Boosted $t\bar{t}H$ analyses in CMS and ATLAS

E. Le Quilleuc

CEA Saclay

May 4, 2017

Outline

Introduction

Boosted topology in $t\bar{t}H$

CMS Results with 2015 Dataset

Selection and yields at 2.7/fb Discriminant variables Boosted region sensitivity

ATLAS Strategy for Run 2

Boosted selection Some truth studies Possible discriminant variables

Outline

Introduction Boosted topology in $t\bar{t}H$

CMS Results with 2015 Dataset Selection and yields at 2.7/fb Discriminant variables Boosted region sensitivity

Boosted selection Some truth studies

Introduction

Boosted analysis

Targets $t\bar{t}H(b\bar{b})$ events with high momenta Higgs/tops

Large-radius jets are used to catch the Higgs/top decay products

Advantages

- reduced combinatorics when assigning reconstructed objects to the Higgs decay products
- ▶ recover topologies where small radius jets start to merge

Drawback small fraction of the phase space, low signal statistics

Public Results in Run 2

Both CMS and ATLAS are considering a boosted analysis to improve their sensitivity to $t\bar{t}H$ in the lepton+jets channel

Current results

CMS last results with 2015 dataset CMS PAS HIG-16-004

ATLAS no public results available yet

Outline

Introduction
Boosted topology in $t\bar{t}H$

CMS Results with 2015 Dataset Selection and yields at 2.7/fb Discriminant variables Boosted region sensitivity

ATLAS Strategy for Run 2
Boosted selection
Some truth studies
Possible discriminant variables

CMS Boosted Analysis Selection

selection $1e/\mu$, ≥ 4 jets and ≥ 2 b-tags¹, **1 Higgs-tagged** large-R jet and **1 top-tagged** large-R jet large-R jets C/A algorithm of $R=1.5, p_T>200~{\rm GeV}$

Higgs- & top-tagging

- ▶ find subjets compatible with $H \to b\bar{b}$ for Higgs-tag (• arXiv:0802.2470v²) and with $t \to bq\bar{q}$ for top-tag (• arXiv:1006.2833) by redoing/reverting the jet clustering
- tag according to kinematics and b-tagging of subjets with multivariate technics

Boosted events moderatly boosted, low number of b-tags

 $^{^{1}70\%(1\%)}$ b-(light-)jet efficiency

CMS Process Composition in lepton+jets

lepton+jets phase space is divided into 8 regions

- boosted region
- ► remaining events are classified wrt the number of jets/b-tags

Boosted region large contribution from $t\bar{t}+$ light flavour, comparable with $t\bar{t}+$ heavy flavour

CMS Yields at 2.7/fb (2015)

-				
Process	4 jets, ≥ 4 b-tags	5 jets, \geq 4 b-tags	\geq 6 jets, \geq 4 b-tags	boosted
t t +lf	17.8 ± 10.8	17.7 ± 10.9	17.6 ± 11.3	45.1 ± 9.4
$t\overline{t} + c\overline{c}$	11.6 ± 8.2	22.1 ± 15.4	35.9 ± 24.9	21.8 ± 12.0
t ī +b	8.4 ± 4.4	14.8 ± 7.7	20.0 ± 10.9	10.3 ± 5.5
$t\bar{t}+2b$	3.5 ± 1.9	6.9 ± 3.7	12.3 ± 6.9	12.3 ± 6.6
$t\overline{t} + b\overline{b}$	10.1 ± 4.9	28.8 ± 13.9	73.4 ± 36.6	17.0 ± 8.4
Single Top	2.5 ± 1.1	4.3 ± 1.4	5.5 ± 2.0	7.0 ± 1.7
V+jets	1.0 ± 0.8	0.9 ± 0.8	1.4 ± 0.7	2.5 ± 0.8
$t\bar{t}+V$	0.3 ± 0.1	0.7 ± 0.3	1.6 ± 0.6	0.9 ± 0.3
Diboson	0.0 ± 0.0	0.1 ± 0.1	0.0 ± 0.0	0.1 ± 0.1
Total bkg	55.2 ± 23.0	96.5 ± 37.6	167.6 ± 65.7	117.0 ± 24.9
tŧH	0.9 ± 0.2	2.7 ± 0.6	5.9 ± 1.4	2.2 ± 0.3
Data	75	104	150	104
S/B	0.017	0.028	0.035	0.019
Data/B	1.4 ± 0.5	1.1 ± 0.4	0.9 ± 0.4	0.9 ± 0.2

