Flavor Anomalies on the Eve of the Run-2 Verdict

Diego Guadagnoli
LAPTh Annecy (France)

Flavor anomalies

(0) A first qualitative observation

A whole range of $b \rightarrow s$ measurements involving a $\mu \mu$ pair display a consistent pattern: Exp < SM

Flavor anomalies

(0) A first qualitative observation

A whole range of $b \rightarrow s$ measurements involving a $\mu \mu$ pair display a consistent pattern: Exp < SM

Flavor anomalies

(0) A first qualitative observation

A whole range of $b \rightarrow s$ measurements involving a $\mu \mu$ pair display a consistent pattern: Exp < SM

D. Guadagnoli, Flavor anomalies

We know that $B R$ measurements suffer from large f.f. uncertainties.
However, here's a clean quantity:
(1) $\left.\quad R_{K}\left(q_{\min }^{2}, q_{\max }^{2}\right) \equiv \frac{B R\left(B^{+} \rightarrow K^{+} \mu \mu\right)}{B R\left(B^{+} \rightarrow K^{+} e e\right)}\right|_{\left[q_{\text {min }}^{2}, q_{\max }^{2}\right]}$

We know that $B R$ measurements suffer from large f.f. uncertainties.
However, here's a clean quantity:
(1) $\left.\quad R_{K}\left(q_{\min }^{2}, q_{\max }^{2}\right) \equiv \frac{B R\left(B^{+} \rightarrow K^{+} \mu \mu\right)}{B R\left(B^{+} \rightarrow K^{+} e e\right)}\right|_{\left[q_{\min }^{2}, q_{\max }^{2}\right]}$

$$
\begin{aligned}
R_{K}\left(1 \mathrm{GeV}^{2}, 6 \mathrm{GeV}^{2}\right)= & 0.745 \cdot(1 \pm 13 \%) \\
& (2.6 \sigma \text { effect })
\end{aligned}
$$

b \rightarrow s data

We know that $B R$ measurements suffer from large f.f. uncertainties.
However, here's a clean quantity:
(1) $\left.\quad R_{K}\left(q_{\min }^{2}, q_{\max }^{2}\right) \equiv \frac{B R\left(B^{+} \rightarrow K^{+} \mu \mu\right)}{B R\left(B^{+} \rightarrow K^{+} e e\right)}\right|_{\left[q_{\min }^{2}, q_{\max }^{2}\right]}$

$$
\begin{aligned}
R_{K}\left(1 \mathrm{GeV}^{2}, 6 \mathrm{GeV}^{2}\right)= & 0.745 \cdot(1 \pm 13 \%) \\
& (2.6 \sigma \text { effect })
\end{aligned}
$$

And here's another (freshly measured) one:
(2) $\quad R_{K * 0}\left(1.1 \mathrm{GeV}^{2}, 6.0 \mathrm{GeV}^{2}\right)=0.685_{-0.069}^{+0.113} \pm 0.047$
($\sim 2.4 \sigma$ effect)

b \rightarrow s data

We know that $B R$ measurements suffer from large f.f. uncertainties.
However, here's a clean quantity:
(1) $\left.\quad R_{K}\left(q_{\min }^{2}, q_{\max }^{2}\right) \equiv \frac{B R\left(B^{+} \rightarrow K^{+} \mu \mu\right)}{B R\left(B^{+} \rightarrow K^{+} e e\right)}\right|_{\left[q_{\min }^{2}, q_{\max }^{2}\right]}$

$$
\begin{aligned}
R_{K}\left(1 \mathrm{GeV}^{2}, 6 \mathrm{GeV}^{2}\right)= & 0.745 \cdot(1 \pm 13 \%) \\
& (2.6 \sigma \text { effect })
\end{aligned}
$$

And here's another (freshly measured) one:
(2) $\quad R_{K * 0}\left(1.1 \mathrm{GeV}^{2}, 6.0 \mathrm{GeV}^{2}\right)=0.685_{-0.069}^{+0.113} \pm 0.047$

$$
\text { (~2.4 } \sigma \text { effect) }
$$

$R_{K * 0}\left(0.045 \mathrm{GeV}^{2}, 1.1 \mathrm{GeV}^{2}\right)=0.660_{-0.070}^{+0.110} \pm 0.024$
($\sim 2.2 \sigma$ effect)

b \rightarrow s data

We know that $B R$ measurements suffer from large f.f. uncertainties.
However, here's a clean quantity:
(1) $\left.\quad R_{K}\left(q_{\min }^{2}, q_{\max }^{2}\right) \equiv \frac{B R\left(B^{+} \rightarrow K^{+} \mu \mu\right)}{B R\left(B^{+} \rightarrow K^{+} e e\right)}\right|_{\left[q_{\min }^{2}, q_{\max }^{2}\right]}$

$$
\begin{aligned}
R_{K}\left(1 \mathrm{GeV}^{2}, 6 \mathrm{GeV}^{2}\right)= & 0.745 \cdot(1 \pm 13 \%) \\
& (2.6 \sigma \text { effect })
\end{aligned}
$$

And here's another (freshly measured) one:

- the electron channel would be an obvious culprit (brems + low stats). But disagreement is rather in muons
- muons are among the most reliable objects within LHCb
(2) $\quad R_{K^{* 0}}\left(1.1 \mathrm{GeV}^{2}, 6.0 \mathrm{GeV}^{2}\right)=0.685_{-0.069}^{+0.13} \pm 0.047$

$$
\text { (~2.4 } \sigma \text { effect) }
$$

$$
R_{K^{* *}}\left(0.045 \mathrm{GeV}^{2}, 1.1 \mathrm{GeV}^{2}\right)=0.660_{-0.070}^{+0.110} \pm 0.024
$$

($\sim 2.2 \sigma$ effect)

b \rightarrow s data

The other mentioned $b \rightarrow s \mu \mu$ modes fit a coherent picture with R_{K} and $R_{K^{*}}$

The other mentioned $b \rightarrow s \mu \mu$ modes fit a coherent picture with R_{κ} and $R_{K^{*}}$
(3) $B R\left(B_{s} \rightarrow \boldsymbol{\varphi} \mu \mu\right):>3 \sigma$ below SM prediction. Same kinematical region $m^{2}{ }_{\mu \mu} \in[1,6] \mathrm{GeV}^{2}$ Initially found in 1/fb of LHCb data, then confirmed by a full Run-I analysis (3/fb)

The other mentioned $b \rightarrow s \mu \mu$ modes fit a coherent picture with R_{κ} and $R_{K^{*}}$
(3) $\boldsymbol{B R}\left(\boldsymbol{B}_{s} \rightarrow \boldsymbol{\varphi} \mu \mu\right):>3 \sigma$ below SM prediction. Same kinematical region $m_{\mu \mu}^{2} \in[1,6] \mathrm{GeV}^{2}$ Initially found in $1 / f b$ of LHCb data, then confirmed by a full Run-I analysis (3/fb)
(4) $\boldsymbol{B} \rightarrow \boldsymbol{K}^{*} \boldsymbol{\mu} \boldsymbol{\mu}$ angular analysis: discrepancy in one combination of the angular expansion coefficients, known as P_{5}^{\prime}
$B \rightarrow K^{*} \mu \mu$ angular analysis:
The P_{5}^{\prime} anomaly

- From LHCb's full angular analysis of the decay products in $B \rightarrow K^{*} \mu \mu$, one can construct observables with limited sensitivity to form factors.
- From LHCb's full angular analysis of the decay products in $B \rightarrow K^{*} \mu \mu$, one can construct observables with limited sensitivity to form factors.
- One of such "clean" observables is called P_{5}^{\prime}
- From LHCb's full angular analysis of the decay products in $B \rightarrow K^{*} \mu \mu$, one can construct observables with limited sensitivity to form factors.
- One of such "clean" observables is called P_{5}^{\prime}

- From LHCb's full angular analysis of the decay products in $B \rightarrow K^{*} \mu \mu$, one can construct observables with limited sensitivity to form factors.
- One of such "clean" observables is called P^{\prime}

- From LHCb's full angular analysis of the decay products in $B \rightarrow K^{*} \mu \mu$, one can construct observables with limited sensitivity to form factors.
- One of such "clean" observables is called P_{5}^{\prime}

Caveat:

this obs needs be taken cum grano salis

- What cancels is the dependence on the large- m_{b} form factors.

The P_{5}^{\prime} anomaly

- From LHCb's full angular analysis of the decay products in $B \rightarrow K^{*} \mu \mu$, one can construct observables with limited sensitivity to form factors.
- One of such "clean" observables is called P_{5}^{\prime}

Caveat:

this obs needs be taken cum grano salis

- What cancels is the dependence on the large- m_{b} form factors.
- Crucial issue:

How important departures from the infinite- m_{b} limit are, for q^{2} approaching $4 \mathrm{~m}_{\mathrm{c}}{ }^{2}$.

