

Recast of LHC analyses: motivations, tools & results

Eric Conte (IPHC-GRPHE)

Top LHC France 4-5 May 2017 @ Marseille

Outlines

- 1. Motivations
- 2. Recasting with CHECKMATE & MADANALYSIS5
 - 3. Recasting with RIVET & derived tools
 - 4. Reinterpreting simplified models
 - 5. Required inputs
 - 6. Summary

1. Motivations

- 2. Recasting with CHECKMATE & MADANALYSIS5
 - 3. Recasting with RIVET & derived tools
 - 4. Reinterpreting simplified models
 - 5. Required inputs
 - 6. Summary

BSM researches @ LHC

Two kind of researches in the top sector:

- Standard Model measurement + reinterpretation in terms of New Physics Ex: ttZ-ttW with reinterpretation in terms of Wilson coefficients, ...
- Direct search of BSM
 - → Several benchmarks are chosen for showing the performance the analysis Ex: SUSY analysis, VLQ research, ...

Difficulty to be exhaustive in interpretation:

- testing all the existing models
- covering all the parameter space of a given model
- testing all the new models which could be conceived after the analysis
 - → We must be able to launch an existing analysis, tomorrow or in few years, with a different signal benchmark and to compute a limit.

Recasting strategy

How to recast the analysis?

Method 1

- Experimentalists keep and maintain their code internally.
- Phenomenologists ask to the authors to test a new model
 - → Need manpower, time consuming

Method 2

- Use a framework which:
 - Captures the analysis code, the data, ...
 - Allows people to upload they own MC samples
 - Launch automatically the codes and store results

Method 3

- Experimentalists provide all useful information to phenomenologists.
- Developing an external code which mimics the analysis results.
- → Approximations but much faster (useful for scan over parameter-space)
- → Identification of topologies or region not tested by experimentalists
- → Feedback to experimentalists

Recasting strategy

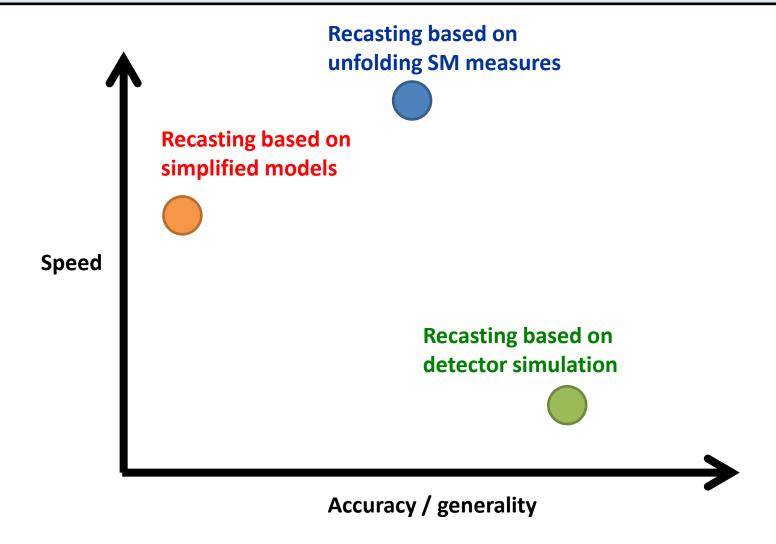
How to recast the analysis?

