European Summer school

Super Heavy Elements, Physics and Chemistry at extremely low rate

Olivier DORVAUX (on behalf of Benoît GALL)

Foreword

This lecture aims at understanding

- -> the context of SHE studies
- -> the state of art in SHE studies (in physics and chemistry...)

Unfortunately 1.5 hour is rather short and I have to skip some of the results ... sorry!

Super Heavy Elements (SHE) outline

- Nuclear stability and limits of existence
- Manifestation of quantum world
- Production probability
- How to produce SHE
- How to identify SHE
- What physical properties can we measure?
- What chemical properties can we measure?

Super Heavy Elements (SHE) outline

- Nuclear stability and limits of existence
- Manifestation of quantum world
- Production probability
- How to produce SHE
- How to identify SHE
- What physical properties can we measure?
- What chemical properties can we measure?

150,36 (3)

Rn 51 6 d 7 s

Tableau Périodique des Éléments Auteur : M.S. Antony, 118 elements

¶ Lanthanides

M Actinides

Docteur de l'Université de Lyon, Docteur ès Sciences, Université de Strasbourg Imprimé par : Patrick Moessner, Impressions François

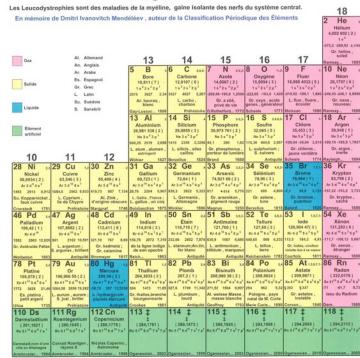
some are

1												
1 H			63 Eu 23	> Numéro	atomique ; Symbol	le chimique ; Nom	bres d'oxydation					
Hydrogène			Europium									
1,007 94 (7)		151,964 (1) En Unité de Masse Atomique, UMA , basée sur ¹² C : (1) = précision de + - 0,001										
1 6 '		Xx 4 f ⁷ 6 s ² → Configuration électronique 822 1529 5,343 → Température de fusion °C ; Température d'ébuilition °C ; Masse volumique (a)										
Gr. hydros , eau			Europe , princesse	> Origine d								
jenes , générateur	2		de Phénicie Demarçay 1901		e la découverte ; A	anda da la discomuni	de					
avendish 1766	4 Be ;	1	Demarçay 1901	Auteur d	e ia decouverie ; A	nnee de la decouve	rte					
Lithium	Béryllium											
6,941 (2)	9,012 182 (3)	(a) Masse volumique: q / cm³ pour les solides et les liquides										
15"25"	15252	g / I pour les gaz à 0 °C et 1 atmosphère										
80,7 1342 0,534		Les noms et symboles des étéments 113, 114, 115, 116, 117 et 118 ne sont pas encore definis.										
Gr. lithos , pierre	Gr. beryllos , glycus sucré		Le chiffre entre parenthèses est la masse atomique ou le nombre de masse									
urfvedson 1817	Vauquelin 1798	de l'isotope le plus stable. * Température de sublimation										
11 Na 1	12 Mg :				Nuclear Reactions à							
Sodium	Magnésium		LBNL : Lawrence Berkeley National Laboratory à Berkeley, Californie, USA § Valeur calculée									
22,989 770 (2) Ne 3 s ¹	24,3050 (6) Ne 3 s ²		Groupe 1-18	: d'après l'Union	Internationale de Cl	himie Pure et Applic	juée, IUPAC					
8 883 0,971	650 1090 1,738		Plusieurs au									
L. natrium An. soda	Magnésia , district de la Thessalie	3000	Masse atomi	que du Bérytlium : 1	9,012 182 (3) = 9,01	2 182 + - 0,000 003		102				
	Davy 1808	3	4	5	6	7	8	9				
9 K		21 Sc)	22 Ti 14	23 V 25	24 Cr 216	25 Mn 24.67	26 Fe 23	27 Co :				
Potassium	Calcium	Scandium	Titane	Vanadium	Chrome	Manganèse	Fer	Cobalt				
39,0983 (1)	40,078 (4)	44,955 910 (8)	47,867 (1)	50,9415 (1)	51,9961 (6)	54,938 049 (9)	55,845 (2)	58,933 200 (9)				
Ar4s'	Ar 4 s 2 839 1484 1,54	Ar 3 d 4 s 2 1539 2836 2,989	Ar 3 d ² 4 s ² 1660 3287 4.540	Ar 3 d 3 4 s 2 1902 3407 6,11	Ar 3 d ⁶ 4 s ¹ 1907 2671 7,15	Ar 3 d ⁵ 4 s ² 1246 2061 7,44	Ar 3 d 4 s 2 1535 2861 7,874	Ar 3 d 4 s 2				
3,35 759 0,862 kr. kali ; L. kalium ;	L calx .	L. Scandia	L. titans , enfants	Freyja Vanadis ,	Gr. chroma	L. magnes ,	L. ferrum .	Al. Kobold				
An. pot ashes	chaux	Scandinavie	du Ciel et de la Terre	déesse scandinave	couleur	aimant	formeté	lutin				
		Nilson 1879		del Rio 1801			Préhistoire					
37 Rb	38 Sr :	39 Y	40 Zr 4			43 Tc ,	44 Ru 24,1	45 Rh 2 Rhodium				
Rubidium 85.4678 (3)	Strontium 87,62 (1)	Yttrium 88,905 85 (2)	Zirconium 91,224 (2)	Niobium 92,906 38 (2)	Molybdène 95,9602 (23)	Technétium (96,9064)	Ruthénium 101,07 (2)	102,905 50 (2)				
Kr 5 n	Kr 5 n 2	Kr4d 5s2	Kr4d25s2	Kr4d*5s*	Kr 4 d 5 s 1	Kr4d ⁸ 5s ²	Kr4d"5s"	Kr4d*5s*				
9,64 688 1,532		1526 3336 4,469						1964 3695 12,4				
L. rubidius , rouge brun	An. Strontian , ville écossaise	Ytterby , ville suédoise	Ar. zargum , couleur or	Gr. Niobe , fille de Tantale	Gr. molybdos , plomb	Gr. technetos , artificiel	L. Ruthenia , Russie	Gr. rhodon,couleu rose du sel de Rit				
		Gadolin 1794	Klaproth 1789	Hatchett 1801	Hjelm 1781	Perrier 1937	Klaus 1844	Wollaston 180				
55 Cs 1	56 Ba ;	57 La ,	72 Hf 4	73 Ta s	74 W 24	75 Re 2447	76 Os 24,6,8	77 Ir 2				
Césium	Baryum	Lanthane ¶	Hafnium	Tantale	Tungstène	Rhénium	Osmium	Iridium				
132,905 45 (2)	137,327 (7)	138,9055 (2)	178,49 (2) Xe 4 f ¹⁴ 5 d ² 6 s ²	180,9479 (1) Xe 41 ¹⁴ 5 d ² 6 s ²	183,84 (1) Xe 4f ¹⁴ 5 d ⁴ 6 n ²	186,207 (1) Xe 41 ¹⁴ 5 d ¹ 6 s ²	190,23 (3) Xe 4 f 14 5 d 4 6 s 2	192,217 (3) Xe 41 45 d 6 s 2				
Xe 6 s 1	Xe 6 s 2 729 1897 3,594	Xe 5 d 1 6 s 2 920 3464 6.145		2996 5458 16,654								
L. caesius .	Gr. barys .	Gr. lanthanein ,	L. Hafnia	L. Tantalus ,	Al.Wolfram;Su.tung	L. Rhenus	Gr. osme ,	L. Iris, déesse				
bleu ciel	lourd	être caché	Copenhague	père de Niobé	sten , pierre lourde	le Rhin	odeur	de l'arc-en-ciel Tennant 180				
	Davy 1808			105 Db		Noddack 1925 107 Bh	Tennant 1804	109 Mt				
7 Fr	88 Ra 2 Radium	89 Ac	104 Rf Rutherfordium	Dubnium	106 Sg Seaborgium	Bohrium	Hassium	Meitnerium				
(223,0197)	(226,0254)	(227,0278)	(265,1167)	(268,1254)	(271,1335)	(267,1277)	(277,1498)	(276,1512)				
Rn 7 s 1	Rn 7 s 2	Rn 6 d 17 s 2	Rn 51 4 6 d 7 s 2	Rn 5 f 14 6 d 3 7 s 2	Rn5f16d47s2	Rn 5 f 14 6 d 2 7 s 2	Rn 51" 6 d 7 s 2	Rn 5 f 4 6 d 7 5 2				
	700 1737 5,50	1050 § 3200 § 10,07			The same of the sa							
	L. radius ,	Gr. aktis , aktinos	Ernest Rutherford , Physicien nucléaire	Dubna , nom d'une ville près de Moscou	G.T. Seaborg , Prix Nobel de Chimie, 1951	N. Bohr, Prix Nobel de Physique , 1922	L. Hassias , pays de Hesse en Allemagne	Lise Meitner , Fission nucléaire				
27 § 677 France	rayon	faisceau, rayon										
France	rayon	Debierne 1899		Dubna, LBNL 1968	Ghlorso 1974	Armbruster 1981	Münzenberg 1984	Armbruster 198				
France	rayon				Ghlorso 1974	Armbruster 1981	Münzenberg 1984	Armbruster 190				

144.24 (3)

3520 6,7

55 4788 1


The transfer the profession was consequented that it is a considerate the property of the constant of the cons Strasbourg - Cronenbourg 2011

Le montant de la vente sera versé à

l'Association Européenne contre les Leucodystrophies ELA.

Pour obtenir le tableau , contacter : ELA, 2 rue Mi-les-Vignes. BP 61024, 54521 Laxou Cedex, FRANCE

email: ela@ela-asso.com

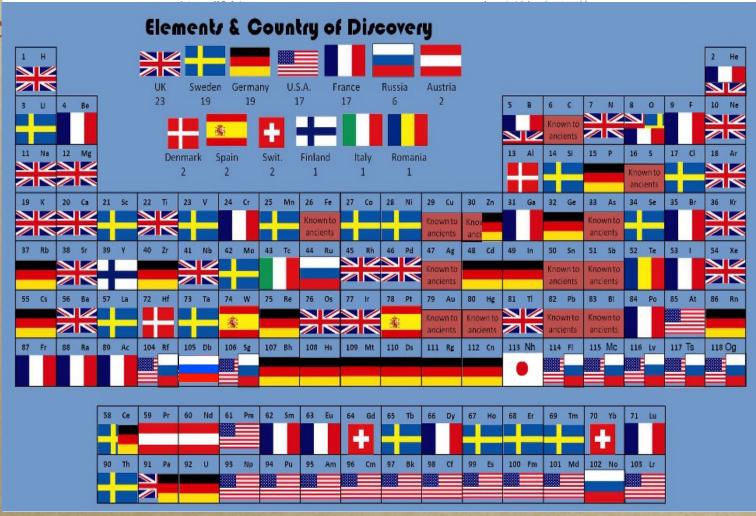
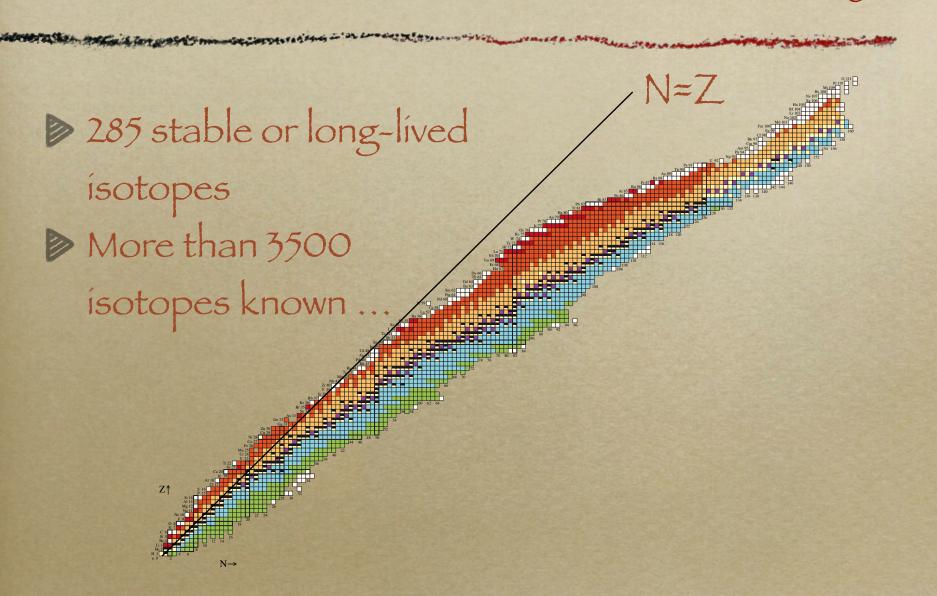

65 Tb 3.4	66 Dy 3	67 Ho 3	68 Er 3	69 Tm 23	70 Yb 23	71 Lu
Terbium	Dysprosium	Holmium	Erbium	Thulium	Ytterbium	Lutécium
158,925 34 (2)	162,500 (1)	164,930 32 (2)	167,259 (3)	168,934 21 (2)	173,04 (3)	174,967 (1)
Xe4f*6s2	Xe 41 10 6 s 2	Xe 4 f 11 6 m 2	Xe 41 12 6 s 2	Xe4f 13 6 s 2	Xe 4 f 14 6 s 2	Xe4f"5d'6s2
1357 3230 8,229	1407 2567 8,55	1470 2720 8,795	1522 3230 9,066	1545 1950 9,321	824 1196 6,965	1656 3402 9,0
Ytterby , ville suédoise	Gr. dysprositos , d'accès difficile	L. Holmia , Stockholm	Ytterby , ville suédoise	L. Thule , ancien nom de la Scandinavie	Ytterby , ville suédoise	L. Lutetia , ancie nom de Paris
Mosander 1843	Boisbaudran 1886	Soret 1878	Mosander 1843	Cleve 1879	Marignac 1878	Urbain 185
97 Bk 3,4	98 Cf 3	99 Es	100 Fm	101 Md	102 No	103 Lr
Berkélium	Californium	Einsteinium	Fermium	Mendélévium	Nobélium	Lawrencium
(247,0703)	(251,0796)	(252,0830)	(257,0951)	(258,0984)	(259,1010)	(262,1096)
Rn 51 7 m 2	Rn 51 10 7 s 2	Rn 51" 7 s2	Rn 51127 s 2	Rn 51 ¹³ 7 s ²	Rn 51147 s2	Rn51"6d"7s
514	10000000	THE RESERVE OF THE PERSON NAMED IN		- 200		
Berkeley , ville en Californie	Californie , USA	A. Einstein , Théorie de la Relativité	E. Fermi , Physicien nucléaire	Dmitri Mendéléev , Chimiste russe	 A. Nobel , inventeur de la dynamite 	Ernest Lawrence Inventa le cyclotro
Sashorn 1949	Seaborn 1950	Seabore 1952	Seaborn 1952	Seaborg 1955	Seaborg 1958	Ghiorso 196

