Boosted $t\bar{t}H$ analyses in CMS and ATLAS E. Le Quilleuc CEA Saclay May 4, 2017 ### Outline #### Introduction Boosted topology in $t\bar{t}H$ #### CMS Results with 2015 Dataset Selection and yields at 2.7/fb Discriminant variables Boosted region sensitivity #### ATLAS Strategy for Run 2 Boosted selection Some truth studies Possible discriminant variables ## Outline ## Introduction Boosted topology in $t\bar{t}H$ CMS Results with 2015 Dataset Selection and yields at 2.7/fb Discriminant variables Boosted region sensitivity # Boosted selection Some truth studies #### Introduction #### Boosted analysis Targets $t\bar{t}H(b\bar{b})$ events with high momenta Higgs/tops Large-radius jets are used to catch the Higgs/top decay products #### Advantages - reduced combinatorics when assigning reconstructed objects to the Higgs decay products - ▶ recover topologies where small radius jets start to merge **Drawback** small fraction of the phase space, low signal statistics #### Public Results in Run 2 Both CMS and ATLAS are considering a boosted analysis to improve their sensitivity to $t\bar{t}H$ in the lepton+jets channel #### Current results CMS last results with 2015 dataset CMS PAS HIG-16-004 ATLAS no public results available yet ## Outline Introduction Boosted topology in $t\bar{t}H$ CMS Results with 2015 Dataset Selection and yields at 2.7/fb Discriminant variables Boosted region sensitivity ATLAS Strategy for Run 2 Boosted selection Some truth studies Possible discriminant variables ## CMS Boosted Analysis Selection selection $1e/\mu$, ≥ 4 jets and ≥ 2 b-tags¹, **1 Higgs-tagged** large-R jet and **1 top-tagged** large-R jet large-R jets C/A algorithm of $R=1.5, p_T>200~{\rm GeV}$ ## Higgs- & top-tagging - ▶ find subjets compatible with $H \to b\bar{b}$ for Higgs-tag (• arXiv:0802.2470v²) and with $t \to bq\bar{q}$ for top-tag (• arXiv:1006.2833) by redoing/reverting the jet clustering - tag according to kinematics and b-tagging of subjets with multivariate technics Boosted events moderatly boosted, low number of b-tags $^{^{1}70\%(1\%)}$ b-(light-)jet efficiency ## CMS Process Composition in lepton+jets lepton+jets phase space is divided into 8 regions - boosted region - ► remaining events are classified wrt the number of jets/b-tags **Boosted region** large contribution from $t\bar{t}+$ light flavour, comparable with $t\bar{t}+$ heavy flavour ## CMS Yields at 2.7/fb (2015) | - | | | | | |---------------------------------|---------------------------|-------------------------|--------------------------------|------------------| | Process | 4 jets, ≥ 4 b-tags | 5 jets, \geq 4 b-tags | \geq 6 jets, \geq 4 b-tags | boosted | | t t +lf | 17.8 ± 10.8 | 17.7 ± 10.9 | 17.6 ± 11.3 | 45.1 ± 9.4 | | $t\overline{t} + c\overline{c}$ | 11.6 ± 8.2 | 22.1 ± 15.4 | 35.9 ± 24.9 | 21.8 ± 12.0 | | t ī +b | 8.4 ± 4.4 | 14.8 ± 7.7 | 20.0 ± 10.9 | 10.3 ± 5.5 | | $t\bar{t}+2b$ | 3.5 ± 1.9 | 6.9 ± 3.7 | 12.3 ± 6.9 | 12.3 ± 6.6 | | $t\overline{t} + b\overline{b}$ | 10.1 ± 4.9 | 28.8 ± 13.9 | 73.4 ± 36.6 | 17.0 ± 8.4 | | Single Top | 2.5 ± 1.1 | 4.3 ± 1.4 | 5.5 ± 2.0 | 7.0 ± 1.7 | | V+jets | 1.0 ± 0.8 | 0.9 ± 0.8 | 1.4 ± 0.7 | 2.5 ± 0.8 | | $t\bar{t}+V$ | 0.3 ± 0.1 | 0.7 ± 0.3 | 1.6 ± 0.6 | 0.9 ± 0.3 | | Diboson | 0.0 ± 0.0 | 0.1 ± 0.1 | 0.0 ± 0.0 | 0.1 ± 0.1 | | Total bkg | 55.2 ± 23.0 | 96.5 ± 37.6 | 167.6 ± 65.7 | 117.0 ± 24.9 | | tŧH | 0.9 ± 0.2 | 2.7 ± 0.6 | 5.9 ± 1.4 | 2.2 ± 0.3 | | Data | 75 | 104 | 150 | 104 | | S/B | 0.017 | 0.028 | 0.035 | 0.019 | | Data/B | 1.4 ± 0.5 | 1.1 ± 0.4 | 0.9 ± 0.4 | 0.9 ± 0.2 | | | | | | | #### The boosted region has a - \blacktriangleright relatively good acceptance, compared with signal regions with ≥ 4 b-tags - ▶ S/B almost twice lower than the most sensitive region ≥ 6 jets ≥ 4 b-tags - ▶ smaller bkg (sg) relative uncertainty ($\sim 21\%$ ($\sim 14\%$)) than ≥ 4 b-tags regions ($\sim 40\%$ ($\sim 23\%$)), in part because less sensitive to b-tagging uncertainties ## BDT Input Variables List for Boosted BDT is trained to improve the sensitivity of the boosted channel | BDT event variable | Description | |---------------------------------|---| | $avg \Delta R(tag, tag)$ | Average ΔR between b-tagged jets | | τ_2/τ_1 of Higgs cand. | substructure variable, help to distinguish | | | 2 against 1 prong Higgs cand. | | third highest CSV | Third highest CSVv2IVF value among all jets | | fourth highest CSV | Fourth highest CSVv2IVF value among all jets | | $\Delta \eta (ext{top,Higgs})$ | η difference between the Higgs cand. and the | | | top cand. | | aplanarity | $3/2\lambda_1$ (λ_i : eigeinvalues of momentum tensor) | | m(Higgs, di-filteredjet) | Invariant mass of boosted Higgs cand. | | | reconstructed from filtered subjets B1 and B2 | | $\min \Delta R(\text{tag,tag})$ | ΔR between the two closest b-tagged jets | | avg CSV (all) | Average b-tag discriminator value of all jets | | MEM discriminator | MEM discriminator using subjets from the | | | top cand. | | b-tagging likelihood ratio | no info. | ## BDT Input Variable Distributions, 1) ## BDT Input Variables for Boosted, 2) ## best discrimination from - ► b-tagging information - Higgs cand. mass fairly good agreement data/MC ## CMS Limits with 2015 dataset (2.7/fb) Each of 8 regions has its own fitted distribution – constructed to separate sg. from bkg. – which is fitted to data to extract the signal strengh $\mu_{t\bar{t}H}$ (< 4 b-tags : BDT, \geq 4 b-tags : MEM) No systematic uncertainties specific to boosted topologies are considered in the combination (see backup) Limit on $\mu_{t\bar{t}H}$ (95% CL) ≥ 4 b-tags regions splitted into high/low BDT output | Category | Observed | Expected | |----------|----------|----------------------| | boosted | 7.5 | $10.7^{+5.9}_{-3.5}$ | | combined | 4.0 | $4.1^{+1.8}_{-1.2}$ | Boosted channel one of the most sensitive region ## Outline #### Introduction Boosted topology in $t\bar{t}H$ #### CMS Results with 2015 Dataset Selection and yields at 2.7/fb Discriminant variables Boosted region sensitivity #### ATLAS Strategy for Run 2 Boosted selection Some truth studies Possible discriminant variables ### Boosted Selection ATLAS large-R jet anti- k_T R=1.0, inputs : standard small-R jets simpler than large-R jets reconstructed from calorimeter clusters \to no additional systematic uncertainties b-tag jet passing b-tagging weight with 85% (3%) b-(light-)jet efficiency 1 lepton electron or muon 1 Higgs-tag large-R jet $p_T > 200 \text{ GeV}, \geq 2 \text{ } b\text{-tags}^2$ 1 top-tag large-R jet $p_T > 250 \text{ GeV}, \geq 1 \text{ b-tag \&} \geq 1 \text{ non } b\text{-tag}$ 1 additional b-tag outside Higgs- and top-tag Similar strategy than CMS 2 large-R jets moderatly boosted, quite loose in term of b-tagging in the event ²with $\Delta R(\text{large-}R \text{ jet, } b\text{-tag}) < 1.0$ ## Study of Higgs and Top Purity ATLAS Study performed with slightly a different selection, with large-R jets reconstructed from calorimeter clusters Higgs purity fraction of H-tags that contain a truth H $\rightarrow b\bar{b}$ 59% top purity | op periog | | | | | |--------------------------------|----------------|---------------|--|--| | quark matching | $t\bar{t}$ non | $t\bar{t}H$ | | | | | all-hadronic | semi-leptonic | | | | at least b-quark from had. top | 39% | 69% | | | | all partons from had. top | 20% | 40% | | | Good purity for both top-tag and H-tag with the selection 1 H-tag 1 top-tag ## **BDT** Input Variables ``` \sum_{i \in I} b-tag weight Sum of b-tag weights of all b-tagged jets in event (binned) \Delta R_{Higgs,top} \Delta R between Higgs and top \sum_{jetsoutsideH/top} \text{mv2c10} / \sum_{jets} \text{mv2c10} Sum of b-tag weights of all b-tagged subjets outside t & H, divided