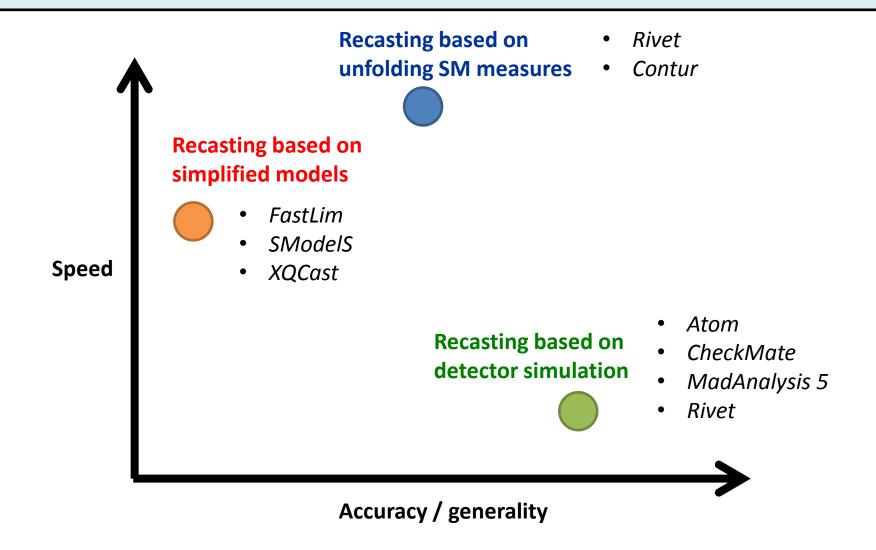
Method 1

- Experimentalists keep and maintain their code internally.
- Phenomenologists ask to the authors to test a new model
 - → Need manpower, time consuming

Method 2

- Use a framework which:
 - Captures the analysis code, the data, ...
 - Allows people to upload they own MC samples
 - Launch automatically the codes and store results

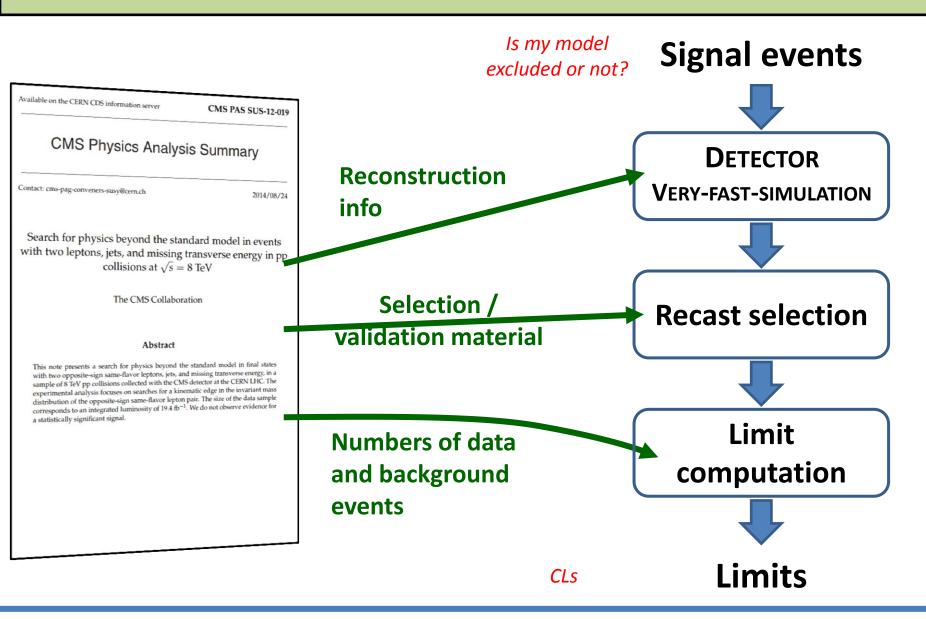



Method 3

- Experimentalists provide all useful information to phenomenologists.
- Developing an external code which mimics the analysis results.
- → Approximations but much faster (useful for scan over parameter-space)
- → Identification of topologies or region not tested by experimentalists
- → Feedback to experimentalists

Recasting tools

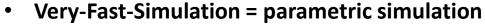
Recasting tools


The talk is only devoted to public tools.

1. Motivations

2. Recasting with CHECKMATE & MADANALYSIS5

- 3. Recasting with RIVET & derived tools
 - 4. Reinterpreting simplified models
 - 5. Required inputs
 - 6. Summary


Strategy of CheckMate & MadAnalysis 5

Very-Fast-Simulation package: Delphes

Public package for collider generic detector:

ATLAS, CMS, detectors for ILC or FCC, ...