In fact, cc contributions are suppressed by $\mathrm{q}^{2}-4 \mathrm{~m}_{\mathrm{c}}{ }^{2}$.

The P_{5}^{\prime} anomaly

- From LHCb's full angular analysis of the decay products in $B \rightarrow K^{*} \mu \mu$, one can construct observables with limited sensitivity to form factors.
- One of such "clean" observables is called P_{5}

Caveat:

this obs needs be taken cum grano salis

- What cancels is the dependence on the large- m_{b} form factors.
- Crucial issue:

How important departures from the infinite- m_{b} limit are, for q^{2} approaching $4 \mathrm{~m}_{\mathrm{c}}{ }^{2}$.

In fact, cc contributions are suppressed by $q^{2}-4 \mathrm{~m}_{\mathrm{c}}{ }^{2}$.

But interesting nonetheless, because:

- Effect is again in the same region: $m_{\mu \mu}^{2} \in[1,6] \mathrm{GeV}^{2}$
- Compatibility between $1 / f b$ and $3 / f b$ LHCb analyses and a recent Belle analysis
$B \rightarrow K^{*} \mu \mu$ angular analysis: post-Moriond update

$B \rightarrow K^{*} \mu \mu$ angular analysis: post-Moriond update

$B \rightarrow K^{*} \mu \mu$ angular analysis: post-Moriond update

b \rightarrow c data

There are long-standing discrepancies in $b \rightarrow c$ transitions as well.

$$
R\left(D^{(*)}\right)=\frac{B R\left(B \rightarrow D^{(*)} \tau v\right)}{B R\left(B \rightarrow D^{(*)} \ell v\right)(\text { with } \ell=e, \mu)}
$$

b \rightarrow c data

There are long-standing discrepancies in $b \rightarrow c$ transitions as well.

$$
R\left(D^{(*)}\right)=\frac{B R\left(B \rightarrow D^{(*)} \tau v\right)}{B R\left(B \rightarrow D^{(*)} \ell v\right)(\text { with } \ell=e, \mu)}
$$

D. Guadagnoli, Flavor anomalies

b \rightarrow c data

There are long-standing discrepancies in $b \rightarrow c$ transitions as well.

$$
R\left(D^{(*)}\right)=\frac{B R\left(B \rightarrow D^{(*)} \tau v\right)}{B R\left(B \rightarrow D^{(*)} \ell v\right)(\text { with } \ell=e, \mu)}
$$

Wrap-up

- $\quad R_{K}$ and $R_{K^{*}}$ hint at Lepton Universality Violation (LUV), the effect being in muons, rather than electrons

Wrap-up

- $\quad R_{K}$ and $R_{K^{*}}$ hint at Lepton Universality Violation (LUV), the effect being in muons, rather than electrons
- Also $R\left(D\left(^{*}\right)\right.$) points to LUV. But can we really trust final-state taus?

Wrap-up

- $\quad R_{K}$ and $R_{K^{*}}$ hint at Lepton Universality Violation (LUV), the effect being in muons, rather than electrons
- Also $R\left(D\left(^{*}\right)\right.$) points to LUV. But can we really trust final-state taus?
- R_{K} and $R_{K^{*}}$ significance fairly low.

Yet interesting that all $b \rightarrow s \mu \mu$ modes go in a consistent direction

Wrap-up

- $\quad R_{K}$ and $R_{K^{*}}$ hint at Lepton Universality Violation (LUV), the effect being in muons, rather than electrons
- Also $R\left(D\left(^{*}\right)\right.$) points to LUV. But can we really trust final-state taus?
- R_{K} and $R_{K^{*}}$ significance fairly low.

Yet interesting that all $b \rightarrow s \mu \mu$ modes go in a consistent direction

- Focusing for the moment on the $b \rightarrow s$ discrepancies
- Q1: Can we (easily) make theoretical sense of data?

Wrap-up

- $\quad R_{K}$ and $R_{K^{*}}$ hint at Lepton Universality Violation (LUV), the effect being in muons, rather than electrons
- Also $R\left(D\left(^{*}\right)\right.$) points to LUV. But can we really trust final-state taus?
- R_{K} and $R_{K^{*}}$ significance fairly low.

Yet interesting that all $b \rightarrow s \mu \mu$ modes go in a consistent direction

- Focusing for the moment on the $b \rightarrow s$ discrepancies
- Q1: Can we (easily) make theoretical sense of data?
- Q2: What are the most immediate signatures to expect?

Concerning Q1: can we easily make theoretical sense of these data?

- Yes we can. Consider the following Hamiltonian

$$
H_{\mathrm{SM}+\mathrm{NP}}(\bar{b} \rightarrow \overline{\mathrm{~s}} \mu \mu)=-\frac{4 G_{F}}{\sqrt{2}} V_{t b}^{*} V_{t s} \frac{\alpha_{\mathrm{em}}}{4 \pi}\left[\bar{b}_{L} \gamma^{\lambda} s_{L} \cdot\left(C_{9}^{(\mu)} \bar{\mu} \gamma_{\lambda} \mu+C_{10}^{(u)} \bar{\mu} \gamma_{\lambda} \gamma_{5} \mu\right)\right]
$$

Concerning Q1: can we easily make theoretical sense of these data?

- Yes we can. Consider the following Hamiltonian

$$
\begin{aligned}
& \text { About equal size \& opposite sign } \\
& \text { in the SM (at the } m_{b} \text { scale) }
\end{aligned}
$$

$$
\left.H_{\mathrm{SM}+\mathrm{NP}}(\bar{b} \rightarrow \bar{s} \mu \mu)=-\frac{4 G_{F}}{\sqrt{2}} V_{t b}^{*} V_{t s} \frac{\alpha_{\mathrm{em}}}{4 \pi}\left[\bar{b}_{L} \gamma^{\lambda} s_{L} \cdot C_{9}^{(\mu)} \bar{\mu} \gamma_{\lambda} \mu+C_{10}^{(\mu)} \bar{\mu} \gamma_{\lambda} \gamma_{5} \mu\right)\right]
$$

Concerning Q1: can we easily make theoretical sense of these data?

- Yes we can. Consider the following Hamiltonian

About equal size \& opposite sign in the SM (at the m_{b} scale)

$$
\left.H_{\mathrm{SM}+\mathrm{NP}}(\bar{b} \rightarrow \bar{s} \mu \mu)=-\frac{4 G_{F}}{\sqrt{2}} V_{t b}^{*} V_{t s} \frac{\alpha_{\mathrm{em}}}{4 \pi}\left[\bar{b}_{L} \gamma^{\lambda} s_{L} \cdot C_{9}^{(\mu)} \bar{\mu} \gamma_{\lambda} \mu+C_{10}^{(\mu)} \bar{\mu} \gamma_{\lambda} \gamma_{5} \mu\right)\right]
$$

- Advocating the same $(V-A) \times(V-A)$ structure also for the corrections to $C_{9,10}{ }^{\text {SM }}$ (in the $\mu \mu$-channel only!) would account for:
- R_{κ} and $R_{K^{*}}$ lower than 1
- $b \rightarrow s \mu \mu \quad B R$ data below predictions
- the $P_{5}{ }^{\prime}$ anomaly in $B \rightarrow K^{*} \mu \mu$

Concerning Q1: can we easily make theoretical sense of these data?

- Yes we can. Consider the following Hamiltonian

About equal size \& opposite sign in the SM (at the m_{b} scale)

$$
\left.H_{\mathrm{SM}+\mathrm{NP}}(\bar{b} \rightarrow \bar{s} \mu \mu)=-\frac{4 G_{F}}{\sqrt{2}} V_{t b}^{*} V_{t s} \frac{\alpha_{\mathrm{em}}}{4 \pi}\left[\bar{b}_{L} \gamma^{\lambda} s_{L} \cdot C_{9}^{(\mu)} \bar{\mu} \gamma_{\lambda} \mu+C_{10}^{(\mu)} \bar{\mu} \gamma_{\lambda} \gamma_{5} \mu\right)\right]
$$

- Advocating the same $(V-A) \times(V-A)$ structure also for the corrections to $C_{9,10}$ sM (in the $\mu \mu$-channel only!) would account for:
- R_{κ} and $R_{K^{*}}$ lower than 1
- $b \rightarrow s \mu \mu \quad B R$ data below predictions
- the P_{5}^{\prime} anomaly in $B \rightarrow K^{*} \mu \mu$
- A fully quantitative test requires a global fit.
new physics contributions to the Wilson coefficients. We find that the by far largest decrease in the χ^{2} can be obtained either by a negative new physics contribution to C_{9} (with $\left.C_{9}^{\mathrm{NP}} \sim-30 \% \times C_{9}^{\mathrm{SM}}\right)$, or by new physics in the $S U(2)_{L}$ invariant direction $C_{9}^{\mathrm{NP}}=-C_{10}^{\mathrm{NP}}$, (with $C_{9}^{\mathrm{NP}} \sim-12 \% \times C_{9}^{\mathrm{SM}}$). A positive NP contribution to C_{10} alone would also improve the fit, although to a lesser extent.
[Altmannshofer, Straub, EPJC '15]
For analogous conclusions, see also [Ghosh, Nardecchia, Renner, JHEP '14]

