Measurement of the polarization of τ -leptons produced in Z⁰ decays at CMS and determination of the effective weak mixing angle $\sin^2 \theta_{eff}$

Vladimir Cherepanov

III.Phys.Institut B, RWTH Aachen

16.01.2017

- 2 Tau polarization and spin observables
- Event reconstruction in the CMS detector

Results

Introduction

- The parity violation in the weak neutral current introduces the polarization asymmetry of τ leptons produced in $Z \rightarrow \tau \tau$ decay. Knowledge of τ polarization provides:
 - Measurement of the ratio of vector to axial-vector neutral couplings for τ leptons
 - Measurement of effective weak mixing angle $\sin^2 \theta_{eff}$
 - Techniques to analyze the spin of τ leptons can be used to measure CP properties of Higgs boson in the decay $H \rightarrow \tau \tau$
 - First step towards precision measurements at LHC with τ leptons
- A first look at τ polarization at LHC in the decay $Z \rightarrow \tau \tau$ is performed using $\tau \rightarrow \rho \nu$ and $\tau \rightarrow a_1 \nu$ decays

Measurements at LEP

 $\frac{d\sigma_{Born}}{d\cos\theta} = (1 + \cos^2\theta)F_0(s) + 2\cos\theta F_1(s)$ $+ P_{\tau}[(1 + \cos^2\theta)F_2(s) + 2\cos\theta F_3(s)]$

 $A_{FB} = \frac{\sigma(\cos \theta > 0) - \sigma(\cos \theta < 0)}{\sigma(\cos \theta < 0)}$ σ_{total} $=\frac{3F_{1}(s)}{4F_{0}(s)}=\frac{3}{4}\frac{2v_{e}a_{e}}{v_{e}^{2}+a_{e}^{2}}\frac{2v_{\tau}a_{\tau}}{v_{\tau}^{2}+a_{\tau}^{2}}$ $A_{pol} = \frac{\sigma(h_{\tau} = +1) - \sigma(h_{\tau} = -1)}{\sigma_{total}}$ $= -\frac{F_2(s)}{F_0(s)} = -\frac{2v_{\tau}a_{\tau}}{v_{\tau}^2 + a_{\tau}^2}$ $A_{FB}^{pol} = A_{pol}(\cos \theta > 0) - A_{pol}(\cos \theta < 0)$ $=-\frac{3F_3(s)}{4F_0(s)}=-\frac{3}{4}\frac{2v_ea_e}{v_e^2+a_e^2}$

Forward-backward asymmetry of muons(left) and taus(right) from $Z \rightarrow \mu \mu(\gamma)$ and $\tau \tau(\gamma)$ at L3.

Polarization observables (some examples)

$$A_{\rm e} = \frac{2 v_{\rm e} a_{\rm e}}{v_{\rm e}^2 + a_{\rm e}^2} = 0.1498 \pm 0.0049$$

$$A_{\tau} = \frac{2v_{\tau}a_{\tau}}{v_{\tau}^2 + a_{\tau}^2} = -P_{\tau} = 0.1439 \pm 0.0043$$

$$A_{ au} \approx 2 rac{V_{ au}}{a_{ au}} = 2(1-2|Q|\sin^2 \theta_W)$$

 $\sin^2 \theta_W = 0.23159 \pm 0.00041$

 $\sin^2 \theta_W$ is called the effective weak mixing angle and contains higher order corrections predictable in the Standard Model.

Measurements at LEP

 Measurement of the neutral current couplings for leptons

Lepton Universality

• Measurement of $\sin^2 \theta_{eff}$

 Constraints on top and higgs masses

AT LHC the luminosity is 10³ times larger, but:

- The Z is produced in $q\bar{q}$ annihilation and initial flavor is unknown.
- The Z is not at rest in the centre-of-mass system (no beam energy constraint).
- Pile up of many interactions.