- Algorithm: track propagation, calorimeter tower, energy-flow
- Smearing/Efficiency from public results (b-tagging for instance)
- Pile-up simulation

- Detector description = configuration card (tcl language)
- Possibility to add new modules for extension
- → Development of public or private "tunes" of Delphes

Difficulties of the simulation to:

- Reproduce the trigger selection
- Generate fakes (electron, photon)
- Deal with the distribution deal of some observables (ex: MET)
- Deal with exotic topology (ex: long-lived particle)

CheckMate & MadAnalysis5: a brief overview

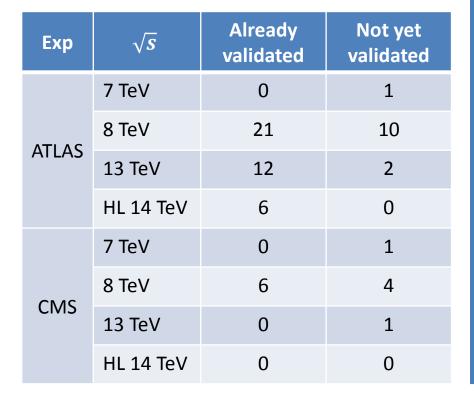
Designed for recasting:

- Choose the objects of interest
- Filter objects
- Check event vetoes
- Check various signal region criteria
- Count number of input events that fall into each signal region

Tune of Delphes:

- Big improvement of ATLAS simulation
- Add isolation flags
- Add object definition flags

Multipurpose tool:


- Monte-Carlo validation
- Phenomenological analysis with 2 levels:
 - Intuitive metalanguage
 - C++ development
- Recasting with the Physics Data Base

Tune of Delphes:

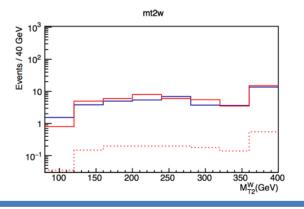
- Small improvement of CMS simulation
- Isolation defined at the analysis level
- Provides more « MC truth info »
- Produces compact and generic ROOT files
 → avoids as much as possible from launching Delphes

List of recast analyses

Ехр	\sqrt{s}	Already validated	Not yet validated
ATLAC	8 TeV	8	0
ATLAS	13 TeV	2	0
CMS	8 TeV	9	1
	13 TeV	0	0

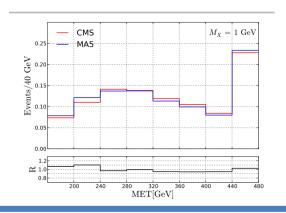
List of recast Top analyses

ATLAS-SUSY- 2013-05	stop/sbottom search: 0 leptons + 2 b-jets
ATLAS-SUSY- 2013-19	Top-squark pair with 2 leptons
ATLAS-SUSY- 2013-08	Top squark pair with a Z boson, b- jets and MET
ATLAS-CONF - 2014-056	Top squark in the all-hadronic tt + MET
ATLAS-CONF -2016-013	Vector-like top quark pairs
ATLAS-CONF -2016-050	Top squarks with one isolated lepton, jets and MET
CMS-B2G- 14-004	Dark matter + tt


ATLAS-SUSY- 2013-05	stop/sbottom search: 0 leptons + 2 b-jets
CMS-SUS- 13-011	stop search in the single lepton mode
CMS-SUS- 14-001	third-generation squarks in fully hadronic final states (top-tag)
CMS-B2G- 12-022	T5/3 top partners in same-sign dilepton channel
CMS-B2G- 12-022	monotops
CMS-B2G- 14-004	Dark matter + tt

Recasting validation: CMS-B2G-14-004

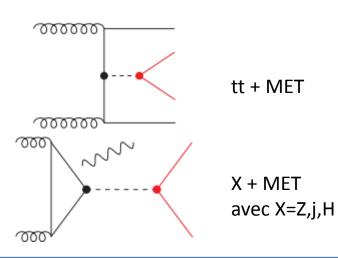
Validation note


Signal Region	SR	
Process	$p p \rightarrow \overline{t} t$	ΧX
Source	CMS	CheckMATE-1.2.2 (40,000 events)
$M_{\chi}(GeV)$	Signal efficiency (%) (±stat)	Signal efficiency (%)
1	1.01±0.02	1.10
10	1.01±0.02	1.19
F0	1 20±0 02	1 21