Model example

- As we saw before, all $b \rightarrow s$ data are explained at one stroke if:
- $C_{9}^{(\ell)} \approx-C_{10}^{(\ell)} \quad(V-A$ structure $)$
$-\left|C_{9, \mathrm{NP}}^{(\mu)}\right| \gg\left|C_{9, \mathrm{NP}}^{(e)}\right| \quad$ (LUV)

Model example

- As we saw before, all $b \rightarrow s$ data are explained at one stroke if:

$$
\begin{aligned}
& -C_{9}^{(e)} \approx-C_{10}^{(e)} \quad(V-A \text { structure }) \\
& =\left|C_{9, \mathrm{NP}}^{(\mu)}\right| \gg\left|C_{9, \mathrm{NP}}^{(e)}\right| \quad(L U V)
\end{aligned}
$$

- This pattern can be generated from a purely $3^{\text {rd }}$-generation interaction of the kind

Glashow et al., 2015

$$
\begin{gathered}
H_{\mathrm{NP}}=G \bar{b}_{L}^{\prime} \gamma^{\lambda} b_{L}^{\prime} \bar{\tau}_{L}^{\prime} \gamma_{\lambda} \tau_{L}^{\prime} \\
\text { with } G=1 / \Lambda_{\mathrm{NP}}^{2} \ll G_{F}
\end{gathered}
$$

Model example

- As we saw before, all $b \rightarrow s$ data are explained at one stroke if:

$$
\begin{aligned}
& -C_{9}^{(\ell)} \approx-C_{10}^{(\ell)} \quad(V-A \text { structure }) \\
& =\left|C_{9, \mathrm{NP}}^{(\mu)}\right| \gg\left|C_{9, \mathrm{NP}}^{(e)}\right| \quad(L U V)
\end{aligned}
$$

- This pattern can be generated from a purely $3^{\text {rd }}$-generation interaction of the kind

Glashow et al., 2015

$$
\begin{gathered}
H_{\mathrm{NP}}=G \bar{b}_{L}^{\prime} \gamma^{\lambda} b^{\prime}{ }_{L} \bar{\tau}_{L}^{\prime} \gamma_{\lambda} \tau_{L}^{\prime} \\
\quad \text { with } G=1 / \Lambda_{\mathrm{NP}}^{2} \ll G_{F}
\end{gathered}
$$

expected e.g. in partial-compositeness frameworks

Model example

- As we saw before, all $b \rightarrow s$ data are explained at one stroke if:

$$
\begin{aligned}
& -C_{9}^{(\ell)} \approx-C_{10}^{(\ell)} \quad(V-A \text { structure }) \\
& =\left|C_{9, \mathrm{NP}}^{(\mu)}\right| \gg\left|C_{9, \mathrm{NP}}^{(e)}\right| \quad(L U V)
\end{aligned}
$$

- This pattern can be generated from a purely $3^{\text {rd }}$-generation interaction of the kind

Glashow et al., 2015

$$
\begin{aligned}
& H_{\mathrm{NP}}=G \bar{b}_{L}^{\prime} \gamma^{\lambda} b_{L}^{\prime} \bar{\tau}_{L}^{\prime} \gamma_{\lambda} \tau_{L}^{\prime} \\
& \quad \text { with } G=1 / \Lambda_{\mathrm{NP}}^{2} \ll G_{F}
\end{aligned}
$$

expected e.g. in partial-compositeness frameworks

- Note: primed fields
- Fields are in the "gauge" basis (= primed)

Model example

- As we saw before, all $b \rightarrow s$ data are explained at one stroke if:

$$
\begin{aligned}
& -C_{9}^{(\ell)} \approx-C_{10}^{(\ell)} \quad(V-A \text { structure }) \\
& =\left|C_{9, \mathrm{NP}}^{(\mu)}\right| \gg\left|C_{9, \mathrm{NP}}^{(e)}\right| \quad(L U V)
\end{aligned}
$$

- This pattern can be generated from a purely $3^{\text {rd }}$-generation interaction of the kind

Glashow et al., 2015

$$
\begin{aligned}
& H_{\mathrm{NP}}=G \bar{b}_{L}^{\prime} \gamma^{\lambda} b_{L}^{\prime} \bar{\tau}_{L}^{\prime} \gamma_{\lambda} \tau_{L}^{\prime} \\
& \quad \text { with } G=1 / \Lambda_{\mathrm{NP}}^{2} \ll G_{F}
\end{aligned}
$$

expected e.g. in partial-compositeness frameworks

- Note: primed fields
- Fields are in the "gauge" basis (= primed)
- They need to be rotated to the mass eigenbasis

$$
\begin{aligned}
& {b^{\prime}}_{L} \equiv\left(d_{L}^{\prime}\right)_{3}=\left(U_{L}^{d}\right)_{3 i} \begin{array}{l}
\begin{array}{c}
\text { mass } \\
\text { basis }
\end{array} \\
\left(d_{L}\right)_{i} \\
\left.\tau_{L}^{\prime} \equiv\left(\ell_{L}^{\prime}\right)_{3}=\left(U_{L}^{t}\right)_{3 i} \ell_{L}\right)_{i}
\end{array}
\end{aligned}
$$

Model example

- As we saw before, all $b \rightarrow s$ data are explained at one stroke if:

$$
\begin{aligned}
& -C_{9}^{(\ell)} \approx-C_{10}^{(\ell)} \quad(V-A \text { structure }) \\
& =\left|C_{9, \mathrm{NP}}^{(\mu)}\right| \gg\left|C_{9, \mathrm{NP}}^{(e)}\right| \quad(L U V)
\end{aligned}
$$

- This pattern can be generated from a purely $3^{\text {rd }}$-generation interaction of the kind

Glashow et al., 2015

$$
\begin{aligned}
& H_{\mathrm{NP}}=G \bar{b}_{L}^{\prime} \gamma^{\lambda} b_{L}^{\prime} \bar{\tau}_{L}^{\prime} \gamma_{\lambda} \tau_{L}^{\prime} \\
& \quad \text { with } G=1 / \Lambda_{\mathrm{NP}}^{2} \ll G_{F}
\end{aligned}
$$

expected e.g. in partial-compositeness frameworks

- Note: primed fields
- Fields are in the "gauge" basis (= primed)
- They need to be rotated to the mass eigenbasis
- This rotation induces LUV and LFV effects

$$
\begin{aligned}
& {b^{\prime}}_{L} \equiv\left(d_{L}^{\prime}\right)_{3}=\left(U_{L}^{d}\right)_{3 i} \begin{array}{l}
\begin{array}{c}
\text { mass } \\
\text { basis }
\end{array} \\
\left.\tau_{L}^{\prime} d_{L}\right)_{i} \\
\left(\ell_{L}\right)_{i}
\end{array}
\end{aligned}
$$

LFV in B decays

As mentioned: if R_{K} is signaling BSM LUV, then, in general, expect BSM LFV as well

LFV in B decays

As mentioned: if R_{K} is signaling BSM LUV, then, in general, expect BSM LFV as well

Actually, the expected ballpark of LFV effects can be predicted from $B R(B \rightarrow K \mu \mu)$ and the R_{K} deviation alone [Glashow et al., 2015]

LFV in B decays

As mentioned: if R_{K} is signaling BSM LUV, then, in general, expect BSM LFV as well

Actually, the expected ballpark of LFV effects can be predicted from $B R(B \rightarrow K \mu \mu)$ and the R_{K} deviation alone [Glashow et al., 2015]
v $\frac{B R\left(B^{+} \rightarrow K^{+} \mu e\right)}{B R\left(B^{+} \rightarrow K^{+} \mu \mu\right)}=\frac{\left|\delta C_{10}\right|^{2}}{\left|C_{10}^{S M}+\delta C_{10}\right|^{2}} \cdot \frac{\left|\left(U_{L}^{\ell}\right)_{31}\right|^{2}}{\left|\left(U_{L}^{\ell}\right)_{32}\right|^{2}} \cdot 2$

LFV in B decays

As mentioned: if R_{K} is signaling BSM LUV, then, in general, expect BSM LFV as well

Actually, the expected ballpark of LFV effects can be predicted from $B R(B \rightarrow K \mu \mu)$ and the R_{K} deviation alone [Glashow et al., 2015]
$\checkmark \frac{B R\left(B^{+} \rightarrow K^{+} \mu e\right)}{B R\left(B^{+} \rightarrow K^{+} \mu \mu\right)}=\frac{\left|\delta C_{10}\right|^{2}}{\left\lvert\, \begin{array}{c}C_{10}^{S M}+\left.\delta C_{10}\right|^{2} \\ \text { = } 0.159^{2} \\ \text { according to } \mathbf{R}_{k}\end{array}\right.} \cdot \frac{\left|\left(U_{L}^{\ell}\right)_{31}\right|^{2}}{\left|\left(U_{L}^{\ell}\right)_{32}\right|^{2}} \cdot 2$