The boosted region has a

- \blacktriangleright relatively good acceptance, compared with signal regions with ≥ 4 b-tags
- ▶ S/B almost twice lower than the most sensitive region ≥ 6 jets ≥ 4 b-tags
- ▶ smaller bkg (sg) relative uncertainty ($\sim 21\%$ ($\sim 14\%$)) than ≥ 4 b-tags regions ($\sim 40\%$ ($\sim 23\%$)), in part because less sensitive to b-tagging uncertainties

BDT Input Variables List for Boosted

BDT is trained to improve the sensitivity of the boosted channel

BDT event variable	Description
$avg \Delta R(tag, tag)$	Average ΔR between b-tagged jets
τ_2/τ_1 of Higgs cand.	substructure variable, help to distinguish
	2 against 1 prong Higgs cand.
third highest CSV	Third highest CSVv2IVF value among all jets
fourth highest CSV	Fourth highest CSVv2IVF value among all jets
$\Delta \eta (ext{top,Higgs})$	η difference between the Higgs cand. and the
	top cand.
aplanarity	$3/2\lambda_1$ (λ_i : eigeinvalues of momentum tensor)
m(Higgs, di-filteredjet)	Invariant mass of boosted Higgs cand.
	reconstructed from filtered subjets B1 and B2
$\min \Delta R(\text{tag,tag})$	ΔR between the two closest b-tagged jets
avg CSV (all)	Average b-tag discriminator value of all jets
MEM discriminator	MEM discriminator using subjets from the
	top cand.
b-tagging likelihood ratio	no info.

BDT Input Variable Distributions, 1)

BDT Input Variables for Boosted, 2)

best discrimination from

- ► b-tagging information
- Higgs cand. mass

fairly good agreement data/MC

CMS Limits with 2015 dataset (2.7/fb)

Each of 8 regions has its own fitted distribution – constructed to separate sg. from bkg. – which is fitted to data to extract the signal strengh $\mu_{t\bar{t}H}$ (< 4 b-tags : BDT, \geq 4 b-tags : MEM)

No systematic uncertainties specific to boosted topologies are considered in the combination (see backup)

Limit on $\mu_{t\bar{t}H}$ (95% CL)

 ≥ 4 b-tags regions splitted into high/low BDT output

Category	Observed	Expected
boosted	7.5	$10.7^{+5.9}_{-3.5}$
combined	4.0	$4.1^{+1.8}_{-1.2}$

Boosted channel one of the most sensitive region

Outline

Introduction

Boosted topology in $t\bar{t}H$

CMS Results with 2015 Dataset

Selection and yields at 2.7/fb Discriminant variables Boosted region sensitivity

ATLAS Strategy for Run 2

Boosted selection Some truth studies Possible discriminant variables

Boosted Selection

ATLAS

large-R jet anti- k_T R=1.0, inputs : standard small-R jets

simpler than large-R jets reconstructed from calorimeter clusters \to no additional systematic uncertainties

b-tag jet passing b-tagging weight with 85% (3%) b-(light-)jet efficiency

1 lepton electron or muon

1 Higgs-tag large-R jet $p_T > 200 \text{ GeV}, \geq 2 \text{ } b\text{-tags}^2$

1 top-tag large-R jet $p_T > 250 \text{ GeV}, \geq 1 \text{ b-tag \&} \geq 1 \text{ non } b\text{-tag}$

1 additional b-tag outside Higgs- and top-tag

Similar strategy than CMS 2 large-R jets moderatly boosted, quite loose in term of b-tagging in the event

²with $\Delta R(\text{large-}R \text{ jet, } b\text{-tag}) < 1.0$

Study of Higgs and Top Purity

ATLAS

Study performed with slightly a different selection, with large-R jets reconstructed from calorimeter clusters

Higgs purity fraction of H-tags that contain a truth H $\rightarrow b\bar{b}$ 59%

top purity

op periog				
quark matching	$t\bar{t}$ non	$t\bar{t}H$		
	all-hadronic	semi-leptonic		
at least b-quark from had. top	39%	69%		
all partons from had. top	20%	40%		