Asymmetry in the process $q \bar{q} ightarrow Z ightarrow au au$

- τ^- are preferably with helicity -1
- Polarization asymmetry: $A_{pol} = \frac{1}{\sigma} [\sigma(h_{\tau} = +1) \sigma(h_{\tau} = -1)]$

• At the Z-pole
$$A_{pol} pprox 2 rac{g_V^{ au}}{g_A^{ au}} pprox 2 - 8 \sin^2 heta_W$$

au helicity state has to be accessed

Measurements at LHC

$$F_{0}(s) = \frac{\pi\alpha}{4s} [q_{q}^{2}q_{\tau}^{2} + 2Re\chi(s)q_{q}q_{\tau}v_{q}v_{\tau} + |\chi(s)|^{2}(v_{q}^{2} + a_{q}^{2})(v_{\tau}^{2} + a_{\tau}^{2})]$$

$$F_{2}(s) = \frac{\pi\alpha}{4s} [2Re\chi(s)q_{q}q_{\tau}v_{q}a_{\tau} + |\chi(s)|^{2}(v_{q}^{2} + a_{q}^{2})2v_{\tau}a_{\tau}]$$

Since
$$P_{\tau} = -\frac{F_2}{F_0}$$

the quark couplings cancel out at the Z pole

 away from the Z pole u and d quarks give different contributions and \(\gamma/Z\) interference matters

au polarization observables in the decay $au ightarrow a_1 u ightarrow 3 \pi u$

Spin observables for the decay $au^\pm o a_1^\pm u o 3\pi^\pm u$

Spin configurations for the decay $\tau^- \rightarrow a_1^- \nu_{\tau}$ in the τ^- rest frame:

Spin analyzers for $a_1 \rightarrow 3\pi$ decay in a_1 rest frame:

- $\bullet \ \gamma$ describes the relative pions orientation within its plane
- β is the angle between laboratory and the 3π plane

The measured decay distribution depends linearly on the weighting of two helicity states, ${\cal P}_{\tau}$

For any tau decay:
$$\frac{1}{\Gamma_i} \frac{d^n \Gamma_i}{d^n \vec{\xi_i}} = f_i(\vec{\xi_i}) + P_{\tau} g_i(\vec{\xi_i})$$
$$\vec{\xi_i} = (\cos \theta^*, \gamma, \beta...) - \text{multidim. vector of spin sensitive variables}$$
One dimensional variable:
$$\omega = \frac{|M_+(\vec{\xi})|^2 - |M_-(\vec{\xi})|^2}{|M_+(\vec{\xi})|^2 + |M_-(\vec{\xi})|^2} = \frac{g(\vec{\xi})}{f(\vec{\xi})}$$

All polarization sensitive variables $\vec{\xi}$ can be converted into one-dimensional ω without loss of sensitivity (M. Davier et al. The optimal method for the measurement of tau polarization. Phys. Lett. B 306 (1993) 411-417)

reconstruction of $\boldsymbol{\xi}$ and hence $\boldsymbol{\omega}$ requires the rest frame of tau!

The decay of $\tau^- \rightarrow a_1(1260)^- + \nu_\tau$ mainly followed by $a_1^- \rightarrow \rho(770) + \pi \rightarrow 3\pi$

- The decay model mediated by $\rho \pi_{S-wave}$ is used (J.H.Kuhn and E.Mirkes, Z.Phys.C Particle and Fields 56, 661-671 (1992))
- The effect of scalar (π (1300)) contribution, contribution of $\rho \pi_{D-wave}$, etc are assigned as systematic uncertainties.

CMS detector and default τ reconstruction

The CMS detector

Signatures of τ pairs in CMS

- Two muons or two electrons
- One muon and one electron
- One electron(muon) and low multiplicity collimated hadronic jet
- Low missing transverse energy

Event reconstruction intended to recover escaped neutrinos momenta is performed in three steps

Reconstruction of $Z \rightarrow \tau \tau \rightarrow \mu \nu \nu, 3\pi \nu$

- Select the event with μ and τ -like jet
- Run *τ*-reco algorithm to find 3 tracks for *τ* → 3*πν* candidate
- Fit secondary vertex (SV) using 3 pions (point of the τ₁ decay)
- Fit primary vertex (PV) the point of interraction

The reconstruction relies on the ability of CMS detector to measure flight direction of $\tau_{\rm a1}$

The distance between primary vertex and point of τ decay in units of uncertainties.

- Assume two-body decay $\tau \rightarrow a_1 \nu$
- Solve equation for τ momentum $(P_{\tau} - P_{a_1})^2 = P_{\nu}^2 = 0$

With the measured a_1 momentum (3π) and τ_1 direction $(\vec{SV} - \vec{PV})$ two possible solutions \rightarrow ambiguity!