LFV in B decays

As mentioned: if R_{K} is signaling BSM LUV, then, in general, expect BSM LFV as well

Actually, the expected ballpark of LFV effects can be predicted from $B R(B \rightarrow K \mu \mu)$ and the R_{K} deviation alone [Glashow et al., 2015]

LFV in B decays

As mentioned: if R_{K} is signaling BSM LUV, then, in general, expect BSM LFV as well

Actually, the expected ballpark of LFV effects can be predicted from $B R(B \rightarrow K \mu \mu)$ and the R_{K} deviation alone [Glashow et al., 2015]
\(\nabla \frac{B R\left(B^{+} \rightarrow K^{+} \mu e\right)}{B R\left(B^{+} \rightarrow K^{+} \mu \mu\right)}=\frac{\left|\delta C_{10}\right|^{2}}{\left\lvert\, \begin{array}{c}C_{10}^{S M}+\left.\delta C_{10}\right|^{2}

=0.159^{2}

according to \mathrm{R}_{\mathrm{k}}\end{array}\right.} \cdot \frac{\left|\left(U_{L}^{\ell}\right)_{31}\right|^{2}}{\left|\left(U_{L}^{\ell}\right)_{32}\right|^{2}}\)| -2 |
| :---: |
| $\begin{array}{c}\boldsymbol{\mu}^{+} \mathrm{e}^{-} \& \mu \mathrm{e}^{+} \\ \text {modes }\end{array}$ |

$$
\square B R\left(B^{+} \rightarrow K^{+} \mu e\right)<2.2 \times 10^{-8} \cdot \frac{\left|\left(U_{L}^{\ell}\right)_{31}\right|^{2}}{\left|\left(U_{L}^{\ell}\right)_{32}\right|^{2}}
$$

The current $B R\left(B^{+} \rightarrow K^{+} \mu e\right)$ limit yields the weak bound

$$
\left|\left(U_{L}^{\ell}\right)_{31} 1\left(U_{L}^{\ell}\right)_{32}\right|<3.7
$$

LFV in B decays

As mentioned: if R_{K} is signaling BSM LUV, then, in general, expect BSM LFV as well

Actually, the expected ballpark of LFV effects can be predicted from $B R(B \rightarrow K \mu \mu)$ and the R_{K} deviation alone [Glashow et al., 2015]
\(\nabla \frac{B R\left(B^{+} \rightarrow K^{+} \mu e\right)}{B R\left(B^{+} \rightarrow K^{+} \mu \mu\right)}=\frac{\left|\delta C_{10}\right|^{2}}{\left\lvert\, \begin{array}{c}C_{10}^{S M}+\left.\delta C_{10}\right|^{2}

=0.159^{2}

according to \mathbf{R}_{k}\end{array}\right.} \cdot \frac{\left|\left(U_{L}^{\ell}\right)_{31}\right|^{2}}{\left|\left(U_{L}^{\ell}\right)_{32}\right|^{2}}\)| -2 |
| :---: |
| $\begin{array}{c}\mu^{+}-\& \mathrm{e}^{-} \mathrm{e}^{+} \\ \text {modes }\end{array}$ |

$$
\square B R\left(B^{+} \rightarrow K^{+} \mu e\right)<2.2 \times 10^{-8} \cdot \frac{\left|\left(U_{L}^{\ell}\right)_{33}\right|^{2}}{\left|\left(U_{L}^{\ell}\right)_{32}\right|^{2}}
$$

The current $B R\left(B^{+} \rightarrow K^{+} \mu e\right)$ limit yields the weak bound

$$
\left|\left(U_{L}^{\ell}\right)_{31} 1\left(U_{L}^{\ell}\right)_{32}\right|<3.7
$$

V $B R\left(B^{+} \rightarrow K^{+} \mu \tau\right)$ would be even more promising, as it scales with $\left|\left(U_{L}^{\ell}\right)_{33} /\left(U_{L}^{\ell}\right)_{32}\right|^{2}$

LFV in B decays

As mentioned: if R_{κ} is signaling BSM LUV, then, in general, expect BSM LFV as well

Actually, the expected ballpark of LFV effects can be predicted from $B R(B \rightarrow K \mu \mu)$ and the R_{K} deviation alone [Glashow et al., 2015]
\(\nabla \frac{B R\left(B^{+} \rightarrow K^{+} \mu e\right)}{B R\left(B^{+} \rightarrow K^{+} \mu \mu\right)}=\left[\begin{array}{c}\frac{\left|\delta C_{10}\right|^{2}}{\left|C_{10}^{S M}+\delta C_{10}\right|^{2}}

=0.159^{2}

according to \mathbf{R}_{k}\end{array}\right] \cdot \frac{\left|\left(U_{L}^{\ell}\right)_{31}\right|^{2}}{\left|\left(U_{L}^{\ell}\right)_{32}\right|^{2}}\)| -2 |
| :---: |
| $\begin{array}{c}\boldsymbol{\mu}^{+e-} \& \mathrm{e}^{+} \mathrm{e}^{+} \\ \text {modes }\end{array}$ |

$$
\square B R\left(B^{+} \rightarrow K^{+} \mu e\right)<2.2 \times 10^{-8} \cdot \frac{\left|\left(U_{L}^{\ell}\right)_{33}\right|^{2}}{\left|\left(U_{L}^{\ell}\right)_{32}\right|^{2}}
$$

The current $B R\left(B^{+} \rightarrow K^{+} \mu e\right)$ limit yields the weak bound

$$
\left|\left(U_{L}^{\ell}\right)_{31} 1\left(U_{L}^{\ell}\right)_{32}\right|<3.7
$$

$\checkmark \quad B R\left(B^{+} \rightarrow K^{+} \mu \tau\right) \quad$ would be even more promising, as it scales with $\left|\left(U_{L}^{\ell}\right)_{33} /\left(U_{L}^{\ell}\right)_{32}\right|^{2}$
$\checkmark \quad$ An analogous argument holds for purely leptonic modes

Making the interaction G_{SM} - invariant

- Being defined above the EWSB scale, our assumed operator

$$
\bar{b}_{L}^{\prime} \gamma^{\lambda} b^{\prime}{ }_{L} \bar{\tau}_{L}^{\prime} \gamma_{\lambda} \tau^{\prime}{ }_{L}
$$

must actually be made invariant
under $\operatorname{SU}(3)_{c} \times S U(2)_{L} \times U(1)_{Y}$

Making the interaction G_{SM} - invariant

- Being defined above the EWSB scale, our assumed operator

$$
\bar{b}_{L}^{\prime} \gamma^{\lambda} b_{L}^{\prime} \bar{\tau}_{L}^{\prime} \gamma_{\lambda} \tau_{L}^{\prime}
$$

must actually be made invariant

[neutral-current int's only]
[also charged-current int's] under $S U(3)_{c} \times S U(2)_{L} \times U(1)_{Y}$

Making the interaction G_{SM} - invariant

- Being defined above the EWSB scale, our assumed operator
$\bar{b}^{\prime}{ }_{L} \gamma^{\lambda} b^{\prime}{ }_{L} \bar{\tau}^{\prime}{ }_{L} \gamma_{\lambda} \tau^{\prime}{ }_{L}$
must actually be made invariant
[neutral-current int's only]
- $\bar{Q}^{\prime, i}{ }_{L} \gamma^{\lambda} Q^{\prime j}{ }_{L} \bar{L}^{\prime j}{ }_{L} \gamma_{\lambda} L^{\prime,}{ }_{L}$
[also charged-current int's]
under $S U(3)_{c} \times S U(2)_{L} \times U(1)_{Y}$
- Thus, the generated structures are all of:

$$
\begin{array}{ll}
t^{\prime} t^{\prime} v_{\tau}^{\prime} \nu_{\tau}^{\prime}, & b^{\prime} b^{\prime} v_{\tau}^{\prime} \nu_{\tau}^{\prime}, \\
t^{\prime} t^{\prime} \tau^{\prime} \tau^{\prime}, & b^{\prime} b^{\prime} \tau^{\prime} \tau^{\prime}
\end{array}
$$

Making the interaction G_{SM} - invariant

- Being defined above the EWSB scale, our assumed operator

$$
\bar{b}_{L}^{\prime} \gamma^{\lambda} b^{\prime}{ }_{L} \bar{\tau}_{L}^{\prime} \gamma_{\lambda} \tau^{\prime}{ }_{L}
$$

must actually be made invariant under $S U(3)_{c} \times S U(2)_{L} \times U(1)_{Y}$

[also charged-current int's]