by sum of b-tag weights of all jets Higgs-tag d_{12} Higgs cand. \sqrt{d_{12}} top-tag d_{12} Top cand. \sqrt{d_{12}} large-R jet \eta Eta of leading large-R jet \Delta R_{b\bar{b}^{maxp}T} \Delta R between two leading b-jets \Delta R_{b\bar{b}Higgs} \Delta R between two leading b-jets in H \Delta R_{Higgs,lep} \Delta R between Higgs and the lepton \Delta R_{Higgs,add,b} \Delta R between H and leading b-jet outside t & H \Delta R_{top,add,b} \Delta R between top and leading b-jet outside t & H ``` #### Conclusion In Run 2, boosted analyses are part of $t\bar{t}H$ lepton+jets analyses The moderatly boosted signal makes the boosted analysis challenging In CMS/ATLAS, the event selection is loose in b-tagging in order to - ightharpoonup improve the acceptance of boosted $t\bar{t}H$ events - ▶ tag Higgs and top candidates with good purity In CMS, the boosted analysis of the lepton+jets analysis is one of the most sensitive channels We expect that boosted analysis will play an important role in Run 2 and beyond with increasing luminosity Backup ## CMS Systematics (2015) | Source | Туре | Remarks | |--|-------|---| | Luminosity | rate | Signal and all backgrounds | | Lepton ID/trigger efficiency | shape | Signal and all backgrounds | | Pileup | shape | Signal and all backgrounds | | Jet energy scale | shape | Signal and all backgrounds | | b-tag HF fraction | shape | Signal and all backgrounds | | b-tag HF stats (linear) | shape | Signal and all backgrounds | | b-tag HF stats (quadratic) | shape | Signal and all backgrounds | | b-tag LF fraction | shape | Signal and all backgrounds | | b-tag LF stats (linear) | shape | Signal and all backgrounds | | b-tag LF stats (quadratic) | shape | Signal and all backgrounds | | b-tag charm (linear) | shape | Signal and all backgrounds | | b-tag charm (quadratic) | shape | Signal and all backgrounds | | QCD scale (ttH) | rate | Scale uncertainty of NLO ttH prediction | | QCD scale (tt) | rate | Scale uncertainty of NLO tt prediction | | QCD scale (tt+hf) | rate | Additional scale uncertainty of NLO tt+hf predictions | | QCD scale (t) | rate | Scale uncertainty of NLO single t prediction | | QCD scale (V) | rate | Scale uncertainty of NNLO W and Z prediction | | QCD scale (VV) | rate | Scale uncertainty of NLO diboson prediction | | pdf (gg) | rate | Pdf uncertainty for gg initiated processes except $t\bar{t}H$ | | pdf (gg ttH) | rate | Pdf uncertainty for ttH | | pdf (qq) | rate | PDF uncertainty of qq initiated processes (tt W, W, Z) | | pdf (qg) | rate | PDF uncertainty of qg initiated processes (single t) | | Q ² scale (t t) | shape | Renormalization and factorization scale uncertainties of | | | • | the tt ME generator, independent for additional jet fla- | | | | vors | | PS Scale (tt) | shape | Renormalization and factorization scale uncertainties of | | | • | the parton shower (for tt events), independent for addi- | | | | tional jet flavors | ## CMS Event Display Boosted Event (2015) ## CMS Limits lepton+jets (2015) | Category | Observed | Expected | |--|----------|------------------------| | 4 jets, 3 b-tags | 14.5 | $18.6^{+8.2}_{-5.5}$ | | 4 jets, ≥ 4 b-tags high BDT output | 35.7 | $25.6^{+13.4}_{-8.1}$ | | 4 jets, ≥ 4 b-tags low BDT output | 86.6 | $84.2^{+41.3}_{-25.8}$ | | 5 jets, 3 b-tags | 16.0 | $12.3_{-3.6}^{+5.5}$ | | 5 jets, \geq 4 b-tags high BDT output | 7.5 | $10.3_{-3.4}^{+5.6}$ | | 5 jets, \geq 4 b-tags low BDT output | 35.2 | $31.9^{+16.1}_{-9.9}$ | | \geq 6 jets, 2 b-tags | 25.4 | $41.1^{+21.1}_{-13.1}$ | | \geq 6 jets, 3 b-tags | 9.6 | $7.6^{+3.3}_{-2.2}$ | | \geq 6 jets, \geq 4 b-tags high BDT output | 9.2 | $8.3^{+4.4}_{-2.7}$ | | \geq 6 jets, \geq 4 b-tags low BDT output | 15.4 | $18.3^{+9.6}_{-5.8}$ | | \geq 4 jets, \geq 2 b-tags, boosted | 7.5 | $10.7^{+5.9}_{-3.5}$ | | lepton+jets combined | 4.0 | $4.1^{+1.8}_{-1.2}$ |