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The context

Going Beyond the Standard Model
• 2012: discovery of a SM-Higgs-like particle by ATLAS and CMS
• No Physics beyond the SM found yet
⇒ properties of the Higgs as a probe for new Physics → Higgs mass m2

h

State of the art
• SM: Veff (relates m2

h ↔ λ) is known to full 2-loop (Ford, Jack and Jones
’92) + leading – QCD – 3-loop and 4-loop (Martin ’13, Martin ’15)

• Some results for m2
h in specific SUSY theories: MSSM (leading – SQCD –

3-loop order); NMSSM (2-loop); Dirac Gaugino models (leading –
SQCD – 2-loop: J.B., Goodsell, Slavich ’16)

• Generic theories: Veff computed to 2-loop (Martin ’01), tadpoles and
scalar masses (in gaugeless limit) implemented in SARAH (Goodsell, Nickel,
Staub ’15)



The Goldstone Boson Catastrophe

• Beyond one loop, Veff only computed in Landau gauge ⇒
Goldstones are treated as actual massless bosons i .e. (m2

G )OS = 0

• By choice (simplicity) Veff is computed with running masses:

(m2
G )run. = (m2

G )OS − ΠG ((m2
G )OS) = −ΠG (0),

where ΠG is the Goldstone self-energy

• Under RG flow, (m2
G )run. may

→ become 0 ⇒ infrared divergence in Veff
→ change sign ⇒ imaginary part in Veff

≡ Goldstone boson catastrophe



The Goldstone Boson Catastrophe
• Beyond one loop, Veff only computed in Landau gauge ⇒
Goldstones are treated as actual massless bosons i .e. (m2
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Remark:

. gauge symmetry → Goldstone 6∈ physical spectrum

. global symmetry → Goldstone ∈ physical spectrum

} however,
Goldstone still

present in calculations!



First approaches to the GBC
By hand
. if m2

G < 0, drop the imaginary part of Veff
. tune the renormalisation scale Q to ensure m2

G > 0 (and even m2
G not too

small)
⇒ may be impossible to achieve and is completely ad hoc

In automated codes (SARAH)
♦ For SUSY theories only: rely on the gauge-coupling dependent part of

V (0)

→ minimize full Veff = V (0) + 1
16π2V (1) + 1

(16π2)2V
(2)|gaugeless

→ compute tree-level masses with V (0)|gaugeless
(= turn off the D-term potential)

→ yields a fake Goldstone mass of order O(m2
EW ) ⇒ no GBC

→ wrong mass for Goldstones hence wrong contribution to mh

♦ Add a regulator mass m2
reg. = RQ2 for massless particles → unwanted new

dependence on R, changes the relative size of Goldstone contributions
+ both methods spoil gauge invariance, etc.
⇒ especially wrong when the scalars – in particular the pseudo-scalars – give

large contributions to the Higgs mass −→ non-SUSY models



Resummation of the Goldstone contribution
SM: Martin 1406.2355; Ellias-Miro, Espinosa, Konstandin 1406.2652.
MSSM: Kumar, Martin 1605.02059.
Generic th.: JB, Goodsell 1609.06977.

[Adapted from arXiv:1406.2652]

• Power counting → most divergent contribution to
Veff at `-loop = ring of `− 1 Goldstone
propagators and `− 1 insertions of 1PI
subdiagrams Πg involving only heavy particles

• Πg obtained from ΠG , Goldstone self-energy, by
removing "soft" Goldstone terms

• Resumming Goldstone rings ⇔ shifting the
Goldstone tree-level mass by Πg in the 1-loop
Goldstone term

V̂eff = Veff + 1
16π2

[
f (m2

G + Πg )−
`−1∑
n=0

(Πg )n

n!

(
d

dm2
G

)n
f (m2

G )
]

→ `-loop resummed Veff, free of leading Goldstone boson catastrophe



A word on the extension of the resummation procedure for
generic theories arXiv:1609.06977

Additional difficulties
A priori: scalar mixing + several Goldstones!