- Thus, the generated structures are all of:

$$
\begin{array}{ll}
t^{\prime} t^{\prime} v_{\tau}^{\prime} \nu_{\tau}^{\prime}, & b^{\prime} b^{\prime} v_{\tau}^{\prime} \nu_{\tau}^{\prime}, \\
t^{\prime} t^{\prime} \tau^{\prime} \tau^{\prime}, & b^{\prime} b^{\prime} \tau^{\prime} \tau^{\prime}
\end{array}
$$

Making the interaction G_{sM} - invariant

- Being defined above the EWSB scale, our assumed operator

$$
\bar{b}_{L}^{\prime} \gamma^{\lambda} b^{\prime}{ }_{L} \bar{\tau}_{L}^{\prime} \gamma_{\lambda} \tau^{\prime}{ }_{L}
$$

must actually be made invariant

[neutral-current int's only]
[also charged-current int's] under $S U(3)_{c} \times S U(2)_{L} \times U(1)_{Y}$

- Thus, the generated structures are all of:

$$
\begin{array}{ll}
t^{\prime} t^{\prime} v_{\tau}^{\prime} \nu_{\tau}^{\prime}, & b^{\prime} b^{\prime} v_{\tau}^{\prime} \nu_{\tau}^{\prime}, \\
t^{\prime} t^{\prime} \tau^{\prime} \tau^{\prime}, & b^{\prime} b^{\prime} \tau^{\prime} \tau^{\prime}
\end{array}
$$

$$
t^{\prime} b^{\prime} \tau^{\prime} v^{\prime}{ }_{\tau}
$$

\leftrightarrows
After rotation to the mass basis (unprimed), the last structure contributes to $\Gamma(b \rightarrow c \tau \bar{v})$
Q 0° i.e. it can explain deviations on $R\left(D\left(^{*}\right)\right.$)

Making the interaction G_{SM} - invariant

- Being defined above the EWSB scale, our assumed operator

$$
\bar{b}_{L}^{\prime} \gamma^{\lambda} b^{\prime}{ }_{L} \bar{\tau}_{L}^{\prime} \gamma_{\lambda} \tau^{\prime}{ }_{L}
$$

must actually be made invariant
$\underbrace{\boldsymbol{S U (2)}_{L}}_{\text {inv. }} \begin{cases}\bullet \bar{Q}^{\prime}{ }_{L} \gamma^{\lambda} Q^{\prime}{ }_{L} \bar{L}^{\prime}{ }_{L} \gamma_{\lambda} L^{\prime}{ }_{L} & \text { [neutral-current int's only] } \\ \cdot \bar{Q}^{\prime i}{ }_{L} \gamma^{\lambda} Q^{\prime}{ }_{L} \bar{L}^{\prime j}{ }_{L} \gamma_{\lambda} L^{\prime \prime}{ }_{L} & \text { [also charged-current int's] }\end{cases}$ under $S U(3)_{c} \times S U(2)_{L} \times U(1)_{Y}$
$t^{\prime} t^{\prime} v_{\tau}^{\prime} v_{\tau}^{\prime}, \quad b^{\prime} b^{\prime} v^{\prime}{ }_{\tau} v_{\tau}^{\prime}$, $t^{\prime} t^{\prime} \tau^{\prime} \tau^{\prime}, \quad b^{\prime} b^{\prime} \tau^{\prime} \tau^{\prime}$,

$$
t^{\prime} b^{\prime} \tau^{\prime} v_{\tau}^{\prime}
$$

After rotation to the mass basis (unprimed), the last structure contributes to $\Gamma(b \rightarrow c \tau \bar{v})$

- 0° i.e. it can explain deviations on $R\left(D\left(^{*}\right)\right.$)
- But this coin has a flip side.

Through RGE running, one gets also LFU-breaking effects in $\tau \rightarrow \ell \vee v$ (tested at per mil accuracy)

Making the interaction G_{SM} - invariant

- Being defined above the EWSB scale, our assumed operator

$$
\bar{b}_{L}^{\prime} \gamma^{\lambda} b^{\prime}{ }_{L} \bar{\tau}_{L}^{\prime} \gamma_{\lambda} \tau^{\prime}{ }_{L}
$$

must actually be made invariant
$\underbrace{\boldsymbol{S U (2)}_{L}}_{\text {inv. }} \begin{cases}\bullet \bar{Q}^{\prime}{ }_{L} \gamma^{\lambda} Q^{\prime}{ }_{L} \bar{L}^{\prime}{ }_{L} \gamma_{\lambda} L^{\prime}{ }_{L} & \text { [neutral-current int's only] } \\ \cdot \bar{Q}^{\prime i}{ }_{L} \gamma^{\lambda} Q^{\prime}{ }_{L} \bar{L}^{\prime j}{ }_{L} \gamma_{\lambda} L^{\prime \prime}{ }_{L} & \text { [also charged-current int's] }\end{cases}$ under $S U(3)_{c} \times S U(2)_{L} \times U(1)_{Y}$
$t^{\prime} t^{\prime} v_{\tau}^{\prime} v_{\tau}^{\prime}, \quad b^{\prime} b^{\prime} v^{\prime}{ }_{\tau} v_{\tau}^{\prime}$, $t^{\prime} t^{\prime} \tau^{\prime} \tau^{\prime}, \quad b^{\prime} b^{\prime} \tau^{\prime} \tau^{\prime}$,

$$
t^{\prime} b^{\prime} \tau^{\prime} v^{\prime}{ }_{\tau}
$$

- Thus, the generated structures are all of:

After rotation to the mass basis (unprimed), the last structure contributes to $\Gamma(b \rightarrow c \tau \bar{v})$

- 0° i.e. it can explain deviations on $R\left(D\left(^{*}\right)\right.$)
- But this coin has a flip side.

Through RGE running, one gets also LFU-breaking effects in $\tau \rightarrow \ell \vee v$ (tested at per mil accuracy)

Such effects"strongly disfavour an explanation of the $R\left(D\left(^{*}\right)\right.$) anomaly model-independently"

Further tests

- Measure more LUV ratios: $\quad R_{K^{*}}, R_{\phi}, R_{\text {Xs }}, R_{K_{0}(1430)}, R_{f_{0}}$

Further tests

- Measure more LUV ratios: $\quad R_{K^{*}}, R_{\phi}, R_{X s}, R_{K_{0}(1430)}, R_{f_{0}}$

Interesting test: define $X_{H} \equiv \frac{R_{H}}{R_{K}}$, with $H=K^{*}, \phi, X_{s}, K_{0}(1430), f_{0}$
Deviations from unity in the double ratios X_{H} can only come from RH currents

Further tests

- Measure more LUV ratios: $\quad R_{K^{*}}, R_{\phi}, R_{\text {XS }}, R_{K_{0}(1430)}, R_{f_{0}}$

Interesting test: define $X_{H} \equiv \frac{R_{H}}{R_{K}}$, with $H=K^{*}, \phi, X_{s}, K_{0}(1430), f_{0}$
Deviations from unity in the double ratios X_{H} can only come from $R H$ currents

- We now know the first of these double ratios, $X_{K^{*}}$ (for $\left.q^{2} \in[1,6] \mathrm{GeV}^{2}\right)$

$$
X_{K^{*}}=0.92 \cdot(1 \pm O(20 \%))
$$

Further tests

- Measure more LUV ratios: $\quad R_{K^{*}}, R_{\phi}, R_{\text {XS }}, R_{K_{0}(1430)}, R_{f_{0}}$

Interesting test: define $X_{H} \equiv \frac{R_{H}}{R_{K}}$, with $H=K^{*}, \phi, X_{s}, K_{0}(1430), f_{0}$
Deviations from unity in the double ratios X_{H} can only come from $R H$ currents

- We now know the first of these double ratios, $X_{K^{*}}$ (for $\left.q^{2} \in[1,6] \mathrm{GeV}^{2}\right)$

$$
X_{K^{*}}=0.92 \cdot(1 \pm O(20 \%)) \quad \square \quad \text { within errors, it is compatible with unity }
$$

Further tests

- Measure more LUV ratios: $\quad R_{K^{*}}, R_{\phi}, R_{X_{s}}, R_{K_{0}(1430)}, R_{f_{0}}$ Interesting test: define $X_{H} \equiv \frac{R_{H}}{R_{K}}$, with $H=K^{*}, \phi, X_{s}, K_{0}(1430), f_{0}$
Deviations from unity in the double ratios X_{H} can only come from RH currents
- We now know the first of these double ratios, $X_{K^{*}}$ (for $\left.q^{2} \in[1,6] \mathrm{GeV}^{2}\right)$

$$
X_{K^{*}}=0.92 \cdot(1 \pm O(20 \%)) \quad \square \quad \text { within errors, it is compatible with unity }
$$