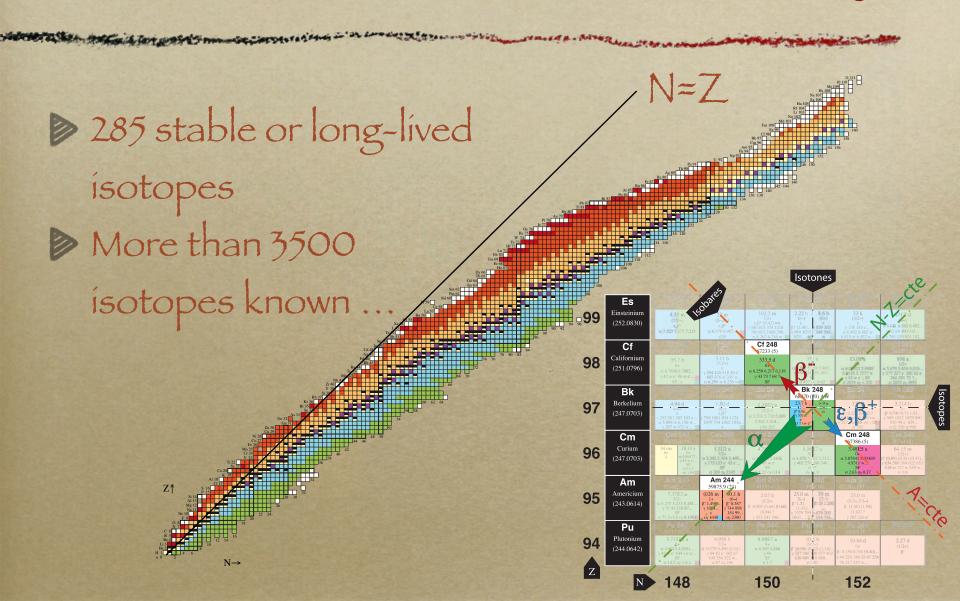
Tableau Périodique des Éléments

Strasbourg - Cronenbourg 2011

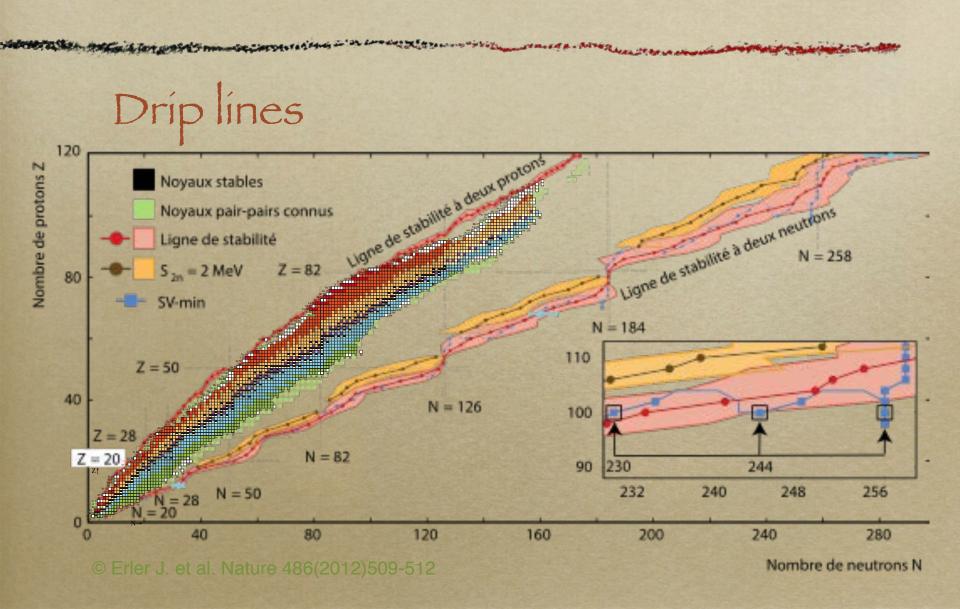
118 eleme

some
are
not
stable




Chemical properties fixed by the number of electrons (Z)

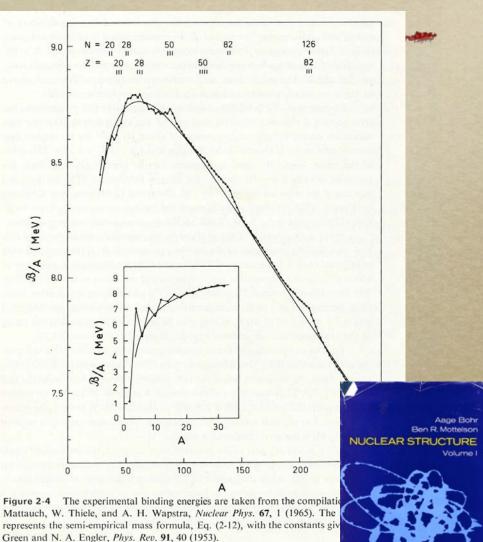
... but ... Several elements for each Z



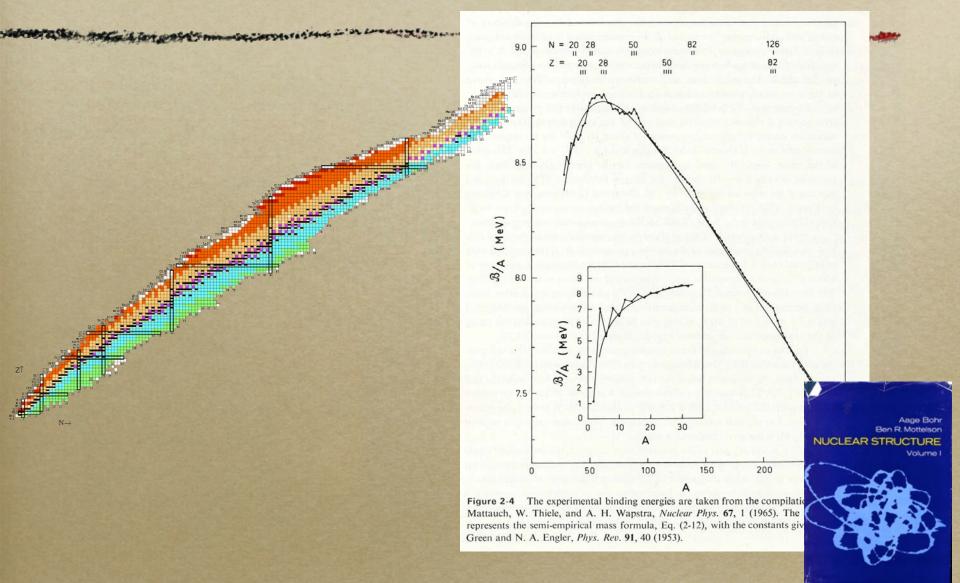
isotopes

Limits of existence of nuclei?

Nuclear binding energy ...


Aston curve

Binding energy per nucleon


B/A

as a function of

Nuclear binding energy ... and radioactivity

Super Heavy Elements (SHE) outline

- Nuclear stability and limits of existence
- Manifestation of quantum world
- Production probability
- How to produce SHE
- How to identify SHE
- What physical properties can we measure?
- What chemical properties can we measure?

Liquid drop model

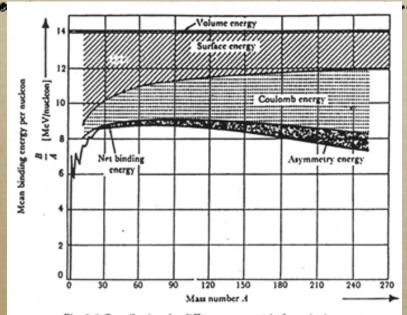
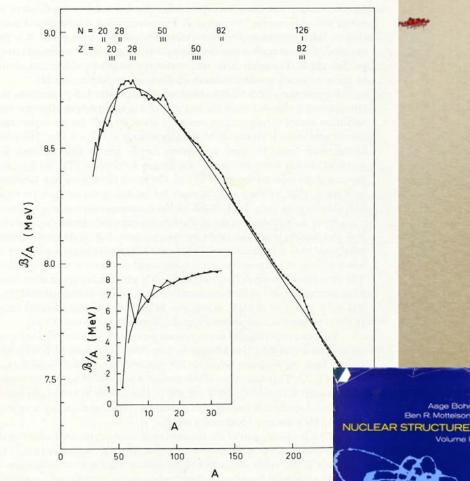
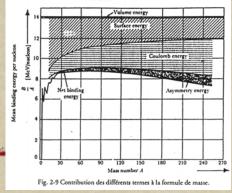
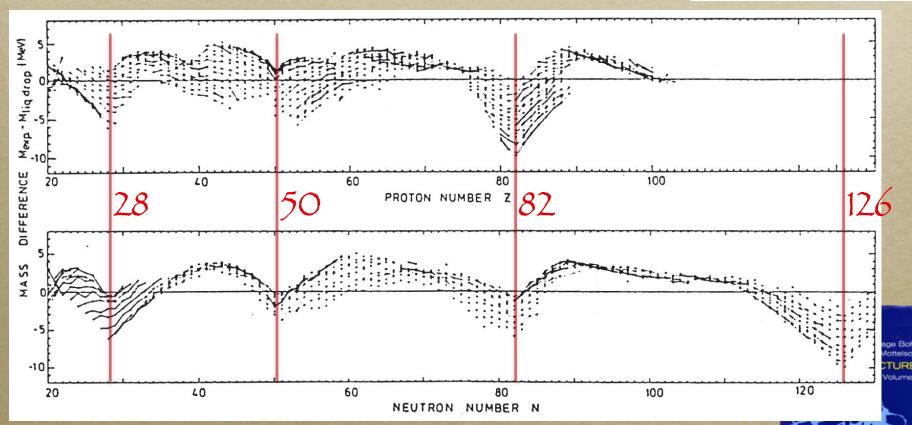



Fig. 2-9 Contribution des différents termes à la formule de masse.

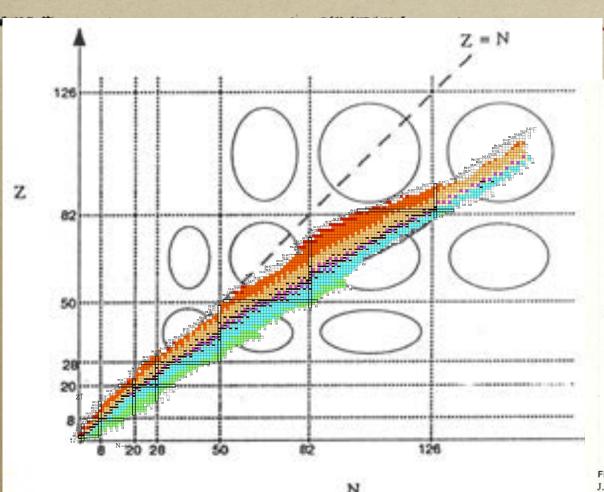
$$m(Z,A) = Zm({}^{1}H) + Nm_{n} - a_{v}A + a_{s}A^{2/3} + a_{c}\frac{Z^{2}}{A^{1/3}} + a_{sym}\frac{(A-2Z)^{2}}{A} - B_{paire}$$

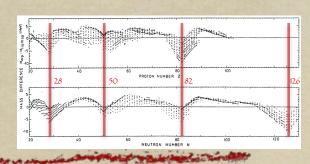

$$a_V = 15.5 \text{ MeV}$$
 $a_S = 16.8 \text{ MeV}$
 $a_C = 0.72 \text{ MeV}$ $a_{sym} = 23.0 \text{ MeV}$
 $a_R = 34.0 \text{ MeV}$



Aage Bohr

Figure 2-4 The experimental binding energies are taken from the compilation Mattauch, W. Thiele, and A. H. Wapstra, Nuclear Phys. 67, 1 (1965). The represents the semi-empirical mass formula, Eq. (2-12), with the constants give Green and N. A. Engler, Phys. Rev. 91, 40 (1953).


Beyond liquid drop ...



Magic numbers 2, 8, 20, 28, 50, 82, 126

Magic numbers ...

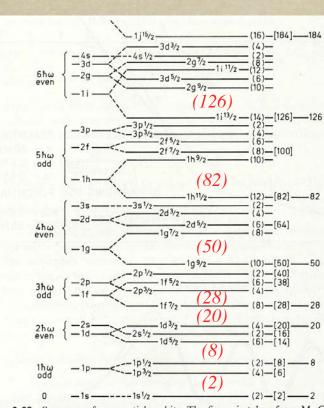


Figure 2-23 Sequence of one-particle orbits. The figure is taken from M. G J. H. D. Jensen, *Elementary Theory of Nuclear Shell Structure*, p. 58, Wiley, New

Magic numbers 2, 8, 20, 28, 82, 126

Magic numbers ...

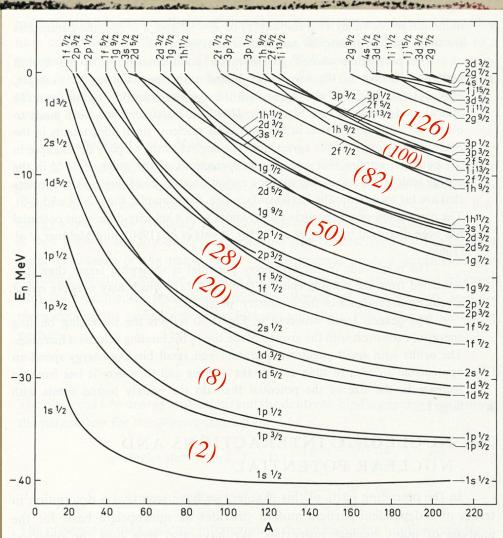


Figure 2-30 Energies of neutron orbits calculated by C. J. Veje (private communication).

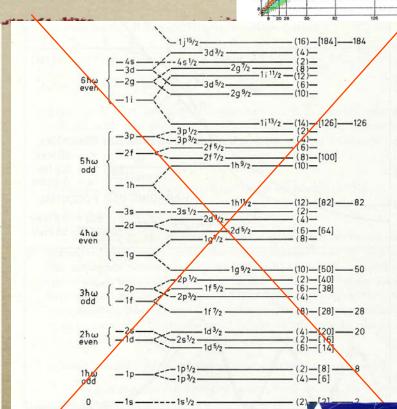
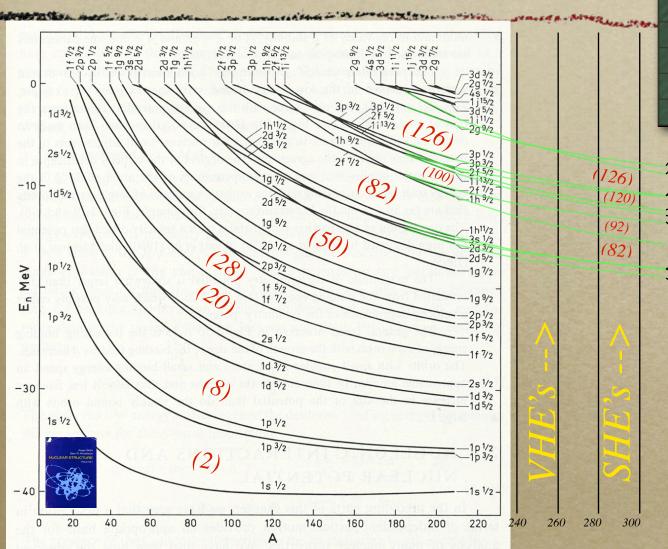



Figure 2-23 Sequence of one-particle orbits. The figure is take J. H. D. Jensen, Elementary Theory of Nuclear Shell Structure, p. .

Aage Bohr Ben R. Mottelson NUCLEAR STRUCTURE Volume I

Magic numbers ...

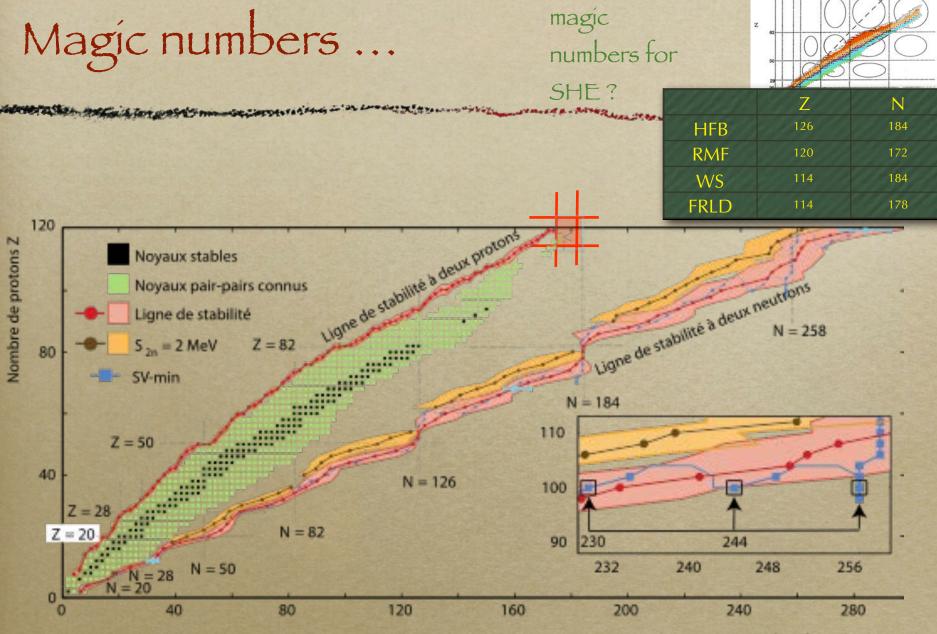
Energies of neutron orbits calculated by C. J. Veje (private communication).