→ Single out the Goldstones (index G ,G ′, ...) and express their masses

m2
G = −

∑
i

1
vi

(R̃iG )2 ∂(Veff − V (0))
∂φ0i

∣∣∣∣
φ0

i =0
= O(1-loop)

(R̃ij : rotation matrices in tree-level minimum of Veff)

Issues with the resummation
I taking derivatives of V̂eff can be very difficult (involves derivatives of

the rotation matrices, etc.) → in practice resummation was only
used to find the tadpole equations.

I the choice of "soft" Goldstone terms to remove from ΠG to find Πg
may be ambiguous and it is difficult to justify which terms to keep



Our solution: setting the Goldstone boson on-shell arXiv:1609.06977

Setting the Goldstone boson on-shell
• Adopt an on-shell scheme for the Goldstone(s): replace

(m2
G)run. by (m2

G)OS(= 0) and ΠG(0)

(m2
G)run.︸ ︷︷ ︸

tree-level mass
in loop-corrected

minimum

= (m2
G)OS︸ ︷︷ ︸

on-shell mass

− ΠG((m2
G)OS)︸ ︷︷ ︸

self-energy

= −ΠG(0)

• This can be done directly in the tadpole equations or
mass diagrams!



Canceling the IR divergences in the tadpole equations arXiv:1609.06977

2-loop tadpole diagrams involving scalars only:
The GBC also appears in diagrams with scalars and fermions or gauge bosons, and is cured with
the same procedure → we present the purely scalar case.

TSS TSSS TSSSS



Canceling the IR divergences in the tadpole equations arXiv:1609.06977

2-loop tadpole diagrams involving scalars only:

G G

TSS TSSS

GG

TSSSS

Some diagrams of TSS and TSSSS topologies diverge for m2
G → 0



Canceling the IR divergences in the tadpole equations arXiv:1609.06977

2-loop divergences in tadpole diagrams (involving scalars only) ...

G G
GG

+ =

ΠG(m2
G)

G G

... rewritten as a one-loop diagram with insertion of ΠG (m2
G )



Canceling the IR divergences in the tadpole equations arXiv:1609.06977

What happens when setting the Goldstone on-shell?
• Contribution of the Goldstone(s) to the 1-loop tadpole:

TS ⊃
G
∝ A(m2

G ) = m2
G
(
log m2

G
Q2 − 1

)
• At 1-loop order the scalar-only diagrams in ΠG (0) are

(m2
G )run. = (m2

G )OS︸ ︷︷ ︸
=0

− p2 = 0
→
G G

−
p2 = 0
→
G G + · · ·

• Shifting m2
G by a 1-loop quantity, ΠG (0), in the 1-loop tadpole

⇒ 2-loop shift !

A((m2
G )run.) = A(0)︸︷︷︸

=0

− log m2
G

Q2︸ ︷︷ ︸
1-loop

ΠG (0)︸ ︷︷ ︸
1-loop



Canceling the IR divergences in the tadpole equations arXiv:1609.06977

I 2-loop divergent tadpole diagrams

I shifting the Goldstone term in the 1-loop tadpole TS

⇒ the divergent parts from the diagrams and the shift will cancel out!



Canceling the IR divergences in the mass diagrams arXiv:1609.06977

. Earlier literature: inclusion of momentum cures all the IR divergences

. We found
⇒ true at 1-loop order
⇒ at 2-loop, ∃ diagrams that still diverge for m2

G → 0 even with
external momentum included
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Canceling the IR divergences in the mass diagrams arXiv:1609.06977

Setting the Goldstone(s) on-shell in mass diagrams
• Goldstone contributions to the 1-loop scalar self-energy

Π(1)
ij (s = -p2) = −s

→
i j

G

+
−s
→
i j

G
k + · · ·︸︷︷︸

cure W and X diagrams ︸︷︷︸
cure V and Y diagrams

• Again, shifting the Goldstone mass to on-shell scheme gives

(m2
G )run. = − p2 = 0

→
G G

−
p2 = 0
→
G G + · · ·

→ 2-loop shift to the mass diagrams

δΠ(1)
ij (s) = −

ΠG (0)

−s
→
i j

G −
ΠG (0)−s

→
i j

G
k

−→ cancels the divergence in the V , X , Y , W diagrams !