In general we have [Hiller, Schmaltz, JHEP 2015]

$$
X_{K^{*}} \simeq 1-0.41 \operatorname{Re}\left(C_{9}^{\prime \mu}-C_{10}^{\prime \mu}-\{\mu \rightarrow e\}\right)
$$

$$
\begin{aligned}
& \text { Remember } \\
& {O_{9}^{\prime \ell}=\left(\bar{s} \gamma^{u} P_{R} b\right)\left(\bar{\ell} \gamma_{\mu} \ell\right)}_{{O_{10}^{\prime \ell}}_{10}=\left(\bar{s} \gamma^{u} P_{R} b\right)\left(\bar{l} \gamma_{\mu} \gamma_{5} \ell\right)} .
\end{aligned}
$$

Further tests

- Extract LD effects from data

Recently, LHCb measured $B R\left(B^{+} \rightarrow K^{+} \mu \mu\right)$ including an accurate parameterization of the LD component in the $c \bar{c}$ region

Further tests

- Extract LD effects from data

Recently, LHCb measured $B R\left(B^{+} \rightarrow K^{+} \mu \mu\right)$ including an accurate parameterization of the LD component in the $c \bar{c}$ region

Idea: Sizable LD contributions far from the resonance region could explain away tensions

Further tests

- Extract LD effects from data

Recently, LHCb measured $B R\left(B^{+} \rightarrow K^{+} \mu \mu\right)$ including an accurate parameterization of the LD component in the $c \bar{c}$ region

Idea: Sizable LD contributions far from the resonance region could explain away tensions
Method: Measure $m_{\mu \mu}$ spectrum, including the $c \bar{c}$ resonances as a sum of BW, and fit 'em all

Further tests

- Extract LD effects from data

Recently, LHCb measured $B R\left(B^{+} \rightarrow K^{+} \mu \mu\right)$ including an accurate parameterization of the LD component in the $c \bar{c}$ region

Idea: Sizable LD contributions far from the resonance region could explain away tensions
Method: Measure $m_{\mu \mu}$ spectrum, including the $c \bar{c}$ resonances as a sum of BW, and fit 'em all
Result: BR compatible with previous measurements, and (again) smaller than SM

Further tests

- Measure new observables sensitive to C_{9} and C_{10}

Further tests

- Measure new observables sensitive to C_{9} and C_{10}
- The $B_{s} \rightarrow \mu \mu \gamma$ decay offers sensitivity to C_{7}, C_{9}, C_{10} (and its total BR is 10^{-8}) Its direct measurement (= with photon detection) is veeery challenging at hadron colliders

Further tests

- Measure new observables sensitive to C_{9} and C_{10}
- The $B_{s} \rightarrow \mu \mu \gamma$ decay offers sensitivity to $C_{7}, C_{9}, C_{10} \quad$ (and its total $B R$ is 10^{-8}) Its direct measurement (= with photon detection) is veeery challenging at hadron colliders
- Extract $B_{s} \rightarrow \mu \mu \gamma$ from $B_{s} \rightarrow \mu \mu$ event sample, by enlarging $m_{\mu \mu}$ window downwards

Further tests

- Measure new observables sensitive to C_{9} and C_{10}
- The $B_{s} \rightarrow \mu \mu \gamma$ decay offers sensitivity to $C_{7}, C_{9}, C_{10} \quad$ (and its total $B R$ is 10^{-8}) Its direct measurement (= with photon detection) is veeery challenging at hadron colliders
- Extract $B_{s} \rightarrow \mu \mu \gamma$ from $B_{s} \rightarrow \mu \mu$ event sample, by enlarging $m_{\mu \mu}$ window downwards

Note in fact:

- ISR and FSR components in $B_{s} \rightarrow \mu \mu \gamma$ can be treated as independent (relevant in different regions \& interference is negligible)

Further tests

- Measure new observables sensitive to C_{9} and C_{10}
- The $B_{s} \rightarrow \mu \mu \gamma$ decay offers sensitivity to $C_{7}, C_{9}, C_{10} \quad$ (and its total $B R$ is 10^{-8}) Its direct measurement (= with photon detection) is veeery challenging at hadron colliders
- Extract $B_{s} \rightarrow \mu \mu \gamma$ from $B_{s} \rightarrow \mu \mu$ event sample, by enlarging $m_{\mu \mu}$ window downwards

Note in fact:

- ISR and FSR components in $B_{s} \rightarrow \mu \mu \gamma$ can be treated as independent (relevant in different regions \& interference is negligible)
- The FSR component can be systematically subtracted from data
(the same way it is in $B_{s} \rightarrow \mu \mu$)

Further tests

- Measure new observables sensitive to C_{9} and C_{10}
- The $B_{s} \rightarrow \mu \mu \gamma$ decay offers sensitivity to $C_{7}, C_{9}, C_{10} \quad$ (and its total $B R$ is 10^{-8}) Its direct measurement (= with photon detection) is veeery challenging at hadron colliders
- Extract $B_{s} \rightarrow \mu \mu \gamma$ from $B_{s} \rightarrow \mu \mu$ event sample, by enlarging $m_{\mu \mu}$ window downwards

Note in fact:

- ISR and FSR components in $B_{s} \rightarrow \mu \mu \gamma$ can be treated as independent (relevant in different regions \& interference is negligible)
- The FSR component can be systematically subtracted from data
(the same way it is in $B_{s} \rightarrow \mu \mu$)
- So this measurement gives access to the ISR spectrum, to be compared with theory
[Melikhov-Nikitin, '04]

EFT is ok. But models?

Up to now: Fermi-like interactions involving SM fields only. Is there any plausible dynamics generating these interactions?

EFT is ok. But models?

Up to now: Fermi-like interactions involving SM fields only. Is there any plausible dynamics generating these interactions?

First obstacle towards a common explanation of $b \rightarrow s \ell \ell$ and $b \rightarrow c \tau v$:

- $\left.\boldsymbol{B} \rightarrow \boldsymbol{D} \mathbf{(}^{*}\right) \boldsymbol{\tau v}$: arises at tree level in the SM, and the effect is O(25\%)
tree-level charged mediators?

EFT is ok. But models?

Up to now: Fermi-like interactions involving SM fields only. Is there any plausible dynamics generating these interactions?

First obstacle towards a common explanation of $b \rightarrow s \ell \ell$ and $b \rightarrow c \tau v$:

- $\quad \boldsymbol{B} \rightarrow \boldsymbol{D}$ ($\left.^{*}\right) \boldsymbol{\tau} \boldsymbol{v}$: arises at tree level in the SM, and the effect is $\mathrm{O}(25 \%)$tree-level charged mediators?
- $\quad \boldsymbol{B} \rightarrow \boldsymbol{K}\left(^{*}\right)$ ef : again 25% effect, but this is a loop effect in the SM

EFT is ok. But models?

Up to now: Fermi-like interactions involving SM fields only. Is there any plausible dynamics generating these interactions?

First obstacle towards a common explanation of $b \rightarrow s \ell \ell$ and $b \rightarrow c \tau v$:

- $\left.\quad \boldsymbol{B} \rightarrow \boldsymbol{D} \mathbf{(}^{*}\right) \boldsymbol{\tau} \mathbf{v}$: arises at tree level in the SM, and the effect is $\mathrm{O}(25 \%)$tree-level charged mediators?
- $\quad \boldsymbol{B} \rightarrow \boldsymbol{K}\left(^{*}\right) \mathscr{C L}:$ again 25% effect, but this is a loop effect in the SM

Second obstacle

- The needed NP is of the kind $J_{\text {quark }} \times J_{\text {lepton }}$ Hard to believe that it leaves no traces in $J_{\text {quark }} \times J_{\text {quark }}$ and $J_{\text {lepton }} \times J_{\text {lepton }}$ as well

EFT is ok. But models?

Up to now: Fermi-like interactions involving SM fields only. Is there any plausible dynamics generating these interactions?

First obstacle towards a common explanation of $b \rightarrow s \ell \ell$ and $b \rightarrow c \tau v$:

- $\left.\quad \boldsymbol{B} \rightarrow \boldsymbol{D} \mathbf{(}^{*}\right) \boldsymbol{\tau} \mathbf{v}$: arises at tree level in the SM, and the effect is $\mathrm{O}(25 \%)$tree-level charged mediators?
- $\quad \boldsymbol{B} \rightarrow \boldsymbol{K}\left(^{*}\right)$ et : again 25% effect, but this is a loop effect in the SM

Second obstacle

- The needed NP is of the kind $J_{\text {quark }} \times J_{\text {lepton }}$ Hard to believe that it leaves no traces in $J_{\text {quark }} \times J_{\text {quark }}$ and $J_{\text {lepton }} \times J_{\text {lepton }}$ as well \square

Strong constraints from B_{s}-mixing \& purely leptonic LFV or LUV decays

EFT is ok. But models?

Up to now: Fermi-like interactions involving SM fields only. Is there any plausible dynamics generating these interactions?