- Validation note
- MadGraph cards for signal benchmark

	Selection step	CMS	$ \epsilon_i^{ ext{CMS}} $	MA5	$ \epsilon_i^{ ext{MA5}} $	$\delta_i^{ m rel}$
0	Nominal	224510		224510		
1	Preselection			15468.5	0.069	
2	$E_T > 320 \text{ GeV}$	4220.8		4579.8	0.296	
3	$M_T > 160 \text{ GeV}$	3390.1	0.803	3648.2	0.797	0.75%
4	$\left \Delta \Phi(j_{1,2}, E_T) > 1.2 \right $	2963.5	0.874	3124.3	0.856	2.06%
5	$M_{T2}^W > 200 \text{ GeV}$	2267.6	0.765	2403	0.769	-0.52%

Example of recasting


Extract from: C. Arina et al, A comprehensive approach to dark matter studies: exploration of simplified top-philic models, JHEP04(2015)029, arXiv:1605.09242v1

Simplified top-philic dark matter model

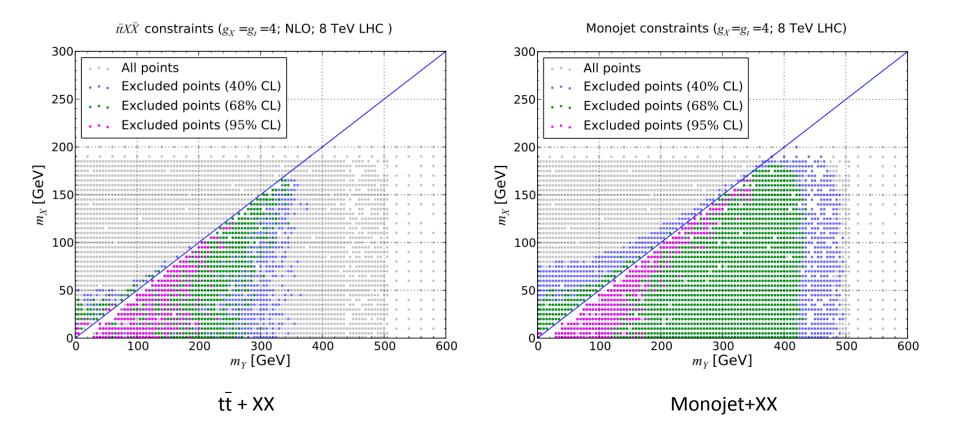
- → Fermionic dark matter candidate X
- → Scalar mediator Y₀

$$\mathcal{L}_{t,X}^{Y_0} = -\left(g_t \, \frac{y_t}{\sqrt{2}} \, \bar{t}t + g_X \, \bar{X}X\right) Y_0$$

2 relevant topologies with large MET signature at collider experiments

4 recast analyses

- CMS-B2G-14-004: tt + MET
- CMS-EXO-12-048: monojet
- CMS-EXO-12-054: mono-Z
- ATLAS-EXOT-2014-20 mono-Higgs



Home made recasting

Example of recasting

Extract from: C. Arina et al, A comprehensive approach to dark matter studies: exploration of simplified top-philic models, JHEP04(2015)029, arXiv:1605.09242v1

Results with the 2 MadAnalysis-recast analyses:

Tools based on machine learning algorithm

- Getting LHC constraints could be time consuming (wrt low-energy or cosmological constraints).
- For instance: scanning over parameter space of a SUSY-like model
- → Machine learning algorithm could be used to scan in a clever way.