 Z
 N

 HFB
 126
 184

 RMF
 120
 172

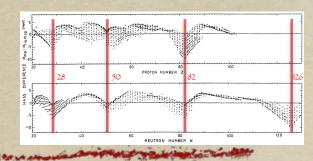
 WS
 114
 184

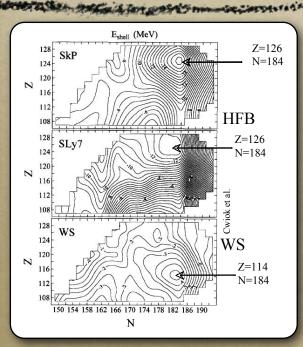

 FRLD
 114
 178

 $\begin{array}{c|c}
 & 1i_{11/2} \\
 & 3p_{1/2} \\
 & 3p_{3/2} \\
\hline
 & 2f_{5/2} \\
 & 1i_{13/2} \\
 & 2f_{7/2} \\
\hline
 & 1h_{11/2} \\
 & 2d_{3/2}
\end{array}$

2g_{9/2}

What are the spherical magic numbers for


SHE?

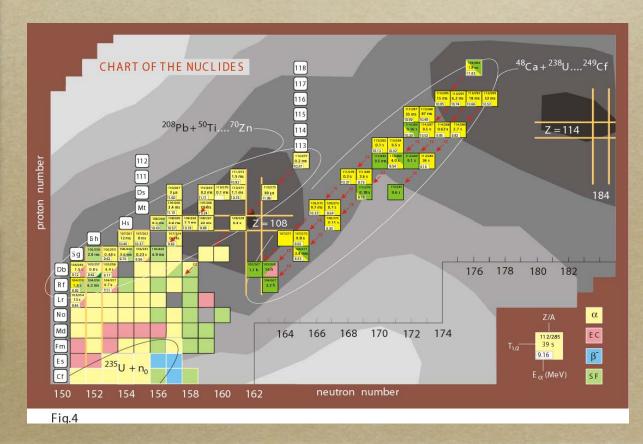


What are the a

Nombre de neutrons N

NEXT magic numbers ...

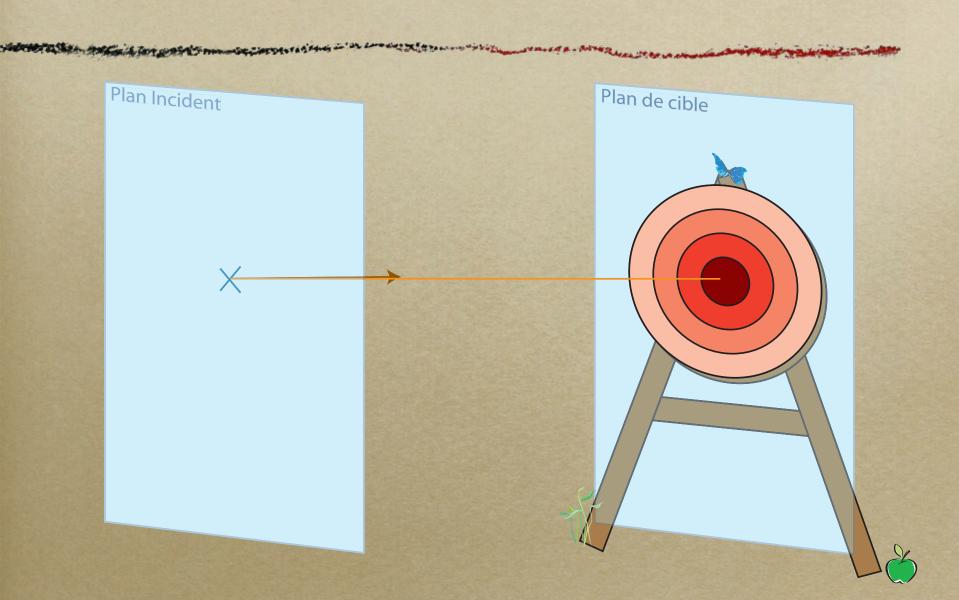
Z N

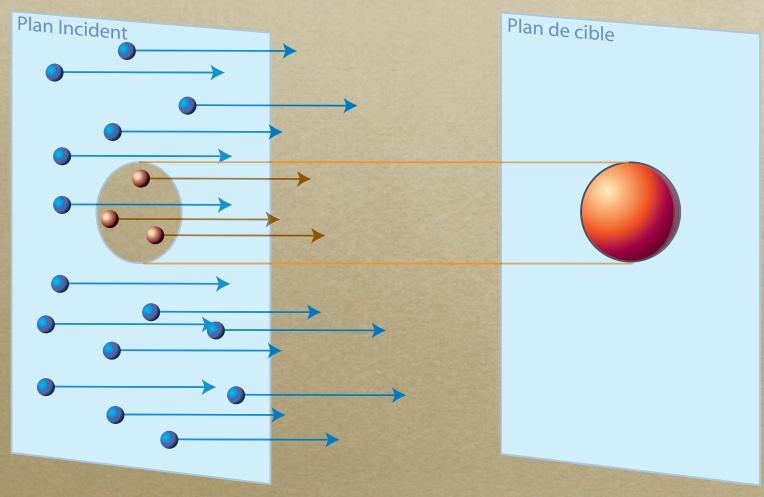

HFB 126 184

RMF 120 172

WS 114 184

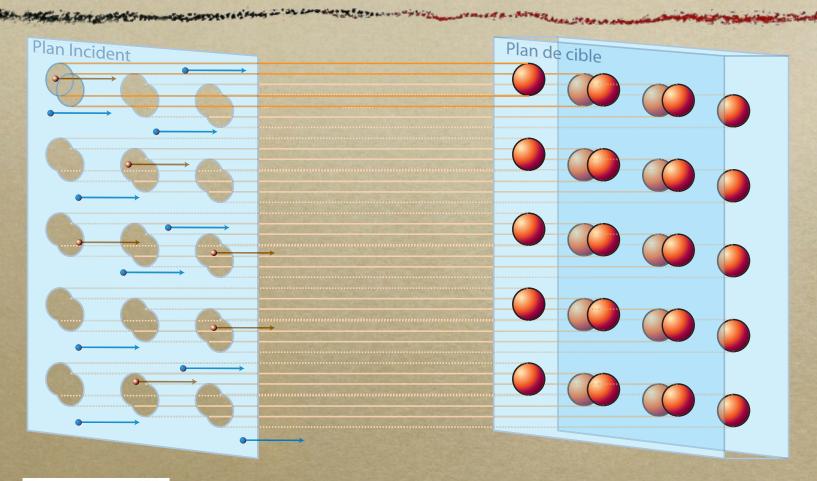
FRLD 114 178


- Where is the ultimate island of stability?
- What is the limit of nucleus stability?
- What are the influences on nuclear forces?


Super Heavy Elements (SHE) outline

- Nuclear stability and limits of existence
- Manifestation of quantum world
- Production probability
- How to produce SHE
- How to identify SHE
- What physical properties can we measure?
- What chemical properties can we measure?

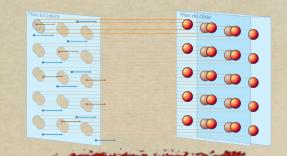
Femto - ballistics



Incident plane -> target plane

Cross section

Stotal = Ntarget atoms X Sefficient


$$P_{choc} = \sigma_{geo} \cdot N_{C}$$

$$N_{tot} = N_i \cdot P_{choc} = N_i \cdot \sigma_{geo} \cdot N_C$$

$$N_{tot} = N_i \cdot \sigma_{geo} \cdot N_C$$

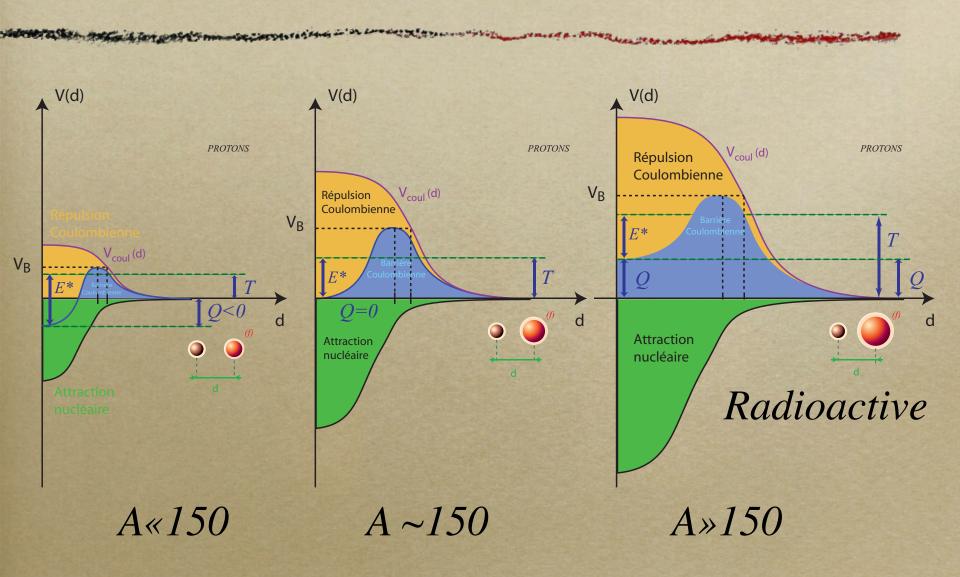
 $\phi_{tot} = \phi_i \cdot \sigma_{geo} \cdot N_C$

$$N_{C} = \frac{e.\rho}{m_{at}(A,Z)} = \frac{e.\rho.N_{A}}{M(A,Z)}$$

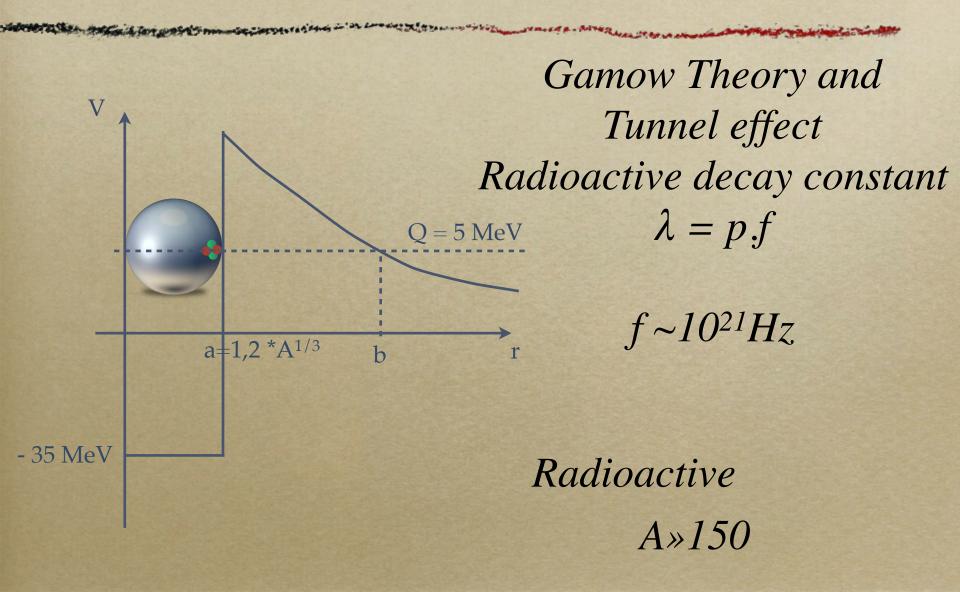
Reaction flux calculation

$$I = 2.10^{11} ions / s$$

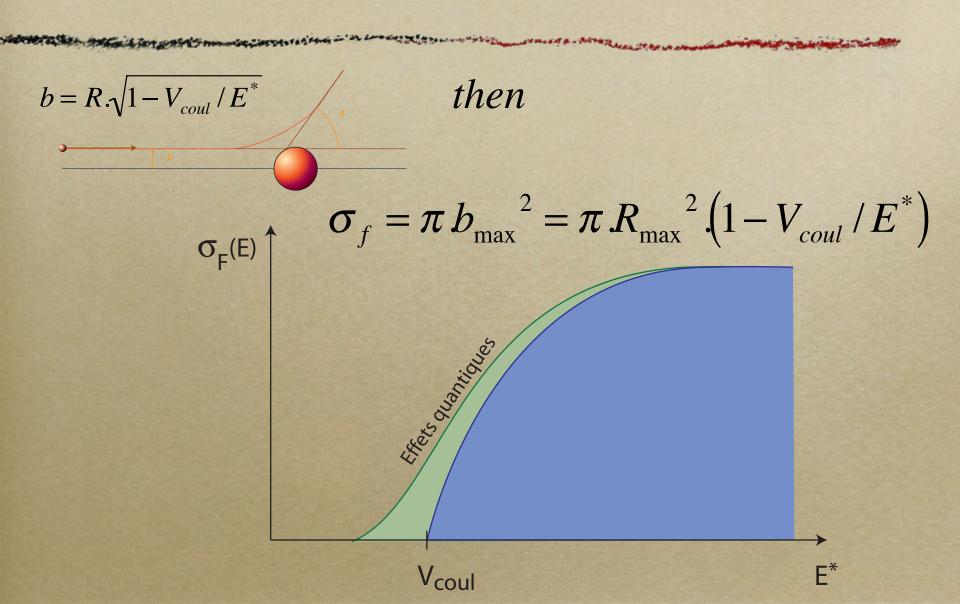
...often in p
$$\mu$$
A (1 p μ A = 6 10¹² ions/s)


e' =
$$e\rho = 500 \, \mu \, g/cm^2$$

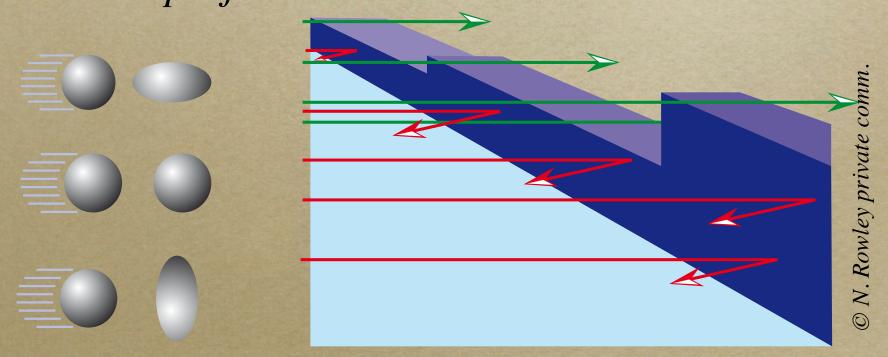
$$\sigma = 1 \,\mu b \,(1b = 100 \,\mathrm{fm^2} = 10^{-24} \mathrm{cm^2})$$


$$N_{C}(atomes / cm^{2}) = \frac{e.\rho(g/cm^{2})}{m_{at}(g / atome)} = \frac{e.\rho.N_{Avogadro}}{M(A,Z)}$$

$$P_{choc} = \sigma_{geo} N_{C} \rightarrow \begin{cases} N_{tot} = N_{i}.\sigma_{geo} N_{C} \\ \phi_{tot} = \phi_{i}.\sigma_{geo} N_{C} \end{cases}$$

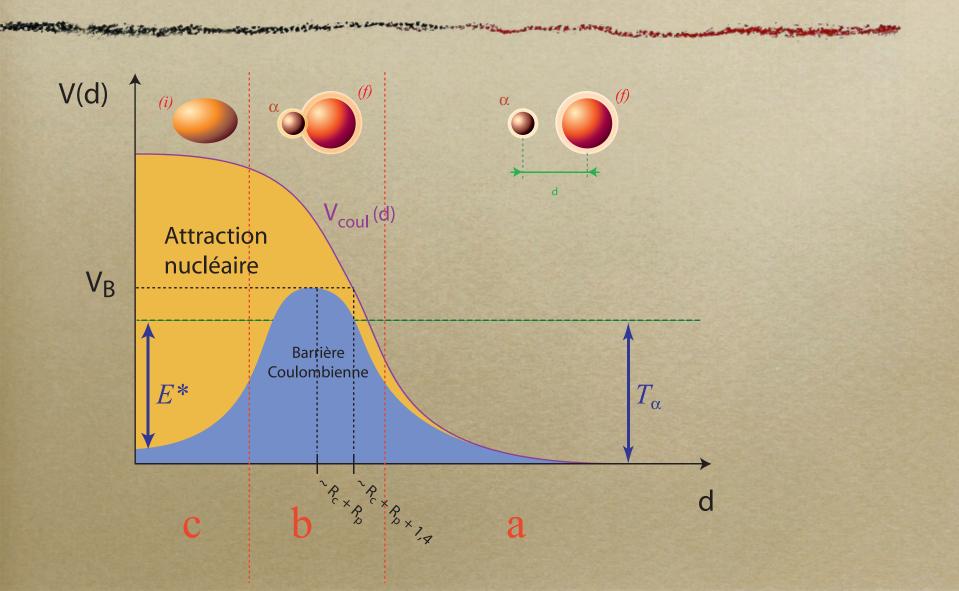

unstability of heavy nuclei ...

