission of client requests

• Provide cancelation of client requests (cancel = removing file from queue)

• Provide persistence for requests (useful for server stop & start)

• Provide archiving for ended requests (built-in CSV archiver)

Implementation point of view
• REST API, JSON format, HTTPS support

• JSW : Java Service Wrapper, to run application as a UNIX service (stop | start | status)

• Out-of-the-box monitoring web pages

Overview on TReqS, bernard.chambon@cc.in2p3.fr 4/10

Detailed feature about queue

Queue = name of the structure grouping files per name of tape

Mechanism
• Created (if not exist) as soon as a request is issued, and the file has retrieved metadata from

HPSS

• As many queues as involved tape names (queue name = tape name).
No limit in number of queues nor in the size of a queue

• Start running of queues is triggered at fixed interval or by an admin command
o Queues selection order is based on the queues creation dates
o Numbers of simultaneous running queues controlled by the limit defined per tape model.
o A running queue can accept new files for staging them in the same ’run’

• A queue is made of sets (see screenshots) sorting files according to FPOT as much as possible

• Queue are not persisted, but requests are ⇒ queues are re-constructed at server restart

Screenshots : Overall view on all queues, detailed view on one queue KT537700

Overview on TReqS, bernard.chambon@cc.in2p3.fr 5/10

Detailed feature about control on HPSS access

Mechanism
• Control on HPSS access = just a off/on switch, no action on HPSS

• When HPSS is switched off
F Incoming requests are accepted, but WITHOUT query metadata to HPSS,

requests are in SUSPENDED status

F After end of staging of the current file, NO new file staging occurs
the queue is left intact

• When HPSS is switched on
F Staging of files restart from previous position in queue (previous=when HPSS switched off)

F Processing of suspended requests, to query metadata to HPSS
Requests will change to SUBMITTED status, files are dispatched to appropriate queues
(It is a mono-threaded (but fast 1) operation)

1. From bench : sequential query of metadata for 5k, 10k, 20k files took 35s, 70s, 140s
Overview on TReqS, bernard.chambon@cc.in2p3.fr 6/10

Architecture : model client-server

Server
• Written in Java (18,000 lines of code) and C++ (500 lines of code)

• Using JMS for internal exchanges, H2 DB for persistence, HPSS API via JNI

• Providing a REST API with JSON over HTTPS

• See schema for more details

• Project available here

Client
• Written in Python (2,000 lines of code), using REST API

• Authentication is based on login/password

• Project available here

Overview on TReqS, bernard.chambon@cc.in2p3.fr 7/10

https://gitlab.in2p3.fr/cc-in2p3-dev/treqs2
https://gitlab.in2p3.fr/cc-in2p3-dev/treqs2-client

Current status

Production configuration
• Clients : dCache (80% of all TReqS’ requests) for ATLAS, CMS, LHCB, other from XRootD

• Considering ATLAS + CMS (90% of dCache’ requests)
o For dCache ATLAS, 9 hosts with 90 pools /host => potentially 810 ’treqs copy’ requests 1

o For dCache CMS, 72 hosts with 10 pools /host => potentially 720 ’treqs copy’ requests

• Estimation of a potential of ∼1500 simultaneous connections for queries

Pre-production deployment schedule
• First deployment near end of November 2016.

Facing some classical ’pre-production’ use cases (missing features, bugs, etc.)

• New deployment on 20 January 2017
Using clients from dCache pools for ATLAS and CMS
(Other clients still addressing old implementation)

Feedback from first pre-production usage
• First major staging campaign from 02/08-12:00 to 02/10-16:00
→ Spread over ∼52 hours : 75,000 files processed, 145 TB staged
→ Stability and fluidity were ok

• The product is nearly ready for a full production usage at CC-IN2P3
Estimation of 5∼10 days of dev. for last changes

1. ’treqs copy’ : client command issuing a request then querying file’s status waiting for the end of file staging
Overview on TReqS, bernard.chambon@cc.in2p3.fr 8/10

Development process

Project mgmt
• Maven as project management,

• Released versions over time : alpha (2016/Q1), beta (2015/Q2), 1.0 (2016/09), 1.1 (2017/01)

Test methods :
• Unit tests
∼200 tests, running without real HPSS nor JMS.
Using Jenkins for continuous integration

• Integration tests
∼20 tests, requiring HPSS access and JMS instantiation (→ not running in Jenkins)

• Load tests 1

Outside distribution, based on client classes in Python

Project access
• Code under LGPL-V3 licence, access to granted user 2 on gitlab.in2p3.fr.

• Build procedure available in ADMIN-GUIDE (see ./treqs2-delivery/resources/ directory)

• Docs : README, ADMIN-GUIDE, CHANGELOG

• Recommended version is 1.1 (2017/01/24)

1. Using simulatedHPSS : test set of files used for querying metadata and file staging (sleep(...))
2. Tomoaki Nakamura has a granted access

Overview on TReqS, bernard.chambon@cc.in2p3.fr 9/10

https://gitlab.in2p3.fr/cc-in2p3-dev/treqs2

Next plans

Make TReqS fully available for production
Provide more metrics, improve logs
For daily operation, a monitoring tool is currently being developed by an admin (outside
TReqS distribution)

From functional point of view : Enhance staging criteria
• Better understanding of production profile of CC-IN2P3, improve queues management

• Brainstorming about others requirements like
o Managing priority of requests,
o Controlling (and sharing) usage of resources by (between) user(s)

From development point of view
• Improve code quality (e.g. taking into account feedback from Sonar)

• Increase gitlab.in2p3.fr usage (e.g. for CI, for deployment)

Thank you for your attention

Thanks to Lionel Schwarz (other TReqS software developer)

Overview on TReqS, bernard.chambon@cc.in2p3.fr 10/10