Reconstruction of $Z \rightarrow \tau \tau \rightarrow \mu \nu \nu, 3\pi \nu$

- Assume taus from Z decay and apply constraints:
 - Invariant mass of two taus is equal to *M_Z*
 - Pt "balance" of two taus
 - $\bullet\,$ constraints on $\tau\,$ letpons direction using muon helix and measured vertices

+1 overconstraint fit allows to solve the ambiguity from step2 and reconstruct momentum of τ_{μ} !

Fully reconstructed system with kinematic of both τ leptons

Projections of di-tau system onto xy and rz planes:

- The muon track is approximated by a straight line
- Find the angles of τ_{μ} assuming that it must have a common point with muon track

Alternatively one can assume $\theta_2 = \theta(\mu)$ (valid for highly boosted taus)

Constrained Fits

Experimental input:

• \vec{PV} , \vec{SV} , \vec{p}_{a_1} and muon helix parameters;

General problem:

- Measured momentum of τ_1 (w/ or w/o ambiguity) \rightarrow y
- New post-fit momentum of $\tau_1 \rightarrow \mathbf{a}$
- Not measured momentum of $\tau_2 \rightarrow {\bf b}$
- Accessible constraints

Likelihood:

write in a form: $L = \chi^2 + SoftConstraints + HardConstraints$ $L = (\mathbf{y} - \mathbf{a})^T V_y^{-1} (\mathbf{y} - \mathbf{a}) + \mathbf{f}(\mathbf{a}, \mathbf{b})^T V_f^{-1} \mathbf{f}(\mathbf{a}, \mathbf{b}) + 2\lambda^T H(\mathbf{a}, \mathbf{b})$ $f = \begin{cases} P_x^{\tau_1} + P_x^{\tau_2} - p_x^{a_1} - p_x^{\mu} - MET_x \\ P_y^{\tau_1} + P_y^{\tau_2} - p_y^{a_1} - p_y^{\mu} - MET_y \end{cases} H = \begin{cases} M_{\tau\tau} - M_z \\ p_z^{\tau_2} - |p^{\tau_2}| \cos \theta_z \end{cases}$

Solution:

Parameters of interest **a** and **b** are found by minimizing L;

Event Fit performance I

Event Fit efficiency for various τ decay channels

Ambiguity for τ_{a_1} kinematic is solved running minimization two times: $L(correct) < L_{min}(wrong)$

Event Fit performance II

 $Z \Delta E/E$

Optimal observable distribution

The distribution of ω_{a_1} in Monte Carlo simulation

Sizeable separation of helicity states is achieved in $\tau \rightarrow a_1 \nu$ decay.

$\mathbf{Z} \rightarrow \tau_{\mu} \tau_{\mathbf{3}\pi}$ control sample

Selection of $Z \rightarrow \tau_{\mu} \tau_{3\pi}$ using 19.7 fb⁻¹ collected at 8 TeV

- $\mu \tau_h$ trigger
- Isolation of τ candidates
- \(\tau_h\) decay mode
- Flight length of \(\tau_{a_1}\)
- Missing transverse mass, M_T(μ, E^{miss}_T)

 Main background contribution from QCD multijet and W+Jets events are estimated from data

Mass of visible decay products

The τ polarization is measured using $Z \rightarrow \tau \tau$ events selected from 19.7 fb^{-1} collected by CMS detector at 8 TeV.

Fitting the observed distribution of ω_{a_1} by left and right handed templates with their relative fraction as a free parameter.

This is the polarization averaged over the Z resonance shape.

Extracted value :

 $< P_{\tau} > = -0.126 \pm 0.066(data) \pm 0.032(MC) \pm 0.015(theor.) \pm 0.008(syst.)$

The gauge curve between $< P_{\tau} >$ and sin² θ_{eff} obtained using ZFitter and proton pdfs.

The obtained value $\sin^2 \theta_{\rm eff} = 0.2336 \pm 0.0096$

au polarization observables in the decay $au ightarrow ho u ightarrow \pi^{\pm} \pi^{0} u$

The charge-neutral energy asymmetry in the decay $\tau \rightarrow \rho \nu \rightarrow \pi^{\pm} \pi^{0} \nu$

 In the tau decay, τ → ρν → π[±]π⁰ν, the energy asymmetry between π[±] and π⁰ is a spin-sensitive variable

•
$$\cos \psi^* \sim [E(\pi^{\pm}) - E(\pi^0)] / [E(\pi^{\pm}) + E(\pi^0)]$$

• The charge-neutral energy asymmetry is used to measure τ polarziation in the decay $Z \rightarrow \tau_{\mu} \tau_{\rho}$

The charge-neutral energy asymmetry in Monte Carlo simulation

Different τ_{ρ} helicity states are well separated!