SUSY-AI

- Scan over MSSM or NMSSM parameter-space with a random forest
- Algorithm validated with ATLAS pMSSM-? study (arXiv:1508.06608)
- Using CHECKMATE-recast analyses
- → 5000 predictions / CPU seconds

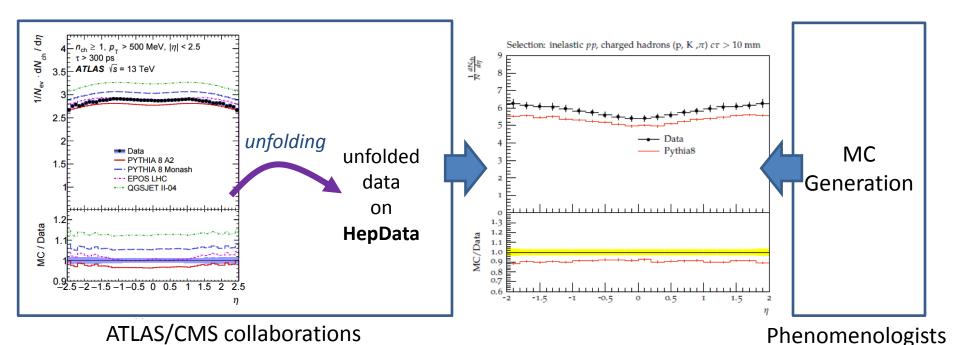
ScyNet

=

Susy Calculating Yields NET

- Scan over SUSY parameter-space with a neural network
- Using CHECKMATE-recast analyses
- Figure of merit = LHC χ^2 obtained in few seconds
- → Could complete a global fit with FITTINO

Still a private tool


- 1. Motivations
- 2. Recasting with CHECKMATE & MADANALYSIS5
 - 3. Recasting with RIVET & derived tools
 - 4. Reinterpreting simplified models
 - 5. Required inputs
 - 6. Summary

Rivet for SM

RIVET = Robust Independent Validation of Experiment and Theory

- Initial goal of RIVET: validation of MC generation/simulation/tuning
- Standalone program or library (which could be encapsulated into a collaboration framework)
- Strategy:

Rivet for SM

Has become the LHC standard for archiving measurements in electroweak, top & Higgs

→ 230 LHC analysis among a total of 427 (54 are pure MC, and some double/triple-counting)

Rivet analysis for top results

List of currently available Rivet routines from top results (click to access the result page with links to the Rivet pages)

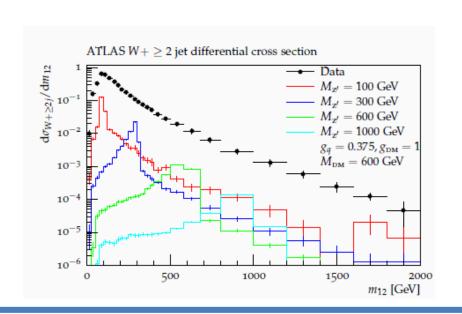
7 TeV results:

- Jet veto measurement (arXiv:1203.5015)
- · Jet shapes in ttbar events (arXiv:1307.5749)
- ttbar+jets (arXiv:1407.0891)
- Differential ttbar cross-section, particle-level variables (arXiv:1502.05923)

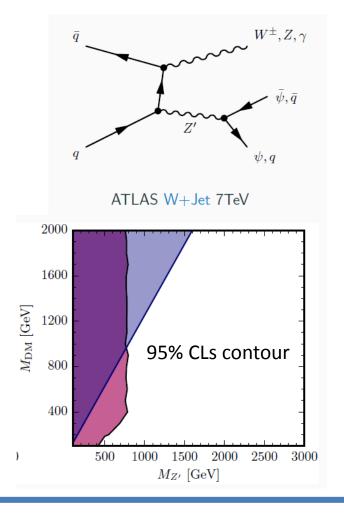
8 TeV results:

- Colour flow measurement (arXiv:1506.05629)
- Differential ttbar cross-section of highly boosted top quarks as a function of top pT (arXiv:1510.03818).
- Fiducial cross-sections for ttbar production with one or two additional b-jets (arXiv:1508.06868).
- Measurement of the production cross-section of a single top quark in association with a W boson (arXiv:1510.03752).
- Measurements of top-quark pair differential cross-sections in the lepton+jets channel (arXiv:1511.04716)