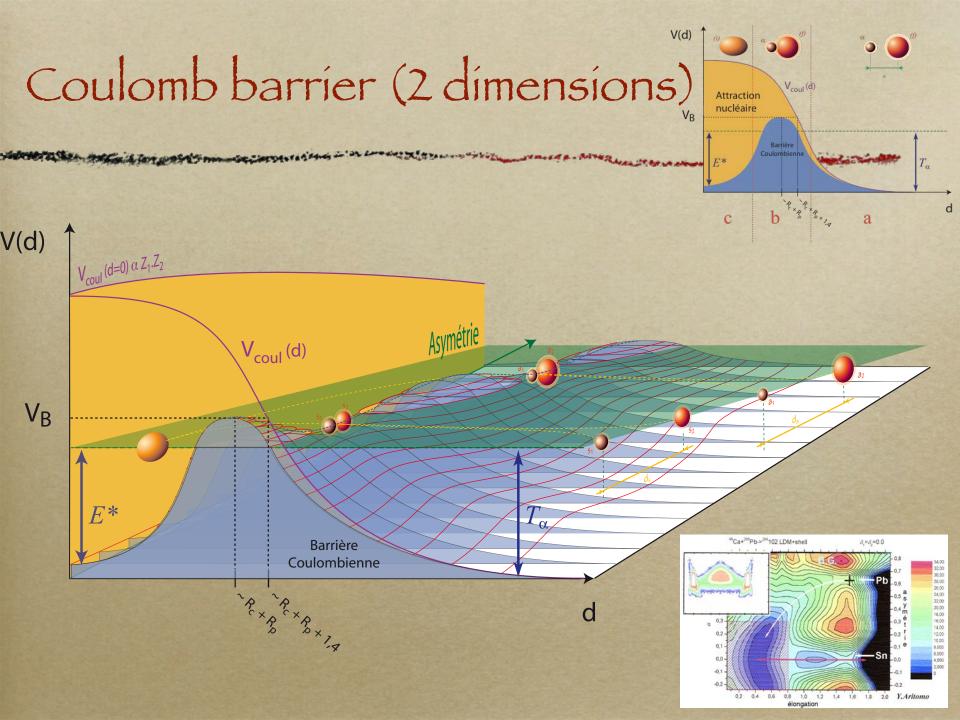
unstability of heavy nuclei ...



Fusion cross section

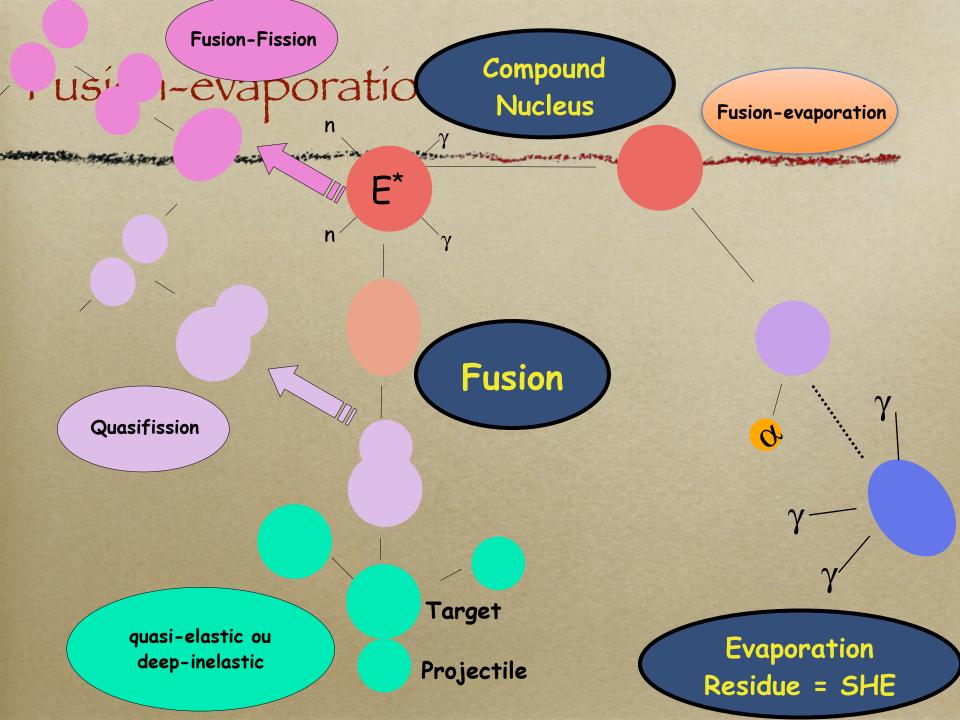
Effects of the entrance channel

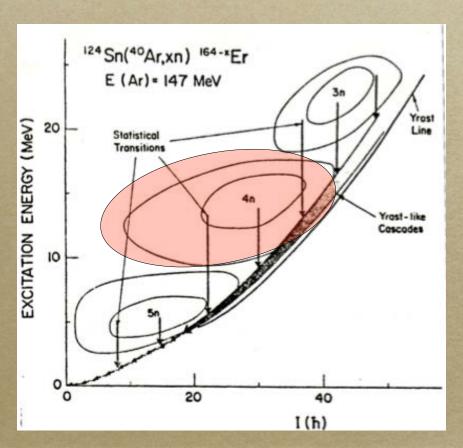

Coulomb force depends on the orientation of the target and the projectile

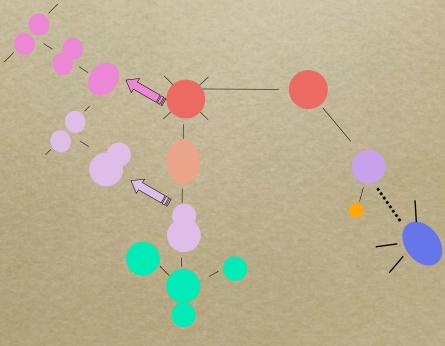


T(E)

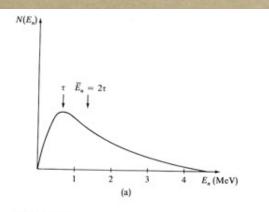
Énergie


Coulomb barrier (1 dimension)


Super Heavy Elements (SHE) outline


- Nuclear stability and limits of existence
- Manifestation of quantum world
- Production probability
- How to produce SHE
- How to identify SHE
- What physical properties can we measure?
- What chemical properties can we measure?

Fusion-evaporation reaction


$$\sigma_{ER} = \frac{\pi}{k^2} \Sigma(2L+1) T_L(E) P_{fusion}(E,L) W_{survival}(E^*,L)$$

Exit channel as a function of Energy

Statistical evaporation of x neutrons « xn » channel

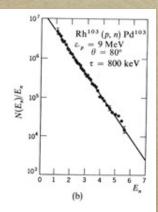
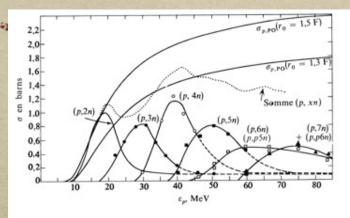
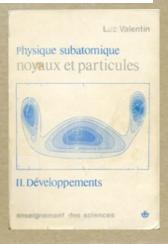
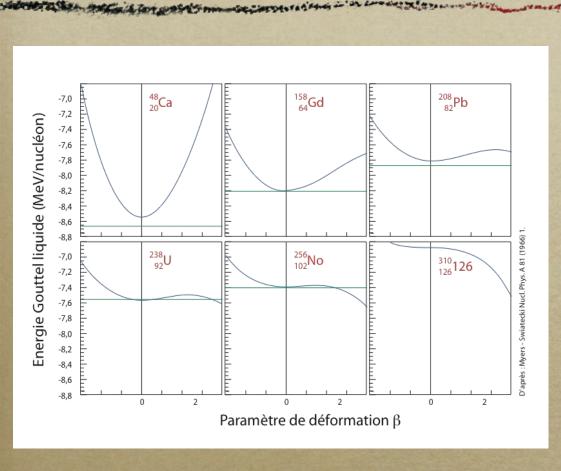
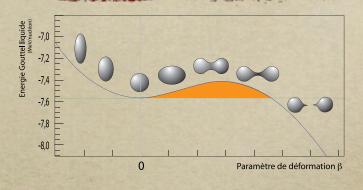


FIGURE XI.4

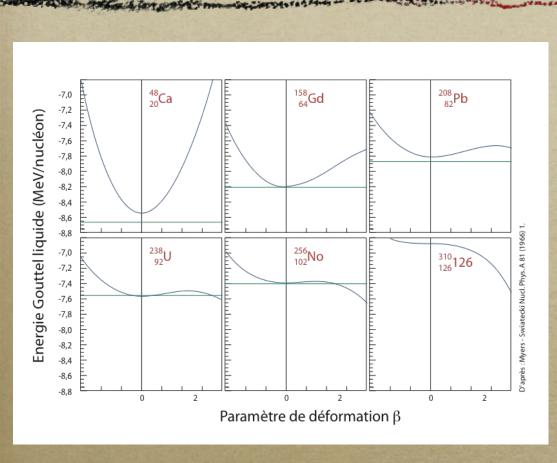
Le spectre d'évaporation de neutron est en première approximation une distribution de Maxwell de la forme $N(E_n) \propto (E_n/\tau^2) \, \mathrm{e}^{-E_n/\tau}$ où $N(E_n)$ est le nombre de neutrons émis avec une énergie cinétique comprise entre E_n et E_n+dE_n et où τ est la température nucléaire définie par la relation (XI.18), à savoir : $\mathrm{d}(\mathrm{Log}\,\omega)/\mathrm{d}E_n=1/\tau$. La figure (a) donne son allure caractéristique pour $\tau \simeq 0.8$ MeV. Il est préférable de présenter les résultats en traçant directement la quantité $N(E_n)/E_n$ à l'échelle logarithmique en fonction de E_n . La pente de la droite ainsi obtenue fournit $1/\tau$ dont on déduit ω (E_n). La figure (b) montre un résultat expérimental typique. Le spectre des neutrons d'évaporation émis par le noyau composé $^{104}\mathrm{Pd}$ a été détecté à l'angle $\theta=80^\circ$. L'accord avec la théorie est satisfaisant pour $\tau=0.8$ MeV.

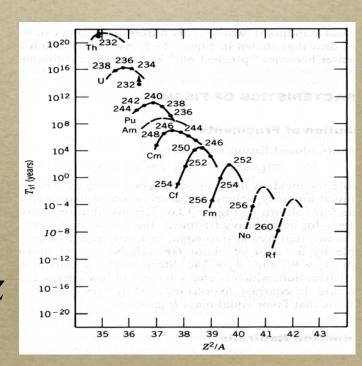




FIGURE XI.3

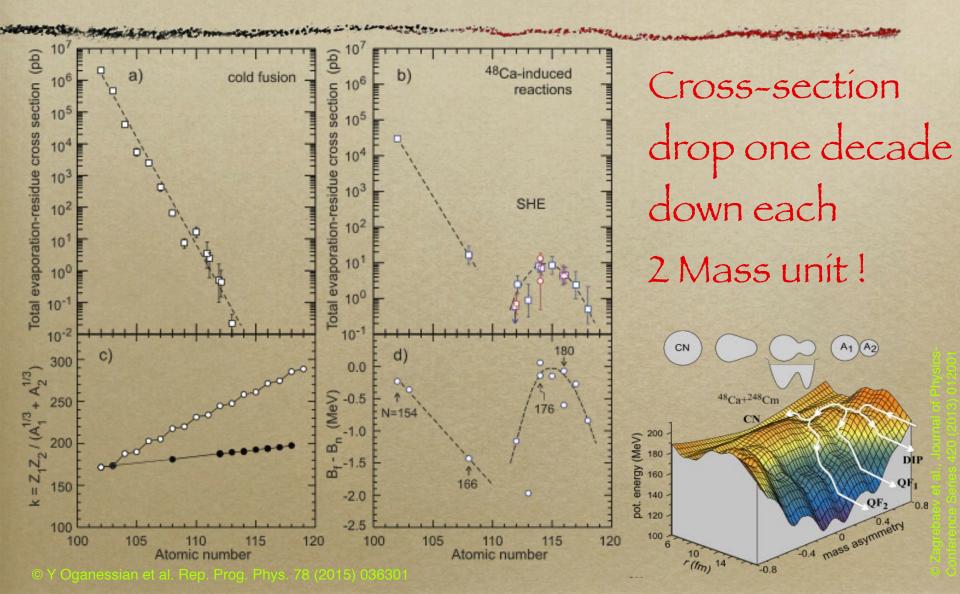

Fonctions d'excitation des réactions (p, xn) induites sur le noyau $^{209}_{83}$ Bi (pour x variant de 2 à 7). Les sections efficaces des réactions (p, 6n) et (p, 7n) ne peuvent être obtenues que de façon cumulative avec celles des réactions (p, p5n) et (p, p6n) respectivement, car les nuclides formés par ces dernières se désintègrent vers les nuclides caractéristiques des réactions (p, 6n) et (p, 7n) avant que l'on puisse commencer les mesures d'activité. Les courbes notées $\sigma_{p,P0}$ sont les sections efficaces de formation du noyau composé $^{210}_{84}$ Po calculées dans l'hypothèse d'un noyau noir de rayon $R = r_0 A^{1/3}$ (avec $r_0 = 1,5$ F et $r_0 = 1,3$ F), en tenant compte de la probabilité de franchir la barrière coulombienne (cf. exercice XL2).

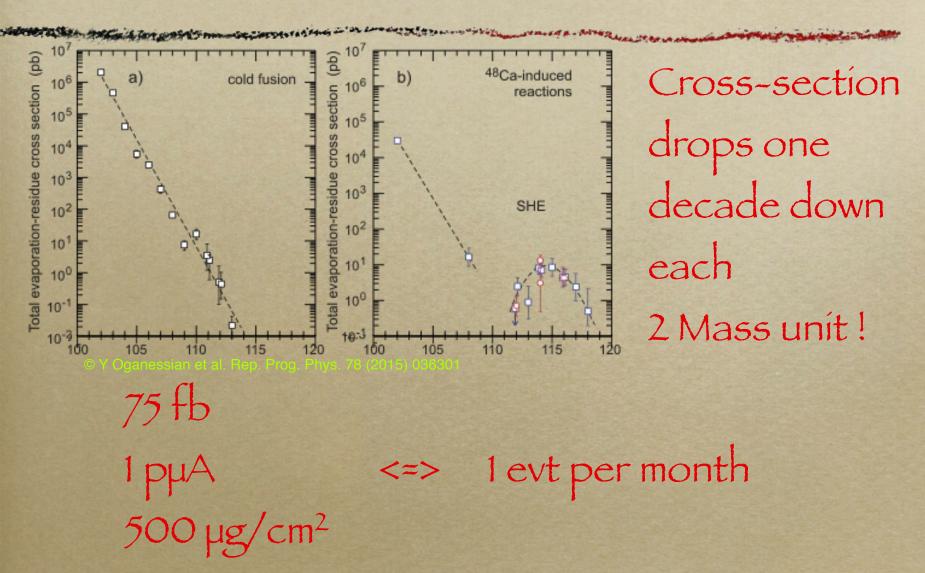
Maxwell Energy Distribution


Coulomb barrier (Z dependance)



Coulomb barrier disappear progressively with Z


Coulomb barrier (Z dependance)



Coulomb barrier disappear progressively with Z
... Fission is enhanced!