Good purity for both top-tag and H-tag with the selection 1 H-tag 1 top-tag

BDT Input Variables


```
\sum_{i \in I} b-tag weight Sum of b-tag weights of all b-tagged jets in event
                   (binned)
  \Delta R_{Higgs,top} \Delta R between Higgs and top
\sum_{jetsoutsideH/top} \text{mv2c10} / \sum_{jets} \text{mv2c10} Sum of b-tag weights of all
                   b-tagged subjets outside t & H,
                  divided by sum of b-tag weights of all jets
 Higgs-tag d_{12} Higgs cand. \sqrt{d_{12}}
   top-tag d_{12} Top cand. \sqrt{d_{12}}
 large-R jet \eta Eta of leading large-R jet
   \Delta R_{b\bar{b}^{maxp}T} \Delta R between two leading b-jets
    \Delta R_{b\bar{b}Higgs} \Delta R between two leading b-jets in H
  \Delta R_{Higgs,lep} \Delta R between Higgs and the lepton
\Delta R_{Higgs,add,b} \Delta R between H and leading b-jet outside t & H
   \Delta R_{top,add,b} \Delta R between top and leading b-jet outside t & H
```

Conclusion

In Run 2, boosted analyses are part of $t\bar{t}H$ lepton+jets analyses

The moderatly boosted signal makes the boosted analysis challenging

In CMS/ATLAS, the event selection is loose in b-tagging in order to

- ightharpoonup improve the acceptance of boosted $t\bar{t}H$ events
- ▶ tag Higgs and top candidates with good purity

In CMS, the boosted analysis of the lepton+jets analysis is one of the most sensitive channels

We expect that boosted analysis will play an important role in Run 2 and beyond with increasing luminosity

Backup

CMS Systematics (2015)

Source	Туре	Remarks
Luminosity	rate	Signal and all backgrounds
Lepton ID/trigger efficiency	shape	Signal and all backgrounds
Pileup	shape	Signal and all backgrounds
Jet energy scale	shape	Signal and all backgrounds
b-tag HF fraction	shape	Signal and all backgrounds
b-tag HF stats (linear)	shape	Signal and all backgrounds
b-tag HF stats (quadratic)	shape	Signal and all backgrounds
b-tag LF fraction	shape	Signal and all backgrounds
b-tag LF stats (linear)	shape	Signal and all backgrounds
b-tag LF stats (quadratic)	shape	Signal and all backgrounds
b-tag charm (linear)	shape	Signal and all backgrounds
b-tag charm (quadratic)	shape	Signal and all backgrounds
QCD scale (ttH)	rate	Scale uncertainty of NLO ttH prediction
QCD scale (tt)	rate	Scale uncertainty of NLO tt prediction
QCD scale (tt+hf)	rate	Additional scale uncertainty of NLO tt+hf predictions
QCD scale (t)	rate	Scale uncertainty of NLO single t prediction
QCD scale (V)	rate	Scale uncertainty of NNLO W and Z prediction
QCD scale (VV)	rate	Scale uncertainty of NLO diboson prediction
pdf (gg)	rate	Pdf uncertainty for gg initiated processes except $t\bar{t}H$
pdf (gg ttH)	rate	Pdf uncertainty for ttH
pdf (qq)	rate	PDF uncertainty of qq initiated processes (tt W, W, Z)
pdf (qg)	rate	PDF uncertainty of qg initiated processes (single t)
Q ² scale (t t)	shape	Renormalization and factorization scale uncertainties of
	•	the tt ME generator, independent for additional jet fla-
		vors
PS Scale (tt)	shape	Renormalization and factorization scale uncertainties of
	•	the parton shower (for tt events), independent for addi-
		tional jet flavors

CMS Event Display Boosted Event (2015)

CMS Limits lepton+jets (2015)

Category	Observed	Expected
4 jets, 3 b-tags	14.5	$18.6^{+8.2}_{-5.5}$
4 jets, ≥ 4 b-tags high BDT output	35.7	$25.6^{+13.4}_{-8.1}$
4 jets, ≥ 4 b-tags low BDT output	86.6	$84.2^{+41.3}_{-25.8}$
5 jets, 3 b-tags	16.0	$12.3_{-3.6}^{+5.5}$
5 jets, \geq 4 b-tags high BDT output	7.5	$10.3_{-3.4}^{+5.6}$
5 jets, \geq 4 b-tags low BDT output	35.2	$31.9^{+16.1}_{-9.9}$
\geq 6 jets, 2 b-tags	25.4	$41.1^{+21.1}_{-13.1}$
\geq 6 jets, 3 b-tags	9.6	$7.6^{+3.3}_{-2.2}$
\geq 6 jets, \geq 4 b-tags high BDT output	9.2	$8.3^{+4.4}_{-2.7}$
\geq 6 jets, \geq 4 b-tags low BDT output	15.4	$18.3^{+9.6}_{-5.8}$
\geq 4 jets, \geq 2 b-tags, boosted	7.5	$10.7^{+5.9}_{-3.5}$
lepton+jets combined	4.0	$4.1^{+1.8}_{-1.2}$