Contur

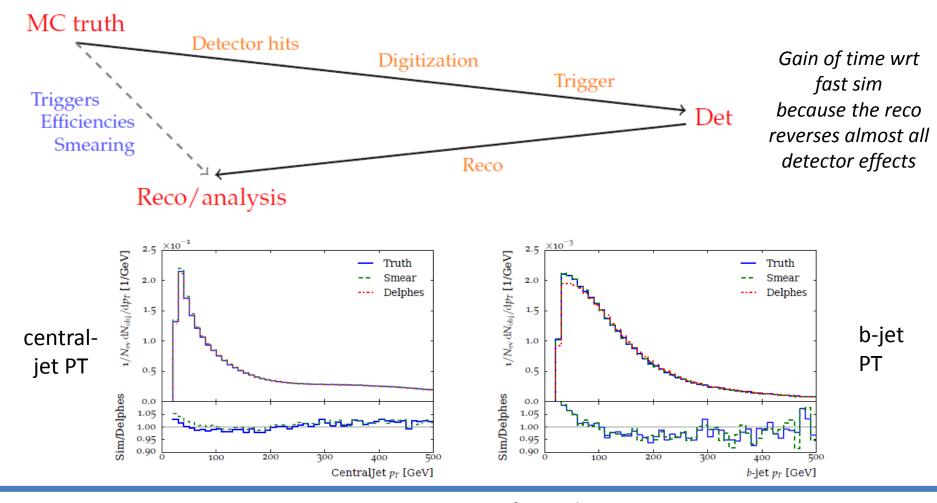

CONTUR = Constraints on new theories using Rivet

- → use unfolded fiducial cross section measurements
- \rightarrow tool chain: FeynRules \rightarrow Herwig 7 \rightarrow RIVET


Example of results: simple DM models

4 parameters : $M_{Z'_{,}}M_{DM}$, $g_{Z'_{,}}g_{DM}$

→ Constraints from EW measures (JHEP07(2013)032)


Still a private tool

Rivet for BSM

Since release 2.5, RIVET is able to deal with BSM recasting

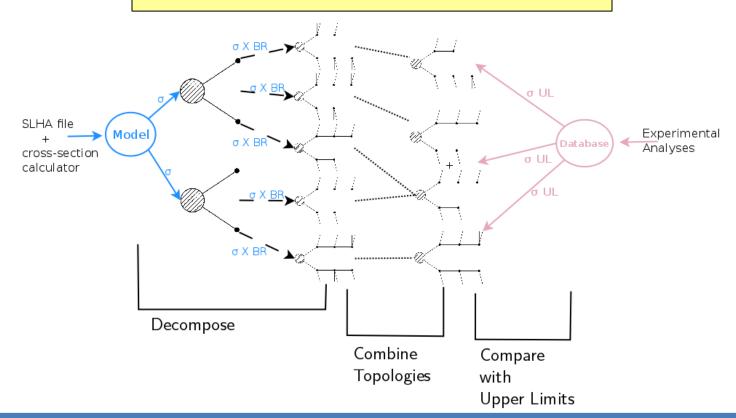
→ Use efficiencies and smearing for modeling the detector response

Rivet for BSM

Status: development on-going and release imminent

- Start coding up selected recent ATLAS & CMS search analyses
 - ATLAS:
 - ICHEP 2016 3-lepton & same-sign 2-lepton, 1-lepton + jets, 1-lepton
 + jets, jets + MET
 - 2015 jets + MET and monojet
 - CMS:
 - ICHEP 2016 jets + MET
 - 8 TeV α_T + b-jets
 - → Partially validated

Rivet tutorials dedicate to new BSM feature are planned for July @ CERN


- 1. Motivations
- 2. Recasting with CHECKMATE & MADANALYSIS5
 - 3. Recasting with RIVET & derived tools
 - 4. Reinterpreting simplified models
 - 5. Required inputs
 - 6. Summary

SModelS

- For generic BSM models with Z2 symmetry
- From experimental inputs:
 - Upper limit
 - Map efficiencies

test models without MC simulation

SModelS

A huge database of experimental SMS results!