First obstacle towards a common explanation of $b \rightarrow s \ell \ell$ and $b \rightarrow c \tau v$:

- $\left.\quad \boldsymbol{B} \rightarrow \boldsymbol{D} \mathbf{(}^{*}\right) \boldsymbol{\tau} \mathbf{v}$: arises at tree level in the SM, and the effect is $\mathrm{O}(25 \%)$tree-level charged mediators?
- $\quad \boldsymbol{B} \rightarrow \boldsymbol{K}\left(^{*}\right) \mathscr{C L}:$ again 25% effect, but this is a loop effect in the SM

Second obstacle

- The needed NP is of the kind $J_{\text {quark }} \times J_{\text {lepton }}$ Hard to believe that it leaves no traces in $J_{\text {quark }} \times J_{\text {quark }}$ and $J_{\text {lepton }} \times J_{\text {lepton }}$ as well

Strong constraints from B_{s}-mixing \& purely leptonic LFV or LUV decays

Third obstacle

Most (all?) model-building possibilities involve:

- new charged (and possibly colored) states

EFT is ok. But models?

Up to now: Fermi-like interactions involving SM fields only. Is there any plausible dynamics generating these interactions?

First obstacle towards a common explanation of $b \rightarrow s \ell \ell$ and $b \rightarrow c \tau v$:

- $\left.\quad \boldsymbol{B} \rightarrow \boldsymbol{D} \mathbf{(}^{*}\right) \boldsymbol{\tau} \mathbf{v}$: arises at tree level in the SM, and the effect is $\mathrm{O}(25 \%)$tree-level charged mediators?
- $\quad \boldsymbol{B} \rightarrow \boldsymbol{K}\left(^{*}\right)$ ef : again 25% effect, but this is a loop effect in the SM

Second obstacle

- The needed NP is of the kind $J_{\text {quark }} \times J_{\text {lepton }}$ Hard to believe that it leaves no traces in $J_{\text {quark }} \times J_{\text {quark }}$ and $J_{\text {lepton }} \times J_{\text {lepton }}$ as well

Strong constraints from B_{s}-mixing \& purely leptonic LFV or LUV decays

Third obstacle

Most (all?) model-building possibilities involve:

- new charged (and possibly colored) states
- with masses in the TeV region and

EFT is ok. But models?

Up to now: Fermi-like interactions involving SM fields only. Is there any plausible dynamics generating these interactions?

First obstacle towards a common explanation of $b \rightarrow s \ell \ell$ and $b \rightarrow c \tau v$:

- $\left.\quad \boldsymbol{B} \rightarrow \boldsymbol{D} \mathbf{(}^{*}\right) \boldsymbol{\tau} \mathbf{v}$: arises at tree level in the SM, and the effect is $\mathrm{O}(25 \%)$tree-level charged mediators?
- $\quad \boldsymbol{B} \rightarrow \boldsymbol{K}\left(^{*}\right)$ ef : again 25% effect, but this is a loop effect in the SM

Second obstacle

- The needed NP is of the kind $J_{\text {quark }} \times J_{\text {lepton }}$ Hard to believe that it leaves no traces in $J_{\text {quark }} \times J_{\text {quark }}$ and $J_{\text {lepton }} \times J_{\text {lepton }}$ as well

Strong constraints from B_{s}-mixing \& purely leptonic LFV or LUV decays

Third obstacle

Most (all?) model-building possibilities involve:

- new charged (and possibly colored) states
- with masses in the TeV region and
- with significant couplings to $3^{\text {rd }}$ gen. SM fermions

EFT is ok. But models?

Up to now: Fermi-like interactions involving SM fields only. Is there any plausible dynamics generating these interactions?

First obstacle towards a common explanation of $b \rightarrow s \ell \ell$ and $b \rightarrow c \tau v$:

- $\left.\quad \boldsymbol{B} \rightarrow \boldsymbol{D} \mathbf{(}^{*}\right) \boldsymbol{\tau} \mathbf{v}$: arises at tree level in the SM, and the effect is $\mathrm{O}(25 \%)$tree-level charged mediators?
- $\quad \boldsymbol{B} \rightarrow \boldsymbol{K}\left(^{*}\right)$ ef : again 25% effect, but this is a loop effect in the SM

Second obstacle

- The needed NP is of the kind $J_{\text {quark }} \times J_{\text {lepton }}$ Hard to believe that it leaves no traces in $J_{\text {quark }} \times J_{\text {quark }}$ and $J_{\text {lepton }} \times J_{\text {lepton }}$ as well

Strong constraints from B_{s}-mixing \& purely leptonic LFV or LUV decays

Third obstacle

Most (all?) model-building possibilities involve:

- new charged (and possibly colored) states
- with masses in the TeV region and
- with significant couplings to $3^{\text {rd }}$ gen. SM fermions

Constraints from direct searches (e.g. \rightarrow TT) potentially strong

EFT is ok. But models?

Up to now: Fermi-like interactions involving SM fields only. Is there any plausible dynamics generating these interactions?

First obstacle towards a common explanation of $b \rightarrow s \ell \ell$ and $b \rightarrow c \tau v$:

- $\left.\quad \boldsymbol{B} \rightarrow \boldsymbol{D} \mathbf{(}^{*}\right) \boldsymbol{\tau} \mathbf{v}$: arises at tree level in the SM, and the effect is $\mathrm{O}(25 \%)$tree-level charged mediators?
- $\quad \boldsymbol{B} \rightarrow \boldsymbol{K}\left(^{*}\right)$ ef : again 25% effect, but this is a loop effect in the SM

Second obstacle

- The needed NP is of the kind $J_{\text {quark }} \times J_{\text {lepton }}$ Hard to believe that it leaves no traces in $J_{\text {quark }} \times J_{\text {quark }}$ and $J_{\text {lepton }} \times J_{\text {lepton }}$ as well

Strong constraints from B_{s}-mixing \& purely leptonic LFV or LUV decays

Third obstacle

Most (all?) model-building possibilities involve:

- new charged (and possibly colored) states
- with masses in the TeV region and
- with significant couplings to $3^{\text {rd }}$ gen. SM fermions

Constraints from direct searches (e.g. \rightarrow TT) potentially strong

And yes they are!
See: [Greljo-Isidori-Marzocca]
[Faroughy-Greljo-Kamenik]

- The above being said, many attempts towards plausible UV completions able to produce the needed operators have been made
- The above being said, many attempts towards plausible UV completions able to produce the needed operators have been made
- These models involve typically the introduction of:
- a new Lorentz-scalar (S) or -vector (V)
- The above being said, many attempts towards plausible UV completions able to produce the needed operators have been made
- These models involve typically the introduction of:
- a new Lorentz-scalar (S) or -vector (V)
with any of the following transformation properties under the SM gauge group:
- $S U(3)_{c}: 1$ or 3 (\rightarrow "leptoquark")
- SU(2)L: $\mathbf{1}$ or $\mathbf{2}$ or $\mathbf{3}$

Recap of model-building attempts
 focused on models accounting for $R_{K} \& R\left(D\left(^{*}\right)\right)$

Recap of model-building attempts

focused on models accounting for $R_{K} \& R\left(D\left(^{*}\right)\right)$

D. Guadagnoli, Flavor anomalies

Recap of model-building attempts

focused on models accounting for $R_{k} \& R\left(D\left(^{*}\right)\right)$

- Nice \& elegant: $R\left(D\left(^{*}\right)\right)$ generated at tree level, R_{K} at loop level
- But not viable: see Becirevic et al., 1608.07583
D. Guadagnoli, Flavor anomalies

Recap of model-building attempts

focused on models accounting for $R_{K} \& R\left(D\left(^{*}\right)\right)$

- Nice \& elegant: $R\left(D\left(^{*}\right)\right)$ generated at tree level, R_{K} at loop level
- But not viable: see Becirevic et al., 1608.07583
- Plausible mechanism to generate $R_{K} \& R\left(D\left(^{*}\right)\right.$: flavor group G_{F} distinguishing $3^{\text {rd }}$ gen. from the other two
- Strong bounds from $\tau \rightarrow \ell \vee v$ and B_{s}-mixing
- Minimal model ruled out by direct searches $\rightarrow \tau \tau$

1
2

V: Greljo, Isidori, © See also Boucenna et al. Marzocca 1604.03088

S\&V: Barbieri, Isidori, Pattori, Senia
D. Guadagnoli, Flavor anomalies

Recap of model-building attempts

focused on models accounting for $R_{K} \& R\left(D\left(^{*}\right)\right)$

- Nice \& elegant: $R\left(D\left(^{*}\right)\right)$ generated at tree level, R_{K} at loop level
- But not viable: see Becirevic et al., 1608.07583
- Plausible mechanism to generate $R_{K} \& R\left(D\left(^{*}\right)\right.$: flavor group G_{F} distinguishing $3^{\text {rd }}$ gen. from the other two
- Hierarchy between R_{K} and $R\left(D\left(^{*}\right)\right)$ controlled by G_{F} breaking
- Strong bounds from $\tau \rightarrow \ell \vee v$ and B_{s}-mixing
- Minimal model ruled out by direct searches $\rightarrow \tau \tau$

