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Theoretical Observation

QCD two-point functions of color singlet local operators, integrated over their
euclidean momenta with appropriate weights, govern the hadronic
contributions to many electromagnetic and weak interaction processes.

Example: Hadronic Vacuum Polarization two-point function (HVP)

M(q) = i / d*x €%(0|T (4 (%) (0)) [0) = (GG — G2G)(QP = — 7).
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Lautrup- de Rafael '69, also the representation used in lattice QCD (LQCD) Blum '03

Persistent discrepancy at the 3 to 4 o level
between experimental determination of a,, and its theoretical evaluation.
a)'* = (6.926 £ 0.033) x 102 is the contribution with the largest error.
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Mellin-Barnes Representation of M(Q?)

MN(Q?) obeys the (subtracted) Dispersion Relation:
oo dt —-@® 1
r|02=/ — = _mn@), @®=-¢>0.
@)= e, T i@ O 7>
™ N —r

Inserting
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— =5 / ds | — r(s)r(i —s)
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there follows a Mellin-Barnes Representation of HVP in the Euclidean:

02 1 Cstioco 5N\ —S
n(Q?) = — o / ds (sz ) F(SF(1 — s) M(s), cs = Re(s) €0, 1[,

cg—ico
in terms of the Mellin Transform of the HVP Spectral Function

oo gt /NS A
M(s) :/ + <T> —ImM(t), fo=4m’,, Res<1.
[ o ™

«a 2 1 1 .
M(s) g (;) <§> Ne 3713’ from pQCD.
The Mellin-Barnes Representation of N(Q?) is very useful for asymptotic expansions of N(Q?)
at Q° small (xPT) and Q? large (OPE).
See e.g. Friot-Greynat-de Rafael’08, Aguilar-Greynat-de Rafael’12, Friot-Greynat'12, ...
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Mellin Moments and Lattice QCD (LQCD)

Determination of a few terms of the Taylor expansion of M(Q?) at Q* small in LQCD,
i.e. of a few derivatives of 1(Q?) at Q> = 0, equivalent to Mellin Moments at n = 0, 1,2, . ..
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Integral Representation of &}*" in terms of the Mellin Transform M(s)
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Mellin Transform of the Spectral Function

2
In particular &"" < (&) - M(0) (J.S. Bell-E.deR.69)

4

This provides an interesting starting point towards an alternative evaluation of
the HVP contribution to a,,'* from first principles.
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Ramanujan’s Master Theorem and Marichev’s Mellin Transforms

@ Expansion for Q*-small:

b B @ @\? @?\*®
—ﬁﬂ(O )02_>0 = {M(O) - K/VI(—U+ (F) M(=2) — <?> M(=3)+--- ¢,

@ Ramanujan’s Theorem:

2 v s—1
J d(%)(%) {-gn@} ., = ror -9,

Guarantees the convergence of discrete Moments M (—n) to the full Mellin Transform M(s).

What is the Best Interpolating Procedure
when one only knows -numerically- a few moments?

Marichev’s Class of Mellin Transforms and Interpolating Approach

r(ci+s)
M) =© H I'(bk—s)l' o//,+s)

ikl

C, a;, bk, ¢, d real constants, s with only £ coefficient.
No poles , nor zeros, and monotonously deceasing for s < 0.

The inverse Mellin transform of a Marichev’s class M(s)-function
is a Generalized Hypergeometric Function
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Ramanujan’s Theorem and Marichev’s Interpolation in QED

Ramanujan’s Theorem in QED
@ Lowest Order Vacuum Polarization in QED for a fermion of mass m:

4n? _omp, 2 o @\ [ 1 VrT@B+n)
“e @) o 2 (m) {§n+17m}

2
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@ Then -without doing the calculation- Ramanujan’s Theorem implies:

M (g) = o di £\ s—1 llan“’(t) _ al 1 3/m r(3—15)
T Jam2 t \4m? T

Marichev’s Interpolation Approach in QED

@ First Marichev Interpolation [Matching ats = 1]
al 1 all(1—23)

731—s =x3l(2—5s)

M¥P(s) = MD(s) =

@ Second Marichev Interpolation [Matching ats = 1 and s = 0]

; 11 r(b—1) 9
MEP(s) = MQ(s) =S — 21 s p=>
() = Mo(®) = T3 59 4
@ Third Marichev Interpolation [Matching ats =1,s = 0 and s = 2]
1 1 I(c—1)Tr(d-s 7
MPFP(g) = MQED(S)HE;;’(Z) = al 1 Te-1)ld=s) , =>=c=—-,d=3

w31 —sl(c—s)M(d—1) 2

The Third Marichev Interpolation is already the Exact Result for M¥P(s) Il!
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Application to a%FP(VP) (same mass for external and VP fermions)
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With s within the fundamental strip, e.g. s = % —iT:
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Tests with a Toy Model of the Hadronic Spectral Function (

@ pQCD INPUT:
M@A)=C —— and M(2)=0, C= glNL (E)
1 w3 3
@ First Marichev Interpolation [only M(0) is known]
1 rM+A4 — g 1
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Mo ) =Ca—gre=s 1y A-cMO
@ Second Marichev Interpolation [M(0) and M(—1) are known]
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@ First Marichev reproduces al{""*)(Toy Model) at the 6.6% level ( )
@ Second Marichev reproduces af'"*) (Toy Model) at the 0.6% level (blue - toy model red)
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Application to LQCD determination of M(0) and M(—1) (

With charm subtracted:
M(O)BMWC = (0704 + 0021) X 10_3 and M(fl)BMWC = (0101 + 0007) X 10_3

Integral Representation of a,"" in terms of Marichev Mellin Transforms
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The predicted values using these Marichev Interpolations are:
aY"(First) = (6.23 £ 0.18) x 10™°  &""(Second) = (6.81 £ 0.30) x 10™°
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Conclusions

@ We conclude that with a precise determination of M (0) i.e. with a precise determination of
jtﬁsvtpthe slope of the HVP function at the origin from LQCD, one can already obtain a result for

a," which provides a first rough test of the determinations using experimental data.

@ We wish to emphasize that the method we propose, besides the eventual determination of
M(0), only uses as other input two well known properties of QCD: asymptotic freedom and
the fact that in the chiral limit there is no 1/Q? term in the OPE of (Q?).

@ The Second Marichev Interpolation of the Mellin Transform of the hadronic spectral function
results in a much more accurate determination. It includes as an input the determinations of
the first two moments M(0) and M(—1) accessible to LQCD.

@ The test with the Toy Model above results in a determination of a;*" with an accuracy of
0.6% which is very encouraging.

@ The application to the determination of the M (0) and M(—1) moments from
LQCD (BMWCc’16) points towards a very promising future in this direction.
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