The τ polarization is measured using $Z \rightarrow \tau \tau$ events selected from 2.3 fb^{-1} collected by CMS detector at 13 TeV.

The control sample selection:

- $\mu \tau_h$ trigger
- Isolation of τ candidates
- \(\tau_h\) decay mode
- Missing transverse mass, M_T(μ, E_T^{miss})

ML fitting with right- and left- handed templates to observed distribution in data.

results in progress

In *a*₁ channel include additional spin sensitive angle

 $\omega_{a_1}(\cos \theta^*, \gamma, \beta, \alpha)$ in progress...

10-15% gain in sensitivity is expected

LEP statistical uncertainty can be reached analyzing \approx 100-150 1/fb (very conservative)

Other decays

 $Z \rightarrow \tau \tau \rightarrow e - \rho/e - a_1 \operatorname{can} \approx \operatorname{double}$ statistics

Polarization of τ^- and τ^+ are 100% anticorrelated \longrightarrow look at both sides!

•
$$\Omega_{a_1-a_1}$$

• $\Omega_{a_1-\rho}$
• $\Omega_{a_1-\pi}$
Total B.R. of $Z \rightarrow \tau \tau$ decays \approx
15% ($\mu - a_1$ is 3%)

• LHC data $\Rightarrow J^P = 0^+$

 $h
ightarrow Z\!\!Z$ (Phys. Rev. Lett. 110, 081803)

• CP-odd component not yet excluded

CP study with $h \to \tau \tau$

Sensitive to a CP odd component $\mathcal{L}_{Y} = g_{\tau}(\cos \alpha_{\tau} \bar{\tau} \tau + \sin \alpha_{\tau} \bar{\tau} \gamma_{5} \tau)$

Transverse spin-spin correlation of τ leptons in $h \rightarrow \tau \tau$ is sensitive to α_{τ}

- Direction of both τ 's can be measured in $H \rightarrow \tau \tau \rightarrow a_1 a_1 + 2\nu$
- Polarimeter: cos φ = ∠(a₁, a'₁) (both a₁ in its τ frame)

S. Berge, arXiv:0801.2297v1

τ-spin analyzing power is given as a relative contribution of T and L components.

• For
$$\tau \to a_1 \nu$$
: $\frac{M_T}{M_L} \approx 1$

- Max. analyzing power $\tau \rightarrow \pi \nu$
- The event fit allows to recover the full kinematic of $H \rightarrow \tau \tau \rightarrow a_1 \pi + 2\nu$ and $H \rightarrow \tau \tau \rightarrow a_1 \rho + 2\nu$

Summary

- First measurements of *τ* polarization at LHC have started.
- Analysis of $\tau \rightarrow \rho \nu$ and $\tau \rightarrow a_1 \nu$ indicates the feasibility of this measurement.
- The obtained value (s $\sin^2 \theta_{eff}$ = 0.2336 \pm 0.0096
- The ratio of vector to axial-vector neutral current couplings for τ leptons g^τ_V/g^τ_A = 0.0656± 0.0384
- Estimated systematic uncertainties do not limit the precision
- The precision will grow including more data and other τ decay channels.

backup

$$\bullet < P_{\tau} >^{meas} = \frac{\int P_{\tau}(s)\epsilon(s)\hat{\sigma}(s)ds}{\int \epsilon(s)\hat{\sigma}(s)ds};$$

• $\epsilon(s)$ acceptance

•
$$\hat{\sigma}(\mathbf{s}) = \sum_{q} \sigma_q (q\bar{q} \rightarrow \tau\tau) (f_q f_{\bar{q}} + q \leftrightarrow \bar{q}) (1 + HO)$$

PDFs f_q from MSTW08

- EWK corrections are calculated using ZFitter
- QCD corrections evaluated to the first order
- $< P_{\tau} >$ is calculated for 10 values of $\sin^2 \theta_{eff}$ including uncertainties on PDFs and acceptance