Automated two-loop mass computations free of the
Goldstone boson catastrophe

• New routines, taking into account the on-shell Goldstones (via
regularised loop functions), implemented in spectrum generator
generator SARAH → generates SPheno code for the model to study.

• In particular useful for study of Higgs masses in non-SUSY theories
where pseudo-scalar contributions are large.

I present in the following a few
preliminary results for m2`

h in the
Two-Higgs-Doublet Model
(2HDM)



Two-loop Higgs masses in the 2HDM
Improved renormalisation scale dependence

mh
tree

mh
1ℓ
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2ℓ
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with tanβ = 50, λ1 = λ2 = 0.114, λ3 = 0.428, λ4 = 0.8,
λ5 = −1, m2

12 = −5000 GeV2 at scale Q = 160 GeV.



Two-loop Higgs masses in the 2HDM

Limits from perturbativity
Studies of 2HDM usually take tree-level Higgs masses as inputs instead
of couplings from scalar potential, eg here inputs are

mh,mH ,mH± ,mA,m2
12, tanα, tanβ
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→ size of two-loop corrections as a sign of the breakdown of
perturbativity, instead of naive criterion λi < 4π



Our results

I Results for generic theories (scalars, fermions, gauge
bosons), avoiding the Goldstone boson catastrophe
→ full two-loop tadpole equations
→ two-loop mass diagrams for neutral scalars in gaugeless limit, in a

generalised effective potential approach (i .e. neglect terms of order
O(s) and higher)

I Numerical implementation in SARAH (soon made public)
→ no more numerical instability associated with the GBC
→ automated Higgs mass calculations in both SUSY and

non-SUSY models

 SM, 2HDM, Georgi-Machacek model, etc.



Outlook

I Further work on the GBC
• investigate further the link between resummation and on-shell
method

• extend the solution of GBC to higher loop order
→ on-shell method still working?
→ how to formalise/prove the resummation prescription?

(i .e. how to find Πg )
• extend mass-diagram calculations to quartic order in the gauge
couplings (go beyond the gaugeless limit)

• Apply similar techniques to address other IR divergences ?

I A great wealth of models to study with increased precision using
SARAH!



Thank you for your attention !



Backup



The effective potential

Veff = V (0) + quantum corrections

• Potential for scalars, including quantum corrections = 1PI vacuum
graphs computed loop by loop

1-loop ; 2-loop + ; etc.

• Expressed as a function of running tree-level masses of particles,
in some minimal substraction scheme (MS, DR′, etc.)

• First derivative of Veff: tadpole equation (↔ minimum condition),
relates vev and mass-squared parameters

• Second derivative: same as self-energy diagrams, but with zero
external momentum → approximate scalar masses



Illustration: the abelian Goldstone model

• 1 complex scalar φ = 1√
2

(v + h + iG), no gauge group and only a potential

V (0) = µ2|φ|2 + λ|φ|4

v: true vev, to all orders in perturbation theory (PT)

• SM: G+, G0 Goldstones do not mix, and can be treated separetely
→ this model captures the behaviour of the GBC in the SM

• Veff at 2-loop order:

Veff =V (0) +
1

16π2

[
f (m2

h) + f (m2
G )
]

︸ ︷︷ ︸
1-loop

+
1

(162)2

[
λ
( 3
4

A(m2
G )2 +

1
2

A(m2
G )A(m2

h)
)
− λ2v2I(m2

h,m
2
G ,m

2
G ) +

no Goldstone︷︸︸︷
· · ·

]
︸ ︷︷ ︸

2-loop

+O(3-loop)

where f (x) = x2
4 (log x/Q2 − 3/2), A(x) = x(log x/Q2 − 1) and I ∝

• Tree-level masses: m2
h = µ2 + 3λv2, m2

G = µ2 + λv2



Illustration: the abelian Goldstone model

Tree-level tadpole

∂V (0)

∂h

∣∣∣∣
h=0,G=0

= 0 = µ2v + λv3 = m2
Gv

Loop-corrected tadpole

∂Veff
∂h

∣∣∣∣
h=0,G=0

= 0 = m2
Gv + λv

16π2

[
3A(m2

h) + A(m2
G )
]