SHE production probability

SHE production probability

Heaviest elements

Only a few events observed

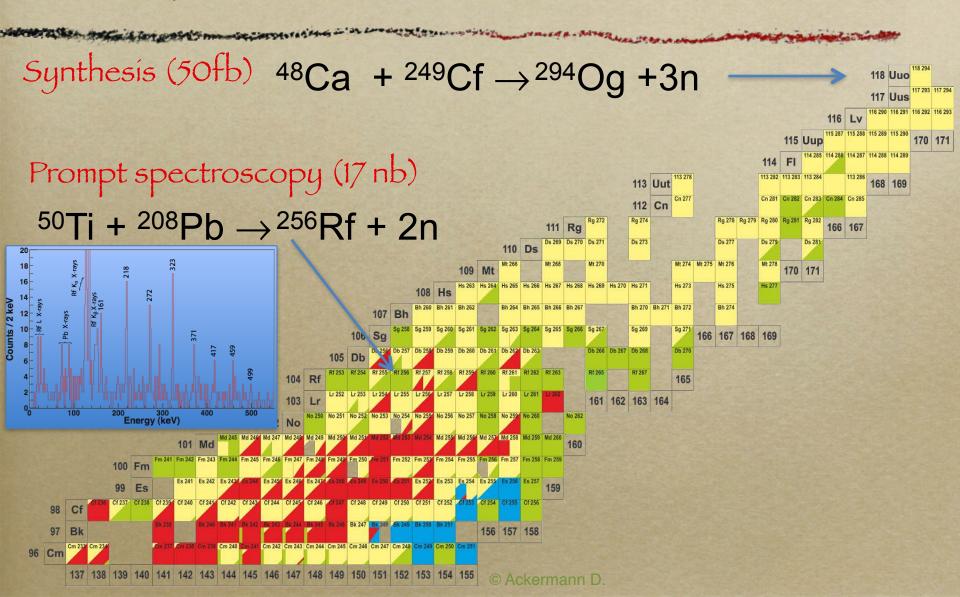
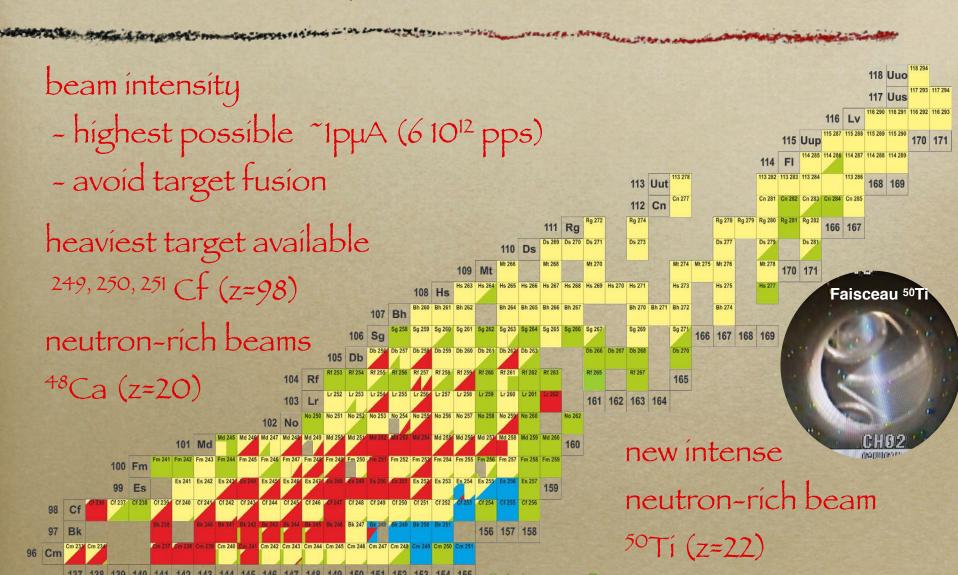

in years of study

Table 1
Decay properties of nuclei.


Z	N	A	No. observed ^a	Decay mode, branch (%) ^{b,c}	Half-life ^c	E_{α} (MeV)	Q_{α}^{exp} (MeV)	Refs.
118	176	294	d:4	α	$0.69^{+0.64}_{-0.22} \text{ ms}$	11.66 ± 0.06	11.82 ± 0.06	[71,73,74]
117	177	294	d:3, t:2	α	51^{+38}_{16} ms	10.81-11.07	11.18 ± 0.04	[74,86–89]
	176	293	d:15	α	$51^{+38}_{-16} \text{ ms}$ 22^{+8}_{-4} ms	10.60-11.20	11.32 ± 0.05	[74,86–88]
16	177	293	d:4, s:1	α	$57^{+43}_{-17} \text{ ms}$	10.56 ± 0.02	10.71 ± 0.02	[68–70,72]
	176	292	d:5, s:4	α	13^{+7}_{-4} ms	10.63 ± 0.02	10.78 ± 0.02	[70,72]
	175	291	d:3, s:1	α	$57^{+43}_{-17} \text{ ms}$ 13^{+7}_{-4} ms 19^{+17}_{-6} ms	10.74 ± 0.07 10.50 ± 0.02	10.89 ± 0.07	[49,71,72]
	174	290	d:11	α	$8.3^{+3.5}_{-1.9}$ ms	10.85 ± 0.02 10.85 ± 0.07	11.00 ± 0.07	[49,71,73, 74]
115	175	290	d:4, t:2	α	$650^{+490}_{-200} \text{ ms}$ $330^{+120}_{-80} \text{ ms}$	9.78-10.31	10.41 ± 0.04	[74,86–89]
	174	289	d:16	α	330^{+120}_{-80} ms	10.15–10.54	10.49 ± 0.05	[74,80,81, 86–88]
	173	288	d:27, t:19	α	$164^{+30}_{-21} \text{ ms}$	10.29–10.58	10.63 ± 0.01 $\approx 10.7 [83]$	[75,76,80,83 83,84]
	172	287	d:2, t1	α	37^{+44}_{-13} ms	10.61 ± 0.05	10.76 ± 0.05	[75,76,81,8 84]
14	175	289	d:10, s:1, t:4, tc:1	α	$1.9^{+0.7}_{-0.4} \text{ s}$	9.84 ± 0.02 9.48 ± 0.08	9.98 ± 0.02	[45,48,49,69 65,68–70,72
	174	288	d:17, s:4, t:11, ic:2, tc:1	α	$0.66^{+0.14}_{-0.10} $ s	9.93 ± 0.03	10.07 ± 0.03	[45,49,56,6 62,65,70,72
	173	287	d:16, s:1, b:1, ic:1	α	$0.48^{+0.14}_{-0.09} \text{ s}$	10.03 ± 0.02	10.17 ± 0.02	[46,49,56,6 70–72]
	172	286	d:25, b:2	α : 60^{+10}_{-11}	$0.12^{+0.04}_{-0.02} \text{ s}$	10.21 ± 0.04	10.35 ± 0.04	[46,47,49,56,70,71,73,74
	171	285	b:1	α	$0.13^{+0.60}_{-0.06} \mathrm{s}$			[47]
113	173	286	d:4, t:2	α	$9.5^{+6.3}_{-2.7}$ s	9.61-9.75	9.79 ± 0.05	[74,86–89]
	172	285	d:17	α	$9.5^{+6.3}_{-2.7}$ s $4.2^{+1.4}_{-0.8}$ s	9.47–10.18	10.01 ± 0.04	[74,80,81, 86–88]
	171	284	d:27, t:20	α	$0.91^{+0.17}_{-0.13} \text{ s}$	9.10–10.11	10.12 ± 0.01 $\approx 10.3 [83]$	[75,76,80,8 83,88,84]
	170	283	d:1, t1	α	75^{+136}_{-30} ms	10.23 ± 0.01	10.38 ± 0.01	[75,76,81,8 84]
	169	282	d:2	α	73^{+134}_{-29} ms	10.63 ± 0.08	10.78 ± 0.08	[82]
12	173	285	d:10, s:1, t:4, ic:1, tc:1	α	28^{+9}_{-6} s	9.19 ± 0.02	9.32 ± 0.02	[45,48,49,6 62,65,68–7 72]
	172	284	d:19, s:4, t:11, ic:2, tc:1	SF	$98^{+20}_{-14} \text{ ms}$			[45,49,56,6 62,65,70,72
	171	283	d:22, s:4, b:1, ic:6	<i>α</i> : ≥ 93	$4.2^{+1.1}_{-0.7}$ s	9.53 ± 0.02 9.33 ± 0.06 8.94 ± 0.07	9.66 ± 0.02	[46,49, 56–59,61,63 70,71]

Yu. Ts. Oganessian*, V.K. Utyonkov Nuclear Physics A 944 (2015) 62–98

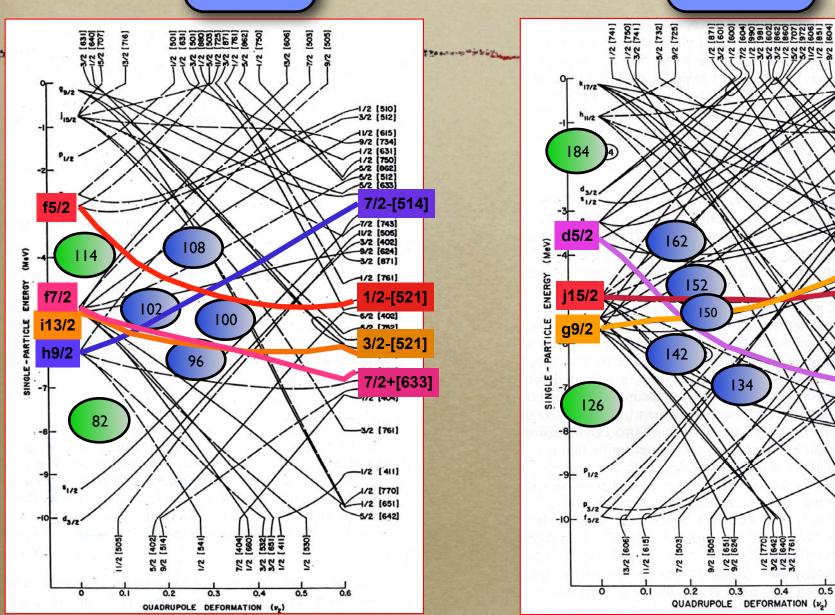
The experimental limits?

Limits for SHE production

What can we learn from Y-e-spectroscopy?

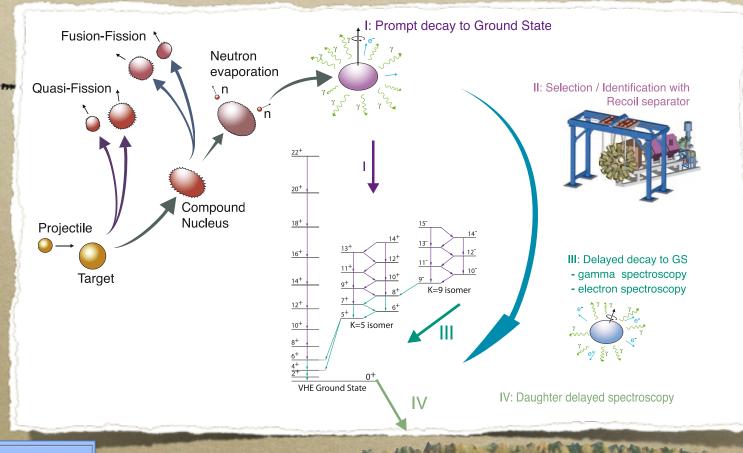
Neutrons

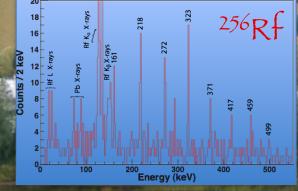
7/2+[624]

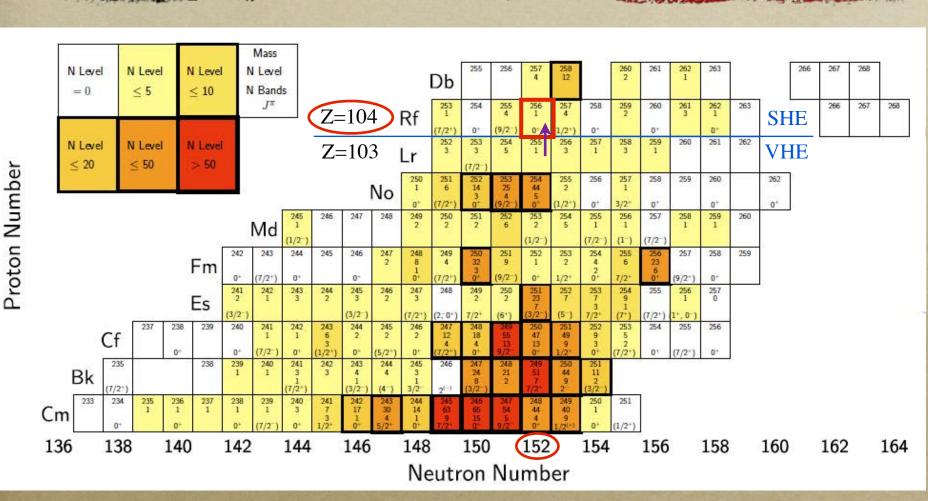

1/2+[631]

-7/2 [743] -3/2 [871] -3/2 [631]

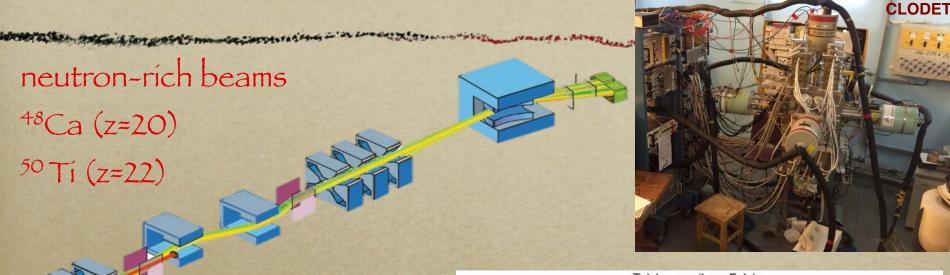
-5/2 [633] -9/2 [624]


1/2 [880]

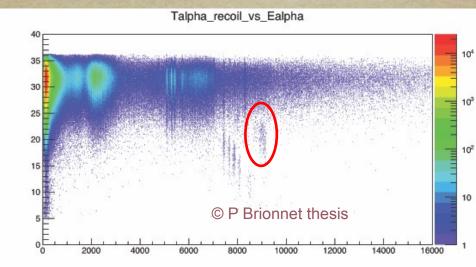

0.6


Limits for prompt spectroscopy

...counting rate in Ge detectors ...

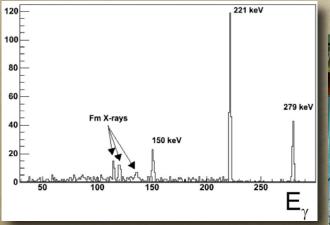


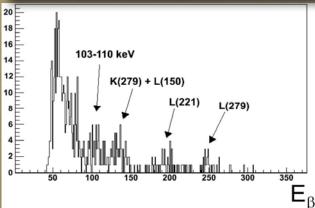
Transfermium region spectroscopy


Limits for delayed spectroscopy

beam intensity

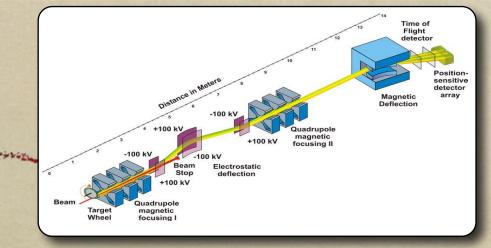
- highest possible ~0.6 pµA
- avoid target fusion


targets available



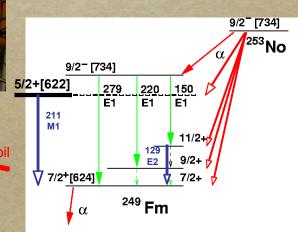
<u>VASSILISSA</u> - "VASSILISSA" electrostatic separator was put into operation in 1987. It's one of the FLNR's basic setups for synthesis of superheavy elements. In 2005 the experiments on study of decay properties of transfermium elements using gamma- and electron spectroscopy methods were performed for the first time. This work has become feasible thanks to cooperation with French scientists.