ATLAS

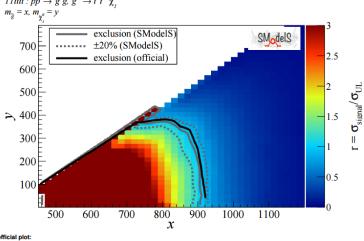
14 publications + 16 CONF notes

Experimental Result	\sqrt{s}	lumi	data type
ATLAS-CONF-2012-105	8	5.8	upperLimit
ATLAS-CONF-2012-166	8	13.0	upperLimit
ATLAS-CONF-2013-001	8	12.8	upperLimit
ATLAS-CONF-2013-007	8	20.7	upperLimit

ATLAS-SUSY-2013-14	8	20.3	upperLimit
ATLAS-SUSY-2013-15	8	20.3	efficiencyMap
ATLAS-SUSY-2013-15	8	20.3	upperLimit
ATLAS-SUSY-2013-16	8	20.1	efficiencyMap
ATLAS-SUSY-2013-16	8	20.1	upperLimit
ATLAS-SUSY-2013-18	8	20.1	efficiencyMap
ATLAS-SUSY-2013-18	8	20.1	upperLimit
ATLAS-SUSY-2013-19	8	20.3	upperLimit
ATLAS-SUSY-2013-23	8	20.3	upperLimit
ATLAS-SUSY-2014-03	8	20.3	efficiencyMap
ATI AS-SUSY-2015-09	13	3.2	upperl imit

CMS

12 publications + 7 PAS

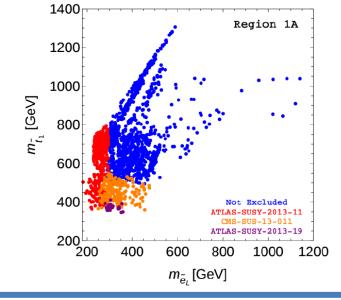

Experimental Result	\sqrt{s}	lumi	data type
CMS-SUS-12-024	8	19.4	efficiencyMap
CMS-SUS-12-024	8	19.4	upperLimit
CMS-SUS-12-028	8	11.7	upperLimit
CMS-SUS-13-002	8	19.5	upperLimit
CMS-SUS-13-004	8	19.3	upperLimit
CMS-SUS-13-006	8	19.5	upperLimit
CMS-SUS-13-007	8	19.3	efficiencyMap
CMS-SUS-13-007	8	19.3	upperLimit
CMS-SUS-13-011	8	19.5	efficiencyMap
CMS-SUS-13-011	8	19.5	upperLimit
CMS-SUS-13-012	8	19.5	efficiencyMap
CMS-SUS-13-012	8	19.5	upperLimit
CMS-SUS-13-015	8	19.4	efficiencyMap
CMS-SUS-13-015	8	19.4	upperLimit
CMS-SUS-13-019	8	19.5	upperLimit
CMS-SUS-PAS-13-016	8	19.7	upperLimit
CMS-SUS-PAS-13-018	8	19.4	upperLimit
CMS-SUS-PAS-15-002	13	2.2	upperLimit

Collaboration with FASTLIM community for map efficiencies

SModelS

Validation:

$\label{eq:attas-conf-2012-105} ATLAS-CONF-2012-105 \ \ (upperLimit)$ $Tluu:pp\to \widetilde{g}\ \widetilde{g},\ \widetilde{g}\ \to t\ \bar{t}\ \ \widetilde{\chi}^0_i,$


official plot: https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2012-105/fig_03.png

Tltttt: $pp \to \tilde{g} \, \tilde{g}, \, \tilde{g} \to t \, \tilde{t} \, \tilde{\chi}^0$ $m_{\tilde{g}} = x$, $m_{\tilde{g}^0} = y$ exclusion (SModelS) SModelS ±20% (SModelS) 700 2.5 exclusion (official) 600 500 **→** 400 300 200 0.5 100 750 800 850 950 1000 1050 1100 1150 \boldsymbol{x}