1
2

V: Greljo, Isidori, \quad See also Boucenna et al. Marzocca

S\&V: Barbieri, Isidori, Pattori, Senia

Recap of model-building attempts

focused on models accounting for $R_{K} \& R\left(D\left(^{*}\right)\right)$

- Nice \& elegant: $R\left(D\left(^{*}\right)\right)$ generated at tree level, R_{K} at loop level
- But not viable: see Becirevic et al., 1608.07583
- Plausible mechanism to generate $R_{K} \& R\left(D\left(^{*}\right)\right.$: flavor group G_{F} distinguishing $3^{\text {rd }}$ gen. from the other two
- Hierarchy between R_{K} and $R\left(D\left(^{*}\right)\right)$ controlled by G_{F} breaking
- Only vector singlet survives constraints
- Discusses UV-cutoff sensitivity (powerlike) \square Badly need UV completion (challenging)
- Strong bounds from $\tau \rightarrow \ell \vee v$ and B_{s}-mixing
- Minimal model ruled out by direct searches $\rightarrow \tau \tau$

Recap of model-building attempts

focused on models accounting for $R_{K} \& R\left(D\left(^{*}\right)\right)$

- Nice \& elegant: $R\left(D\left(^{*}\right)\right)$ generated at tree level, R_{K} at loop level
- But not viable: see Becirevic et al., 1608.07583
- Plausible mechanism to generate $R_{K} \& R\left(D\left(^{*}\right)\right.$: flavor group G_{F} distinguishing $3^{\text {rd }}$ gen. from the other two
- Hierarchy between R_{K} and $R\left(D\left(^{*}\right)\right)$ controlled by G_{F} breaking
- Only vector singlet survives constraints
- Discusses UV-cutoff sensitivity (powerlike)

Badly need UV completion (challenging)

- Strong bounds from $\tau \rightarrow \ell \vee v$ and B_{s}-mixing
- Minimal model ruled out by direct searches $\rightarrow \tau \tau$

3

V: Greljo, Isidori, Marzocca

See also Boucenna et al.

S: Bauer-Neubert
\&\&V: Barbieri, Isidori,
Pattori, Senia
$\because-------------$
V: Fajfer-Kosnic

- Similar scenario as Calibbi, Crivellin, Ota, but fully general flavor couplings
- Flavor couplings "pragmatically" fit to data:
R_{K} ones are $\sim 10^{-3}, R\left(D^{*}\right)$ ones are $O(1)$
D. Guadagnoli, Flavor anomalies

Recap of model-building attempts

focused on models accounting for $R_{K} \& R\left(D\left(^{*}\right)\right)$

- Nice \& elegant: $R\left(D\left(^{*}\right)\right)$ generated at tree level, R_{K} at loop level
- But not viable: see Becirevic et al., 1608.07583
- Plausible mechanism to generate $R_{K} \& R\left(D\left(^{*}\right)\right.$: flavor group G_{F} distinguishing $3^{\text {rd }}$ gen. from the other two
- Hierarchy between R_{K} and $R\left(D\left(^{*}\right)\right)$ controlled by G_{F} breaking
- Only vector singlet survives constraints
- Discusses UV-cutoff sensitivity (powerlike)

Badly need UV completion (challenging)

- Strong bounds from $\tau \rightarrow \ell \vee v$ and B_{s}-mixing
- Minimal model ruled out by direct searches $\rightarrow \tau \tau$

S: Bauer-Neubert

V: Barbieri, Isidori Pattori, Senia

2
1

S\&V: Barbieri, Isidori,
Pattori, Senia
-----------------V: Fajfer-Kosnic

- Similar scenario as Calibbi, Crivellin, Ota, but fully general flavor couplings
- Flavor couplings "pragmatically" fit to data:
R_{K} ones are $\sim 10^{-3}, R\left(D^{*}\right)$ ones are $O(1)$
- How is LQ mass generated? Otherwise theory is non-renorm.
D. Guadagnoli, Flavor anomalies

Recap of model-building attempts

focused on models accounting for $R_{K} \& R\left(D\left(^{*}\right)\right)$

- Not constrained by Feruglio et al.'s argument
- Prediction: $R K^{*}>1$ $(V+A) \times(V-A)$ current invoked

- Strong bounds from $\tau \rightarrow \ell \vee v$ and B_{s}-mixing
- Minimal model ruled out by direct searches $\rightarrow \tau \tau$

3

V: Greljo, Isidori, Marzocca

See also Boucenna et al. 1604.03088

- Nice \& elegant: $R\left(D\left(^{*}\right)\right)$ generated at tree level, R_{K} at loop level
- But not viable: see Becirevic et al., 1608.07583
- Plausible mechanism to generate $R_{K} \& R\left(D\left(^{*}\right)\right)$: flavor group G_{F} distinguishing $3^{\text {rd }}$ gen. from the other two
- Hierarchy between R_{K} and $R\left(D\left(^{*}\right)\right)$ controlled by G_{F} breaking
- Only vector singlet survives constraints
- Discusses UV-cutoff sensitivity (powerlike)

Badly need UV completion (challenging)

- Similar scenario as Calibbi, Crivellin, Ota, but fully general flavor couplings
- Flavor couplings "pragmatically" fit to data:
R_{K} ones are $\sim 10^{-3}, R\left(D^{*}\right)$ ones are $O(1)$
- How is LQ mass generated? Otherwise theory is non-renorm.
D. Guadagnoli, Flavor anomalies

Recap of model-building attempts

focused on models accounting for $R_{K} \& R\left(D\left(^{*}\right)\right)$

- Not constrained by Feruglio et al.'s argument
- RK* prediction can be made < 1 by forbidding certain couplings
- Strong bounds from $\tau \rightarrow \mathscr{\ell} \vee \vee$ and B_{s}-mixing
- Minimal model ruled out by direct searches $\rightarrow \tau \tau$

S: Bauer-Neubert
3

- Nice \& elegant: $R\left(D\left(^{*}\right)\right)$ generated at tree level, R_{K} at loop level
- But not viable: see Becirevic et al., 1608.07583
- Plausible mechanism to generate $R_{K} \& R\left(D\left(^{*}\right)\right)$: flavor group G_{F} distinguishing $3^{\text {rd }}$ gen. from the other two
- Hierarchy between R_{K} and $R\left(D\left(^{*}\right)\right.$ controlled by G_{F} breaking
- Only vector singlet survives constraints
- Discusses UV-cutoff sensitivity (powerlike)

Badly need UV completion (challenging)

- Similar scenario as Calibbi, Crivellin, Ota, but fully general flavor couplings
- Flavor couplings "pragmatically" fit to data:
R_{K} ones are $\sim 10^{-3}, R\left(D^{*}\right)$ ones are $O(1)$
- How is LQ mass generated? Otherwise theory is non-renorm.
D. Guadagnoli, Flavor anomalies

Conclusions

- In flavor physics there are by now several persistent discrepancies with respect to the SM.

Conclusions

- In flavor physics there are by now several persistent discrepancies with respect to the SM.

Their most convincing aspects are the following:

- Experiments: Results are consistent between LHCb and B factories.
- Data: Deviations concern two independent sets of data: $b \rightarrow s$ and $b \rightarrow c$ decays.
- Data vs. theory: Discrepancies go in a consistent direction.

A BSM explanation is already possible within an EFT approach.

Conclusions

- In flavor physics there are by now several persistent discrepancies with respect to the SM.

Their most convincing aspects are the following:

- Experiments: Results are consistent between LHCb and B factories.
- Data: Deviations concern two independent sets of data: $b \rightarrow s$ and $b \rightarrow c$ decays.
- Data vs. theory: Discrepancies go in a consistent direction.

A BSM explanation is already possible within an EFT approach.

- Early to draw conclusions. But Run II will provide a definite answer

Conclusions

- In flavor physics there are by now several persistent discrepancies with respect to the SM.

Their most convincing aspects are the following:

- Experiments: Results are consistent between LHCb and B factories.
- Data: Deviations concern two independent sets of data: $b \rightarrow s$ and $b \rightarrow c$ decays.
- Data vs. theory: Discrepancies go in a consistent direction.

A BSM explanation is already possible within an EFT approach.

- Early to draw conclusions. But Run II will provide a definite answer
- Theory: EFT makes sense rather well of data. But hard to find convincing UV dynamics

Conclusions

- In flavor physics there are by now several persistent discrepancies with respect to the SM.

Their most convincing aspects are the following:

- Experiments: Results are consistent between LHCb and B factories.
- Data: Deviations concern two independent sets of data: $b \rightarrow s$ and $b \rightarrow c$ decays.
- Data vs. theory: Discrepancies go in a consistent direction.

A BSM explanation is already possible within an EFT approach.

- Early to draw conclusions. But Run II will provide a definite answer
- Theory: EFT makes sense rather well of data. But hard to find convincing UV dynamics
- Timely to pursue further tests.

Examples: - more measurements of R_{K}

- more LUV quantities
- other observables sensitive to $C_{9} \& C_{10}$