Example with GABRIELA


Spectra of 249Fm at focal plane

Spectroscopy of trans uranium (VHE)

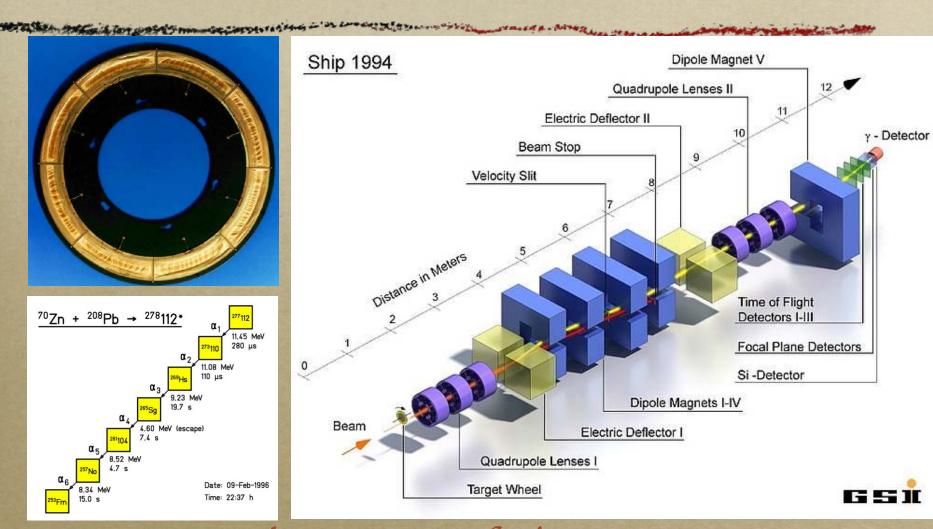
K. Hauschild, A.V. Yeremin et al., Nucl. Instr. Meth. A 560 (2006) 388


7 detectors Ge+BGO- AC (@IreS) detection Gamma:

10% efficacité @200 keV

60x60 mm² 16 strips Si detector SI at vassilissa focal planede Vassilissa implantation ER & alpha detection efficiency: 50%

Four 50x50 mm² 4-strip Si@IN2P3 Preamplifiers developed @GANIL detection Electron & escape as


20% efficacité @200 keV

Super Heavy Elements (SHE) outline

- Nuclear stability and limits of existence
- Manifestation of quantum world
- Production probability
- 6 How to produce SHE
- How to identify SHE
- What physical properties can we measure?
- What chemical properties can we measure?

Needs efficient separators

SHIP (@GSI) discovery of elements 107-112

Needs efficient separators Jul. 23, 2004 11.82 ± 0.06 MeV (PSD) Manual fortunes of manual conservations 10.65 ± 0.06 MeV (PSD) 204 MeV(PSD) hree 278Nh (Z=113) observed Aug. 12, 2012 Fig. 3. (Color) Observed decay chain in the present work together with previously observed chains. (2)

GARIS I (@RIKEN) Nh in 3 years of beam time)

Needs efficient separators

Three 278Nh (Z=113) observed

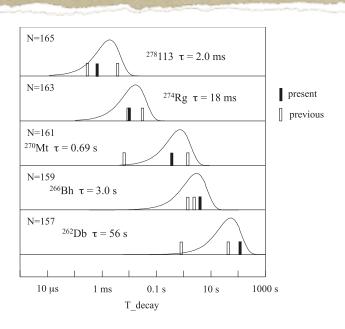
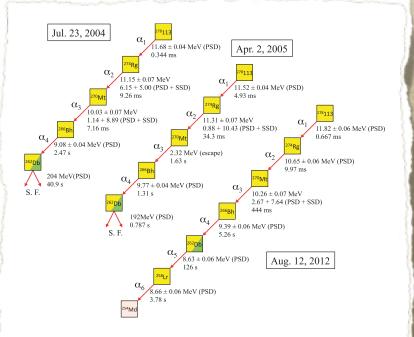
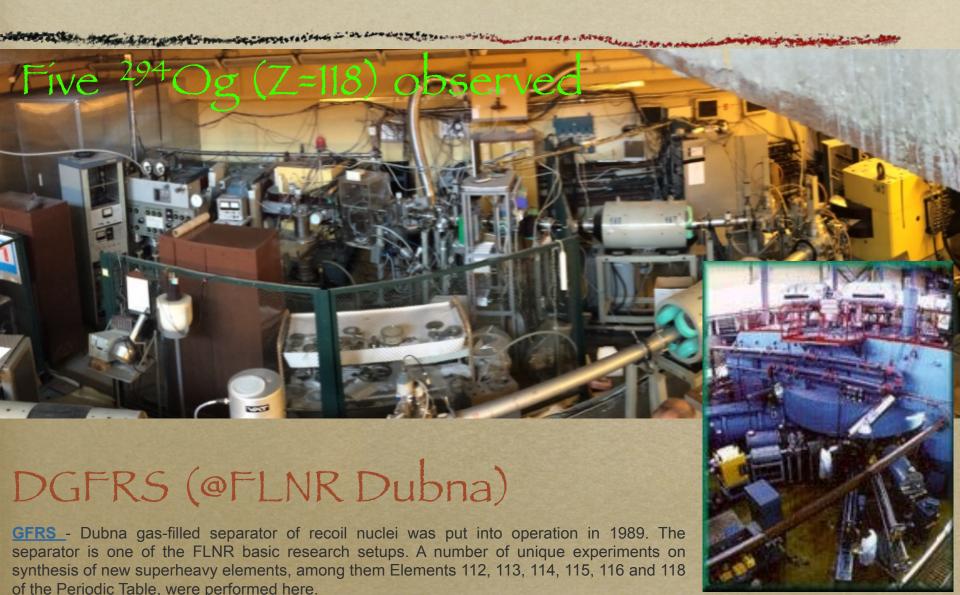
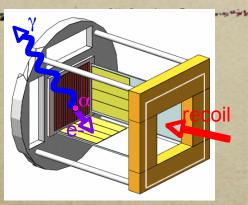
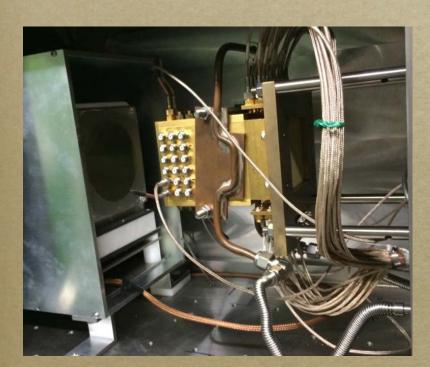


Fig. 2. Decay time (T_decay) distributions of the decay family originating from 278 113 are indicated. The logarithm of the decay times is taken as the abscissa. Mean lifetimes τ determined from three decay chains are shown together with the symbols of the nuclides. Curves in the graphs correspond

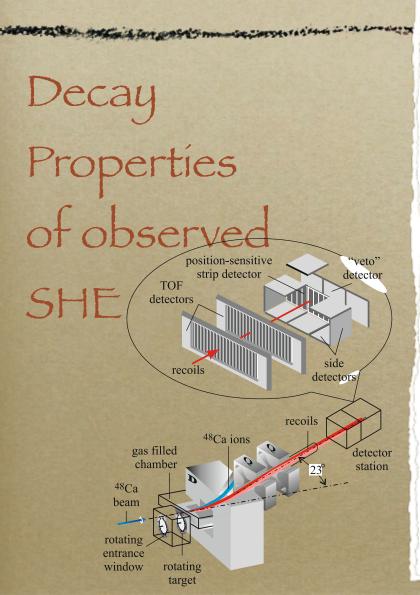

Fig. 3. (Color) Observed decay chain in the present work together with previously observed chains.²⁾


GARISI (@RIKEN) Nh in 3 years of beam time)

Needs Intense beams & long runs (months)

Efficient focal plane detection systems

Implantation


Recoil

Tof

decay

Super Heavy Elements (SHE) outline

- Nuclear stability and limits of existence
- Manifestation of quantum world
- Production probability
- How to produce SHE
- How to identify SHE
- What physical properties can we measure?
- What chemical properties can we measure?

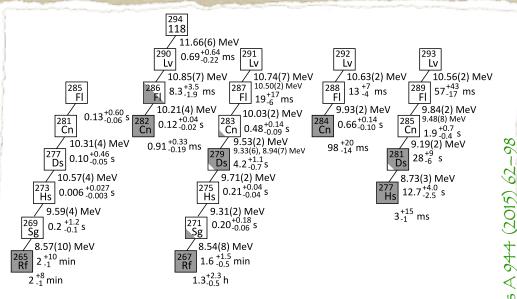
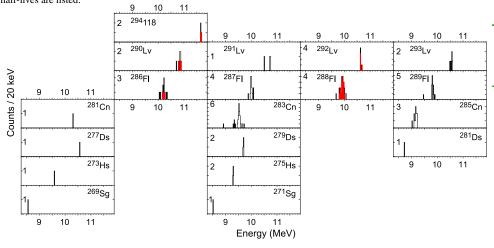



Fig. 3. Summary decay properties of the isotopes of even-Z elements synthesized in the reactions of 48 Ca with 238 U, 242,244 Pu, 245,248 Cm, and 249 Cf target nuclei. The average energies of α particles and half-lives are given for α emitters (open squares). The energies of rare α lines are given by smaller font. The energy uncertainties given in parenthesis correspond to the data with the best energy resolution. For spontaneously fissioning nuclei marked by grey squares the half-lives are listed.

V.K.Utyonkov Nuclear

ganessían*,

Fig. 7. α -particle energy spectra for even-Z nuclei registered by the focal-plane detector only or together with the side one at DGFRS [48,49,56,68–71,73,74], IVO + COLD [57–61], SHIP [63,72], BGS [46,47], and TASCA [45,65]. Note, the energy resolution of α -particles detected simultaneously by the focal-plane and side detectors was up to 0.20 MeV (spectra for events with energy resolution better than 0.1 MeV shown in red). The data from the IVO + COLD are included if ΔE_{α} are published.

Decay
Properties
of observed
SHE

Table 1
Decay properties of nuclei.

Z	N	A	No. observed ^a	Decay mode, branch (%) ^{b,c}	Half-life ^c	E_{α} (MeV)	Q_{α}^{exp} (MeV)	Refs.
18	176	294	d:4	α	0.69 ^{+0.64} _{-0.22} ms	11.66 ± 0.06	11.82 ± 0.06	[71,73,74]
17	177	294	d:3, t:2	α	51^{+38}_{-16} ms	10.81-11.07	11.18 ± 0.04	[74,86–89]
	176	293	d:15	α	22^{+8}_{-4} ms	10.60-11.20	11.32 ± 0.05	[74,86–88]
16	177	293	d:4, s:1	α	57^{+43}_{-17} ms	10.56 ± 0.02	10.71 ± 0.02	[68–70,72]
	176	292	d:5, s:4	α	13^{+7}_{-4} ms	10.63 ± 0.02	10.78 ± 0.02	[70,72]
	175	291	d:3, s:1	α	19^{+17}_{-6} ms	10.74 ± 0.07 10.50 ± 0.02	10.89 ± 0.07	[49,71,72]
	174	290	d:11	α	$8.3^{+3.5}_{-1.9}$ ms	10.85 ± 0.07	11.00 ± 0.07	[49,71,73, 74]
15	175	290	d:4, t:2	α	650^{+490}_{-200} ms	9.78-10.31	10.41 ± 0.04	[74,86–89]
	174	289	d:16	α	$650^{+490}_{-200} \text{ ms}$ $330^{+120}_{-80} \text{ ms}$	10.15–10.54	10.49 ± 0.05	[74,80,81, 86–88]
	173	288	d:27, t:19	α	$164^{+30}_{-21} \text{ ms}$	10.29–10.58	10.63 ± 0.01 $\approx 10.7 [83]$	[75,76,80,81 83,84]
	172	287	d:2, t1	α	37^{+44}_{-13} ms	10.61 ± 0.05	10.76 ± 0.05	[75,76,81,83 84]
14	175	289	d:10, s:1, t:4, te:1	α	$1.9^{+0.7}_{-0.4}$ s	9.84 ± 0.02 9.48 ± 0.08	9.98 ± 0.02	[45,48,49,62 65,68–70,72
	174	288	d:17, s:4, t:11, ic:2, tc:1	α	$0.66^{+0.14}_{-0.10} \text{ s}$	9.93 ± 0.03	10.07 ± 0.03	[45,49,56,61 62,65,70,72]
	173	287	d:16, s:1, b:1, ic:1	α	$0.48^{+0.14}_{-0.09} \text{ s}$	10.03 ± 0.02	10.17 ± 0.02	[46,49,56,61 70–72]
	172	286	d:25, b:2	α : 60^{+10}_{-11}	$0.12^{+0.04}_{-0.02} \text{ s}$	10.21 ± 0.04	10.35 ± 0.04	[46,47,49,56 70,71,73,74]
	171	285	b:1	α	$0.13^{+0.60}_{-0.06} \text{ s}$			[47]
13	173	286	d:4, t:2	α	$9.5^{+6.3}_{-2.7}$ s	9.61-9.75	9.79 ± 0.05	[74,86–89]
	172	285	d:17	α	$4.2^{+\overline{1.4}}_{-0.8}$ s	9.47–10.18	10.01 ± 0.04	[74,80,81, 86–88]
	171	284	d:27, t:20	α	$0.91^{+0.17}_{-0.13} \text{ s}$	9.10–10.11	10.12 ± 0.01 $\approx 10.3 [83]$	[75,76,80,81 83,88,84]
	170	283	d:1, t1	α	75^{+136}_{-30} ms	10.23 ± 0.01	10.38 ± 0.01	[75,76,81,83 84]
	169	282	d:2	α	73^{+134}_{-29} ms	10.63 ± 0.08	10.78 ± 0.08	[82]
12	173	285	d:10, s:1, t:4, ic:1, tc:1	α	28^{+9}_{-6} s	9.19 ± 0.02	9.32 ± 0.02	[45,48,49,60 62,65,68–70 72]
	172	284	d:19, s:4, t:11, ic:2, tc:1	SF	$98^{+20}_{-14} \text{ ms}$			[45,49,56,61 62,65,70,72]
	171	283	d:22, s:4, b:1, ic:6	<i>α</i> : ≥ 93	$4.2^{+1.1}_{-0.7}$ s	9.53 ± 0.02 9.33 ± 0.06 8.94 ± 0.07	9.66 ± 0.02	[46,49, 56–59,61,63 70,71]