︸ ︷︷ ︸
1-loop

+
log m2

G
Q2

(162)2

[
3λ2v A(m2

G ) + 4λ3v3

m2
h

A(m2
h)
]

+
regular for m2

G→0︷︸︸︷
· · ·︸ ︷︷ ︸

2-loop

+O(3-loop)



Illustration: the abelian Goldstone model

Tree-level tadpole equation

∂V (0)

∂h

∣∣∣∣
h=0,G=0

= 0 = µ2v + λv3 = m2
Gv

Loop-corrected tadpole equation

∂Veff
∂h

∣∣∣∣
h=0,G=0

= 0 = m2
Gv + λv

16π2

[
3A(m2

h) + A(m2
G )
]

︸ ︷︷ ︸
1-loop

+

GBC!︷ ︸︸ ︷
log m2

G
Q2

(162)2

[
3λ2v A(m2

G ) + 4λ3v3

m2
h

A(m2
h)
]

+
regular for m2

G→0︷︸︸︷
· · ·︸ ︷︷ ︸

2-loop

+O(3-loop)



More details on the resummation of Goldstone
contributions

R` ≡ ∝
∫ ddk

i(2π)d

(
Πg

k2 −m2
G

)`−1
∝ (Πg )`−1

(`− 1)!

(
d

dm2
G

)`−1 ∫ ddk
i(2π)d log(k2 −m2

G )

= 1
16π2

(Πg )`−1
(`− 1)!

(
d

dm2
G

)`−1
f (m2

G )

so
∑
`

R` = 1
16π2 f (m2

G + Πg )

where f (x) = x2

4 (log x − 3
2 )



Extending the resummation to generic theories arXiv:1609.06977

Generic theories: J.B., Goodsell arXiv:1609.06977

Real scalar fields ϕ0
i = vi + φ0i , where vi are the vevs to all order in PT

V (0)({ϕ0
i }) = V (0)(vi ) +

1
2

m2
0,ijφ

0
i φ

0
j +

1
6
λ̂ijk
0 φ

0
i φ

0
j φ

0
k +

1
24
λ̂ijkl
0 φ0i φ

0
j φ

0
kφ

0
l

m2
0,ij solution of the tree-level tadpole equation

To work in minimum of loop-corrected Veff → new couplings m2
ij

⇓
Diagonalise to work with mass eigenstates in both bases

(φ0i ,m2
0,ij )

φ0i =R̃ij φ̃j−→ (φ̃i , m̃i ) (no loop corrections)

(φ0i ,m2
ij )

φ0i =Rijφj−→ (φi ,mi ) (with loop corrections)

⇓

Single out the Goldstone boson(s), index G ,G ′, ... and its/their mass(es)

m2
G = −

∑
i

1
vi

(R̃iG )2 ∂(Veff − V (0))
∂φ0i

∣∣∣∣
φ0

i =0
= O(1-loop)



More details about the calculations for the scalar-only
tadpole

Divergent terms
• From TSS :

∂V (2)
S

∂φ0
r

∣∣∣∣
ϕ=v

⊃
1
4

Rrp

∑
l 6=G

λ
GGll
λ

GGp logm2
G A(m2

l )

• From TSSSS :
∂V (2)

S
∂φ0

r

∣∣∣∣
ϕ=v

⊃
1
4

Rrpλ
pGG

λ
Gkl
λ

Gkl logm2
G PSS (m2

k ,m
2
l )

Setting the Goldstone mass on-shell

Π(1),S
GG

(
p2
)

=
1
2
λ

GGjj A(m2
j )−

1
2

(λGjk )2B(p2
,m2

j ,m
2
k )

• Hence a 2-loop shift:

∂V (2)
S

∂φ0
r

((m2
G )OS) =

∂V (2)
S

∂φ0
r

∣∣∣∣
m2

G→(m2
G )OS

−
1
4

Rrpλ
GGp log(m2

G )OS
(
λ

GGjj A(m2
j )− (λGjk )2B(0,m2

j ,m
2
k )
)
.