Yu. Ts. Oganessian*, V.K. Utyonkov Nuclear Physics A 944 (2015) 62–98

Decay Properties of observed SHE

Z	N	A	No. observed ^a	Decay mode, branch (%) ^{b,c}	Half-life ^c	E_{α} (MeV)	$Q_{\alpha}^{\mathrm{exp}}$ (MeV)	Refs.
	170	282	d:12, b:2	SF	$0.91^{+0.33}_{-0.19} \text{ ms}$			[46,47,49,56, 70,71]
	169	281	b:1	α	$0.10^{+0.46}_{-0.05} \text{ s}$	10.31 ± 0.04	10.46 ± 0.04	[47]
111	171	282	d:4, t:2	α	100^{+70}_{-30} s	8.86-9.05	9.16 ± 0.03	[74,86–89]
	170	281	d:20	SF: 88 ⁺⁷ ₋₉	17^{+6}_{-3} s	9.28 ± 0.05	9.41 ± 0.05	[74,80,81, 86–88]
	169	280	d:27, t:18	α	$4.6^{+0.8}_{-0.7}$ s	9.09–9.92	9.91 ± 0.01 10.15 ± 0.01 [83]	[75,76,80,81, 83,84]
	168	279	d:2, t1	α	90^{+170}_{-40} ms	10.38 ± 0.16	10.53 ± 0.16	[75,76,81,83, 84]
	167	278	d:2	α	$4.2^{+7.5}_{-1.7}$ ms	10.69 ± 0.08	10.85 ± 0.08	[82]
110	171	281	d:10, s:1, t:4, ic:1, tc:1	SF: 93 ⁺⁵ ₋₉	12.7 ^{+4.0} _{-2.5} s	8.73 ± 0.03	8.85 ± 0.03	[45,48,49,60, 62,65,68–70, 72]
	169	279	d:26, s:3, b:1, ic:6	SF: 89 ⁺⁴ ₋₆	$0.21^{+0.04}_{-0.04} \text{ s}$	9.71 ± 0.02	9.85 ± 0.02	[46,49, 56–59,61,63, 70–72]
	167	277	b:1	α	$0.006^{+0.027}_{-0.003} \mathrm{s}$	10.57 ± 0.04	10.72 ± 0.04	[47]
109	169	278	d:3, t:2	α	$4.5^{+3.5}_{-1.3}$ s	9.38-9.55	9.58 ± 0.03	[74,86–89]
	168	277	d:2	SF	5^{+9}_{-2} ms			[88]
	167	276	d:27, t:16	α	$0.45^{+0.12}_{-0.09}$ s 6^{+5}_{-3} s	9.17–10.01	10.03 ± 0.01 10.10 ± 0.01 [83]	[75,76,80,81, 83,84]
	166	275	d:2, t1	α	20^{+24}_{-7} ms	10.33 ± 0.01	10.48 ± 0.01	[75,76,81,83,
	165	274	d:2	α	$440^{+810}_{-170} \text{ ms}$	10.0 ± 1.1 9.76 ± 0.10	10.2 ± 1.1	[82]
108	169	277	t:1	SF	3^{+15}_{-1} ms			[45,65]
	167	275	d:3, s:1	α	$0.20^{+0.18}_{-0.06}$ s	9.31 ± 0.02	9.45 ± 0.02	[56,70–72]
	165	273	b:1	α	$0.20^{+0.18}_{-0.06} \text{ s}$ $0.2^{+1.2}_{-0.1} \text{ s}$	9.59 ± 0.04	9.73 ± 0.04	[47]
107	167	274	d:4, t:2	α	44^{+34}_{-13} s	8.73-8.84	8.94 ± 0.03	[74,86–89]
	165	272	d:27, t:17	α	$10.9^{+2.0}_{-1.5}$ s	8.55–9.15	9.18 ± 0.01 9.21 ± 0.01 [83]	[75,76,80,81, 83,84]
	164	271	d:1, t1	α	$1.5^{+2.8}_{-0.6}$ s	9.28 ± 0.07	9.42 ± 0.07	[81,83,84]
	163	270	d:1	α	61^{+292}_{-28} s	8.93 ± 0.08	9.06 ± 0.08	[82]
106	165	271	d:3, s:1	α : 58 \pm 23	$1.6^{+1.5}_{-0.5}$ min	8.54 ± 0.08	8.67 ± 0.08	[56,70–72]
	163	269	b:1	α	2^{+10}_{-1} min	8.57 ± 0.10	8.70 ± 0.10	[47]
105	165	270	d:4, t:2	SF ^e	$15^{+10}_{-4} \text{ h} $ $26^{+4}_{-3} \text{ h}^{d}$			[74,86–89]
	163	268	d:27, t:19, lc:20	SF ^e	$26^{+4}_{-3} \text{ h}^{d}$			[75–78,80, 81,83,84]
	162	267	d:2, t1	SF ^e	$1.3^{+1.6}_{-0.5}$ h			[75,76,81,83, 84]

Table 1 (continued)

(continued on next page)

Decay
Properties
of observed
SHE

Table 1 (continued)

Z	N	A	No. observed ^a	Decay mode, branch (%) ^{b,c}	Half-life ^c	E_{α} (MeV)	$Q_{\alpha}^{\mathrm{exp}}$ (MeV)	Refs.
	161	266	d:1	SF ^e	22^{+105}_{-10} min			[82]
104	163	267	d:2	SF	$1.3^{+2.3}_{-0.5}$ h 2^{+8}_{-1} min			[56,70,71]
	161	265	b:1	SF	2^{+8}_{-1} min			[47]

^a Number of observed decays at the separators DGFRS (d), SHIP (s), BGS (b), and TASCA (t) as well as in liquid-chemistry (lc) and gas-chemistry experiments at IVO + COLD (ic) and TASCA + COMPACT (tc) setups.

^e The SF mode was observed but EC/ β ⁺ or α decay is not excluded.

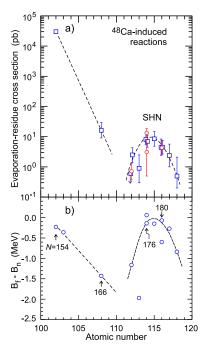


Fig. 6. (a) Maximum cross sections of the production of the isotopes of the heavy elements in hot fusion reactions: ^{208}Pb , ^{226}Ra , $^{233,238}\text{U}$, $^{242,244}\text{Pu}$, ^{243}Am , $^{245,248}\text{Cm}$, ^{249}Bk , and ^{249}Cf + ^{48}Ca ($E^*=35$ –40 MeV). Data measured at DGFRS are shown by blue squares, results obtained at SHIP, BGS, and TASCA are shown by red circles. (b) Difference of fission barrier heights (involving nonaxial shapes) and neutron binding energies of the compound nuclei in ^{48}Ca -induced reactions calculated in the macroscopic–microscopic nuclear model [7,8,103,107,108] and corrected for the odd–even effect are shown. Arrows show number of neutrons in the compound nucleus with the given atomic number. Lines are drawn to guide the eye.

b Branch is given for the most probable decay mode (α or SF). It is not shown if only one decay mode was observed.

^c Error bars correspond to 68%-confidence level.

^d The value obtained combining the results of physical and chemical experiments.

Decay
Properties
of observed
SHE

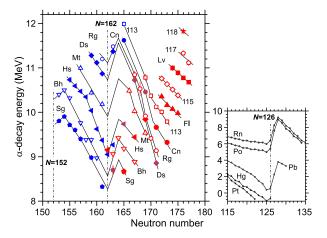


Fig. 10. Measured α -decay energy vs. neutron number for the isotopes of elements 106–118 (filled and open symbols refer to even-Z and odd-Z nuclei, respectively; Q_{α} values for nuclei produced in the Ra–Cf + 48 Ca reactions are shown in red; other data (blue symbols) are taken from [114,115]. The lines are drawn to guide the eye (left panel). The Q_{α} values for isotopes of even-Z elements Pt–Rn [114,115] are shown for comparison (right panel).

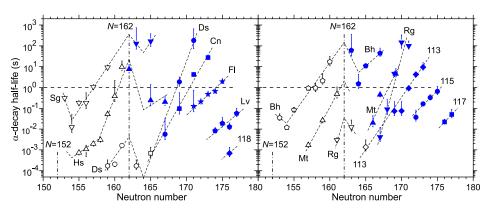


Fig. 11. Half-lives vs. neutron number for the isotopes of even-Z (left panel) and odd-Z (right panel) elements with Z = 106-118 (results from Ra-Cf + 48 Ca reaction are shown by full blue symbols (see Figs. 3, 5 and Table 1); other data are taken from [116]. Lines are drawn to guide the eye.

Decay
Properties
of observed
SHE

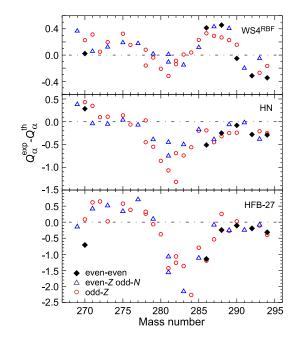
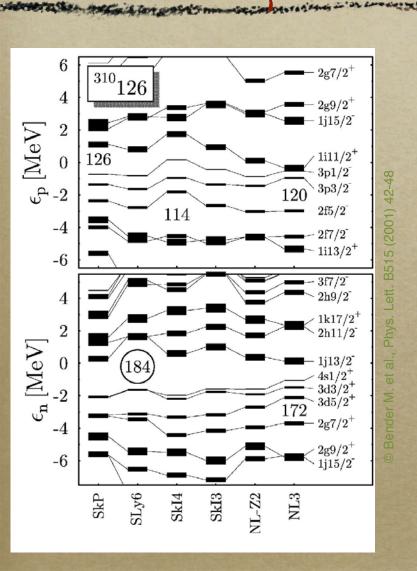
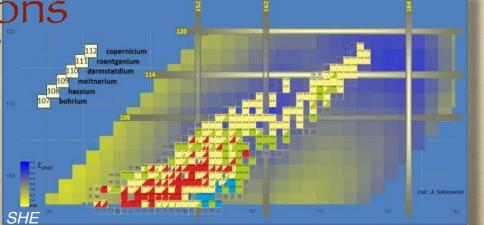
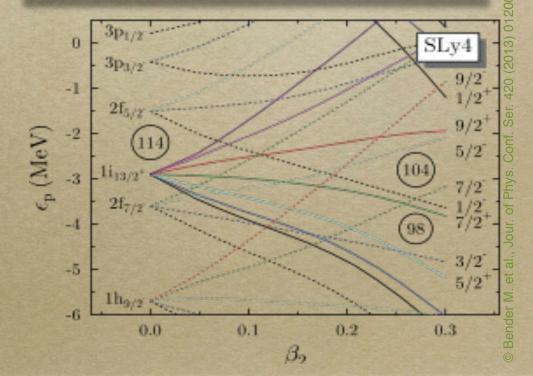
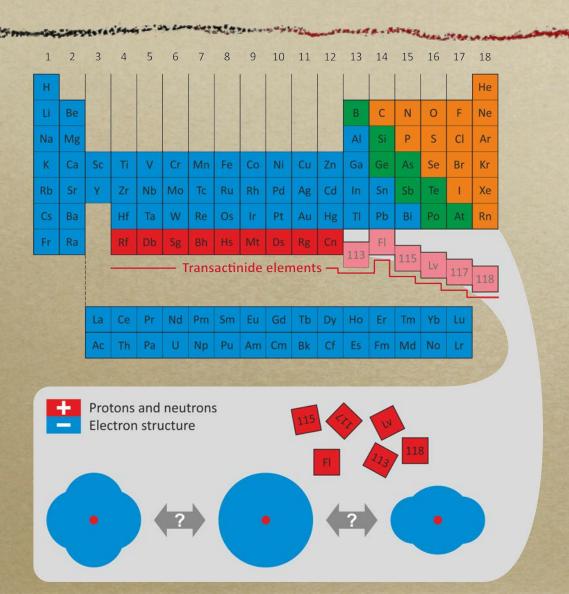
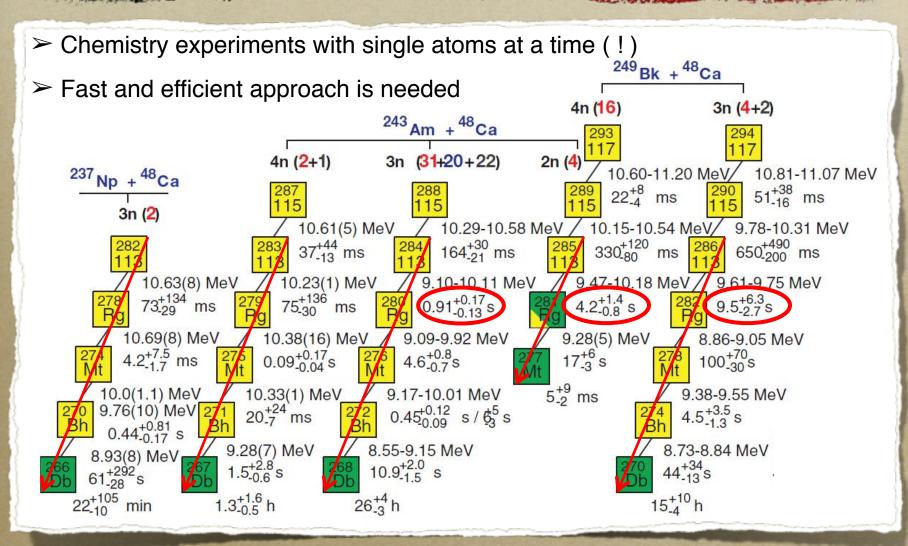




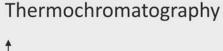
Fig. 12. Deviation between experimental and calculated α -decay energies for even–even, even-Z and odd-N, and odd-Z nuclei. Theoretical Q_{α} values were taken from [107,108] for macroscopic–microscopic model (HN, middle panel) and mass tables [117] (WS4^{RBF}, macroscopic–microscopic model, top panel) and [119] (HFB-27, Skyrme–Hartree–Fock–Bogoliubov model, bottom panel).

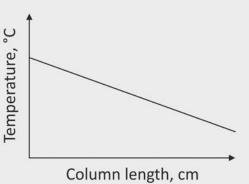

Comparison to

theoretical predictions

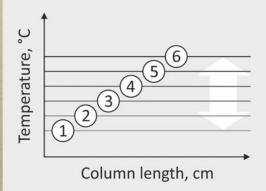


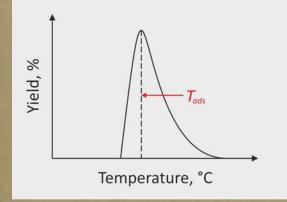

Ackermann D

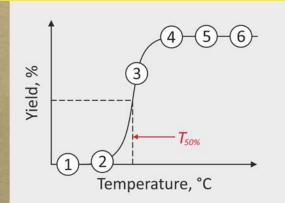



Super Heavy Elements (SHE) outline

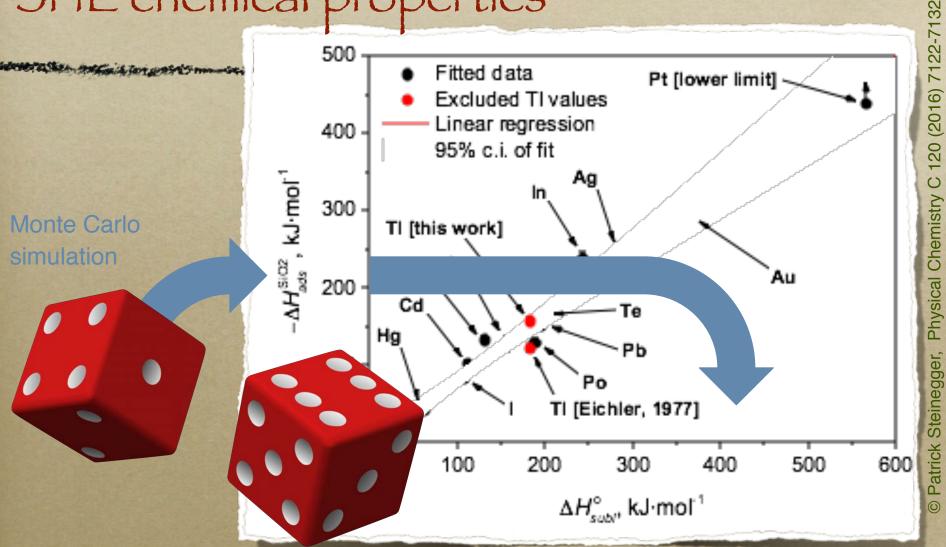
- Nuclear stability and limits of existence
- Manifestation of quantum world
- Production probability
- 6 How to produce SHE
- How to identify SHE
- What physical properties can we measure?
- What chemical properties can we measure?



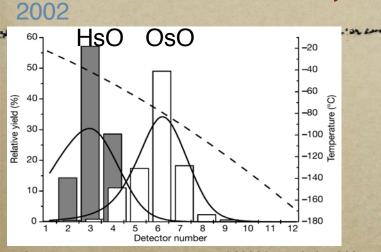


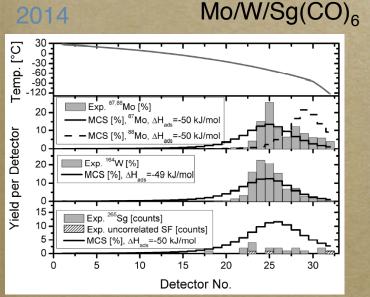


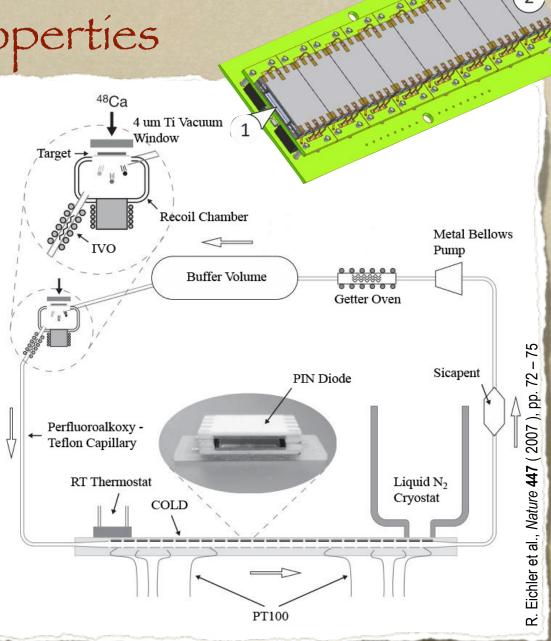
Isothermal Chromatography



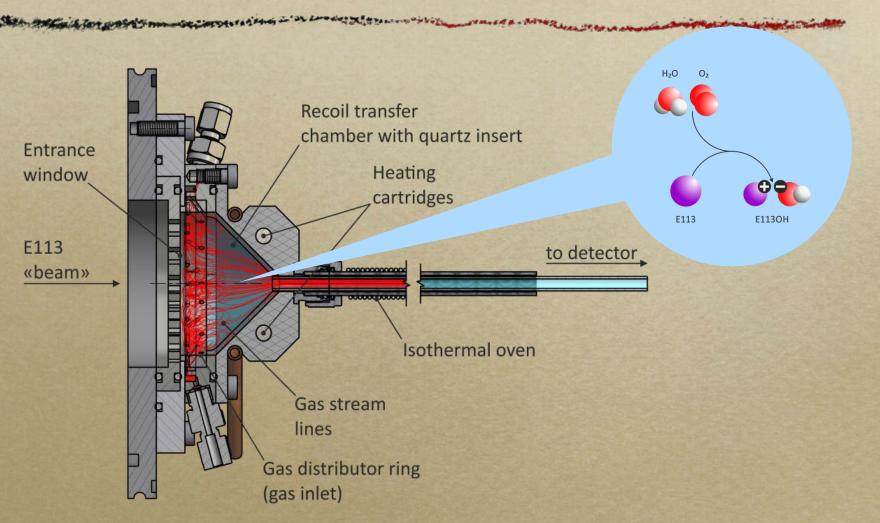
$$T_{ads} \approx T_{50\%}$$



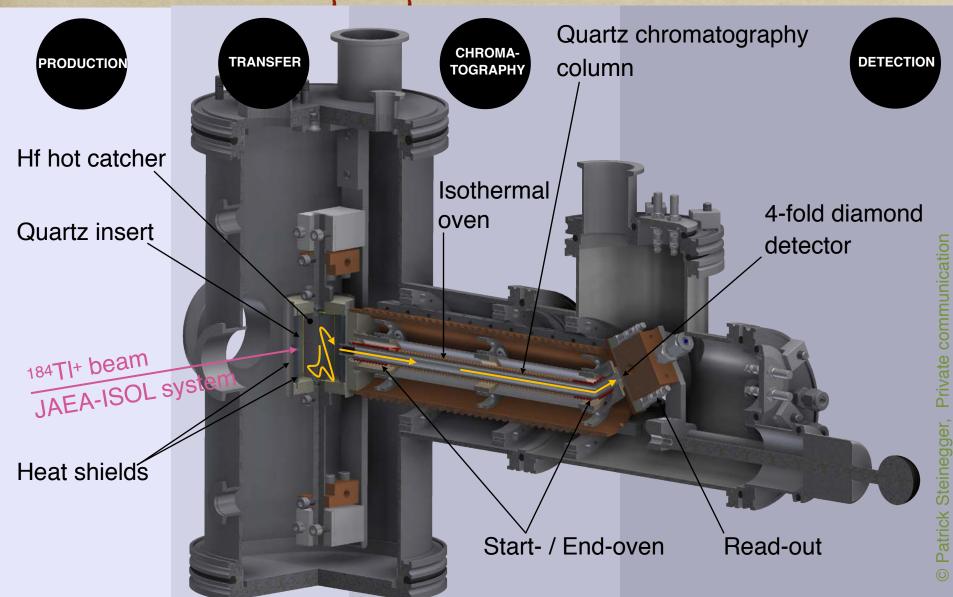




Going from a single atom property (adsorption enthalpy, ordinate) to a macroscopic property (sublimation enthalpy, abscissa) —> semi-empirical correlations between the adsorption enthalpy for x elements in a certain chemical state (e.g., elemental form as shown here) on a certain surface (e.g., quartz as shown here) and the corresponding sublimation enthalpy.

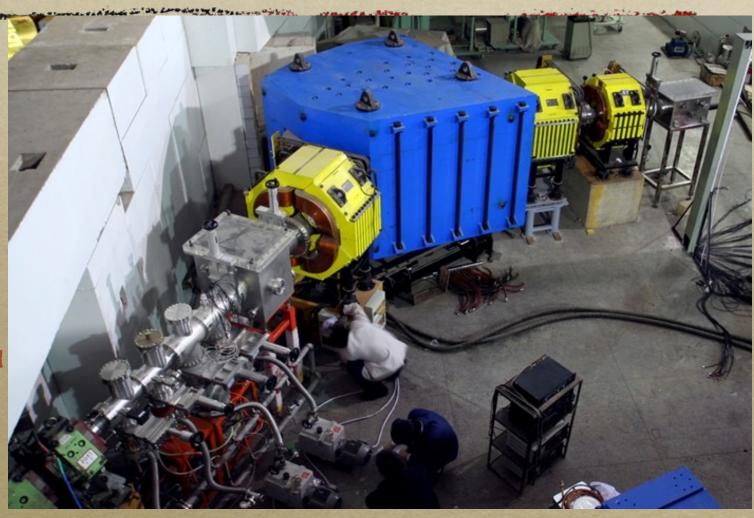


Ch. E. Düllmann et al., *Nature* **418** (2002), pp. 859 – 862



J. Even et al., Science 345 (2014), pp. 1491 – 1493

Development of a faster "gas-phase" technique (actually vacuum) to go to half-lives below 1 s (this is more of less the limit of current state-of-the-art gas phase experiments).



Super Heavy Elements (SHE)

Perspectives ...

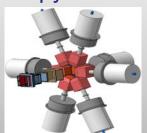
Chinese separator for VHE: SHANS?

Chinese
separator
for Heavy
elements
@ Lanzhou

A new gas-filled recoil separator was installed in the HIRFL (Heavy Ion Research Facility, Lanzhou) to separate the evaporation residues (EVRs) from other beam ions and unwanted reaction products. It is filled with helium gas at the pressure of about 0.8mbar. The focal plane detector system consisting a silicon box and a time-of-flight detector was improved.

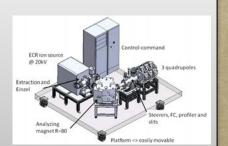
S3 in GANIL In-beam spectroscopy

Two step reactions EXOGAM2/AGATA **PARIS** MUST2/GASPARD


Not in the scope of the project

S3 Physics case (15 Lols)

- VHE SHE elements
- Proton drip-line and N=Z
- Nuclear astrophysics
- Atomic physics


Delayed spectroscopy

SIRIUS setup Implantation-decay station at the mass dispersive plan

Atomic physics

FISIC setup Fast Ion Slow Ion Collisions Electron exchange

Ground state properties (mass, size, moments, spins)

REGLIS³ setup Low Energy Branch

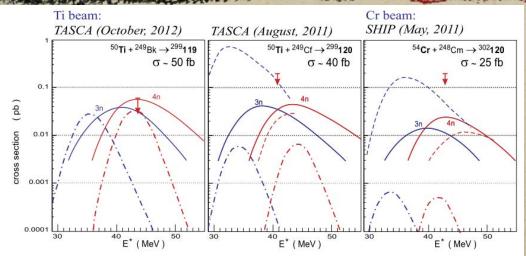
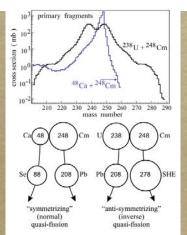
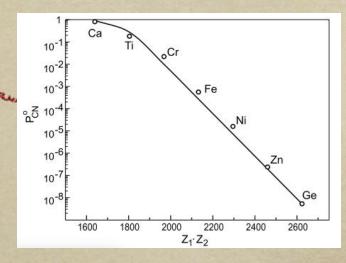
The SHE Factory?

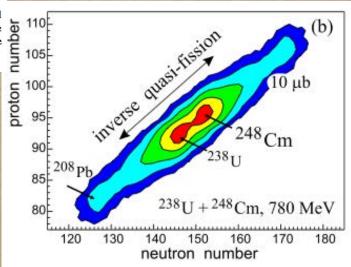
Main setups:

- Gas-filled recoil separator (DGFRS-II);
- Preseparator for chemical investigations;
- Separator for Heavy Element Spectroscopy: velocity filter SHELS;
- Mass Analyzer of SuperHeavy Atoms (<u>MASHA</u>)
- Channels reserved for external users

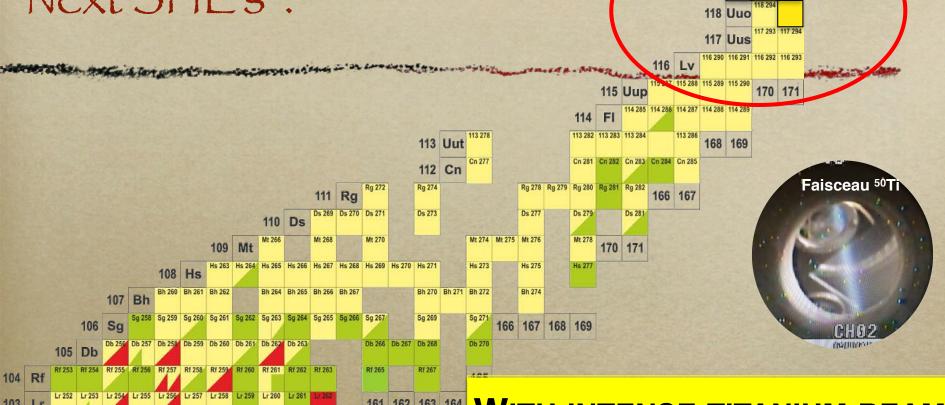
The SHE Factory?

Zagrebaev V.I. et al., Nucl. Phys. A 944 (2015) 257-307


Fig. 31. Cross sections for the production of new elements 119 and 120 in the Ti and Cr induced fusion reactions predicted within the described above model (solid curves [71]) and by the "fusion-by-diffusion" model (dashed curves [91]). The latest calculations within the "fusion-by-diffusion" model [92] are shown by dash-dotted curves. The arrows indicate the upper limits reached in the corresponding experiments performed at GSI [93,94].

238U + 248Cm


Need of very intense beams!

Next SHE's?

156 157 158

147 148 149 150 151 152 153 154 155

WITH INTENSE TITANIUM BEAM

120

50
Ti + 248 Cm \rightarrow 295 118 +3n 50 Ti + 249 Cf \rightarrow 296 120 +3n

Mendeleev table?

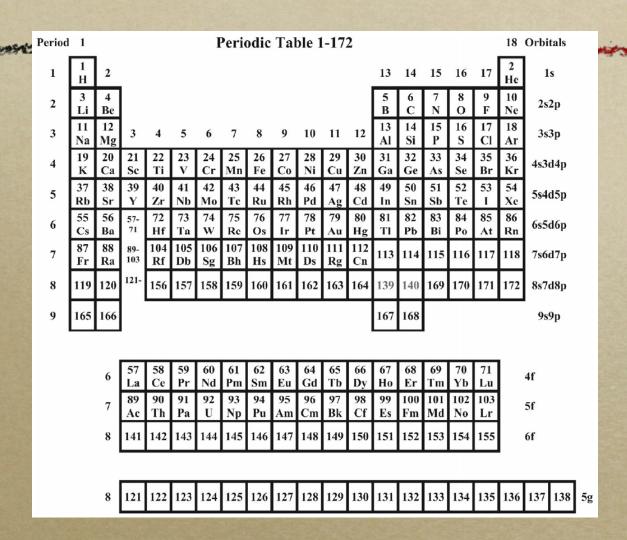
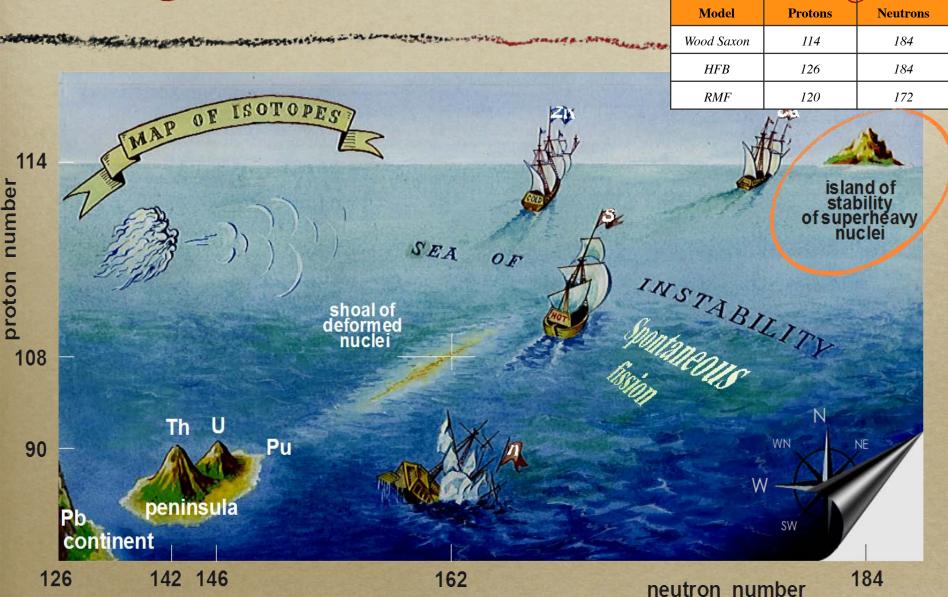



Figure 1.10: Suggested periodic table up to $Z \le 172$, based on Dirac-Fock calculations on atoms and ions [130].

Getting to the ultimate Island of stability

science se Monde emédecine

Quatre nouveaux éléments, les plus lourds jamais produits, viennent d'être officiellement baptisés. Le plus massif, l'oganesson, qui compte 118 protons, a été obtenu à Dubna. Ce temple soviétique de la science explore depuis soixante ans les confins de la matière. Reportage

property and the second second second

nucléaires (FLNR) battent leur plein. La vodka de déboires et de désillusions

aidant, le brouhaha des conversations a rapideson, qui compte 118 protons, enu à Dubna. Ce temple de la science explore depuis ans les confins de la matière.

30 de la science explore depuis ans les confins de la matière.

30 de la science explore depuis ans les confins de la matière.

30 de la science explore depuis ans les confins de la matière.

30 de la science explore depuis ans les confins de la matière.

31 de la matière de la matière de la matière de la matière de la volume de la

C'est que l'année 2017 est celle d'une éclatante vic

Une sonde vers Mercure

BepiColombo vise l'orbite de la planète la plus proche du Soleil pour 2025. Un tour de force dont le compte à rebours a commencé. PAGE 2

Dès la semaine prochaine et jusqu'au numéro du 22 août daté 23 août, retrouvez les deux pages de la formule estivale du cahier «Science & médecine dans le quotidien du mardi

The ultimate Island of stability