The full 2-loop tadpole equation free of GBC

∂V̂ (2)

∂φ0r

∣∣∣∣∣
ϕ=v

=Rrp

[
T p

SS + T p
SSS + T p

SSSS + T p
SSFF + T p

FFFS

+ T p
SSV + T p

VS + T p
VVS + T p

FFV + T p
FFV + T p

gauge

]
.

Notations: see 1609.06977, 1503.03098



The full 2-loop tadpole equation free of GBC

The all-scalar diagrams are

T p
SS =1

4
∑

j,k,l 6=G
λjkllλjkpPSS(m2

j ,m2
k)A(m2

l )

+ 1
2
∑

k,l 6=G
λGkllλGkpPSS(0,m2

k)A(m2
l ),

T p
SSS =1

6λ
pjklλjkl fSSS(m2

j ,m2
k ,m2

l )
∣∣
m2

G→0,

T p
SSSS =1

4
∑

(j,j′)6=(G,G′)

λpjj′λjklλj′klU0(m2
j ,m2

j′ ,m2
k ,m2

l )

+ 1
4

∑
(k,l) 6=(G,G′)

λpGG′λGklλG′klRSS(m2
k ,m2

l ),

where by (j , j ′) 6= (G ,G ′) we mean that j , j ′ are not both Goldstone
indices.



The full 2-loop tadpole equation free of GBC

The fermion-scalar diagrams are

T p
SSFF =

∑
(k,l)6=(G,G′)

{
1
2y IJkyIJlλ

klpf (0,0,1)
FFS (m2

I ,m2
J ; m2

k ,m2
l )

−Re
[
y IJky I′J′kM∗II′M∗JJ′

]
λklpU0(m2

k ,m2
l ,m2

I ,m2
J )
}

+ 1
2λ

GG′py IJGyIJG′
(
−I(m2

I ,m2
J , 0)− (m2

I + m2
J )RSS(m2

I ,m2
J )
)

− λGG′pRe
[
y IJGy I′J′G′M∗II′M∗JJ′

]
RSS(m2

I ,m2
J ),

T p
FFFS =T p

FFFS
∣∣
m2

G→0,



The full 2-loop tadpole equation free of GBC

The gauge boson-scalar tadpoles are

T p
SSV =T p

SSV
∣∣
m2

G→0,

T p
VS =1

4gabiigabpf (1,0)
VS (m2

a,m2
b; m2

i )
∣∣
m2

G→0

+
∑

(i,k) 6=(G,G′)

1
4gaaikλikpf (0,1)

VS (m2
a; m2

i ,m2
k),

T p
VVS =1

2gabigcbigacpf (1,0,0)
VVS (m2

a,m2
c ; m2

b,m2
i )
∣∣
m2

G→0

+
∑

(i,j)6=(G,G′)

1
4gabigabjλijpf (0,0,1)

VVS (m2
a,m2

b; m2
i ,m2

j )

− 1
4gabGgabG′λGG′pRVV (m2

a,m2
b).



The full 2-loop tadpole equation free of GBC

The gauge boson-fermion and gauge diagrams are not affected by the
Goldstone boson catastrophe

T p
FFV =2gaJ

I gK
bJRe[MKI′y I′Ip]f (1,0,0)

FFV (m2
I ,m2

K ; m2
J ,m2

a)

+ 1
2gaJ

I g I
bJgabpf (0,0,1)

FFV (m2
I ,m2

J ; m2
a,m2

b),

T p
FFV =gaJ

I gaJ′
I′ Re[y II′pM∗JJ′ ]

[
fFFV (m2

I ,m2
J ,m2

a) + M2
I f (1,0,0)

FFV
(m2

I ,m2
I′ ; m2

J ,m2
a)
]

+ gaJ
I gaJ′

I′ Re[M IK ′MKI′M∗JJ′yKK ′p]f (1,0,0)
FFV

(m2
I ,m2

I′ ; m2
J ,m2

a)

+ 1
2gaJ

I gbJ′
I′ gabpM II′M∗JJ′ f

(0,0,1)
FFV

(m2
I ,m2

J ; m2
a,m2

b),

T p
gauge =1

4gabcgdbcgadpf (1,0,0)
gauge (m2

a,m2
d ; m2

b,m2
c).