CMS-SUS-13-002 (upperLimit)

official plot: https://twiki.cern.ch/twiki/pub/CMSPublic/PhysicsResultsSUS13002/curve_T1tttt_overlay_observed.pdf

Example of results:

NMSSM constraints

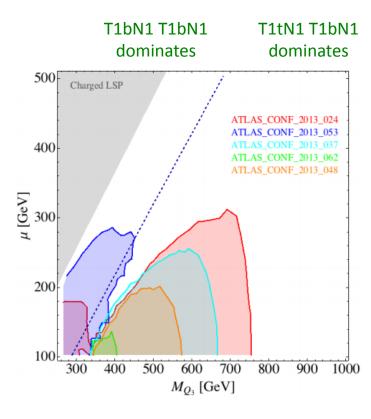
D. Barducci et al, JHEP 1601 (2016) 050

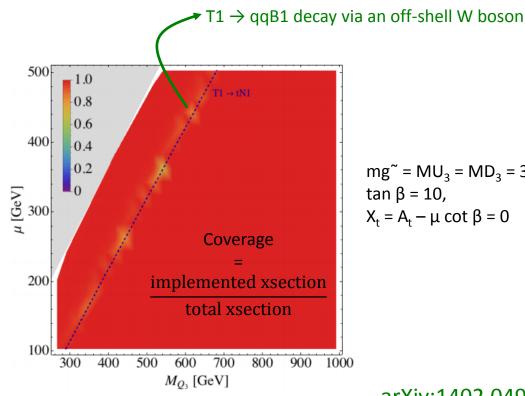
Fastlim

Restricted currently to the MSSM Same strategy than SModelS based on efficiency maps

List of analyses:

Name	Short description	$E_{\rm CM}$	$\mathcal{L}_{\mathrm{int}}$
ATLAS_CONF_2013_024	0 lepton + (2 b-) jets + MET [Heavy stop]	8	20.5
ATLAS_CONF_2013_035	3 leptons + MET [EW production]	8	20.7
ATLAS_CONF_2013_037	1 lepton + 4(1 b-) jets + MET [Medium/heavy stop]	8	20.7
ATLAS_CONF_2013_047	0 leptons + 2-6 jets + MET [squarks & gluinos]	8	20.3
ATLAS_CONF_2013_048	2 leptons (+ jets) + MET [Medium stop]	8	20.3
ATLAS_CONF_2013_049	2 leptons + MET [EW production]	8	20.3
ATLAS_CONF_2013_053	0 leptons + 2 b-jets + MET [Sbottom/stop]	8	20.1
ATLAS_CONF_2013_054	$0 \text{ leptons} + \geq 7\text{-}10 \text{ jets} + \text{MET [squarks \& gluinos]}$	8	20.3
ATLAS_CONF_2013_061	$0-1 \text{ leptons } + \geq 3 \text{ b-jets} + \text{MET } [3\text{rd gen. squarks}]$	8	20.1
ATLAS_CONF_2013_062	1-2 leptons + 3-6 jets + MET [squarks & gluinos]	8	20.3
ATLAS_CONF_2013_093	1 lepton + bb(H) + Etmiss [EW production]	8	20.3


Validation done with a private detector-simulation-like recasting tool: ATOM

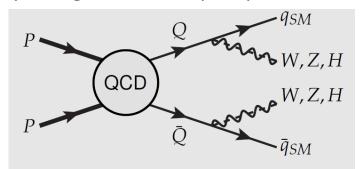

Fastlim

Fastlim

- Restricted currently to the MSSM
- Same strategy than SModelS based on efficiency maps

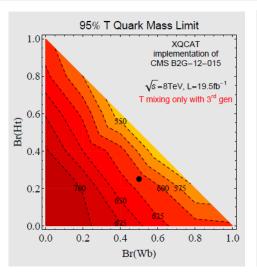
Examples of results: natural susy models

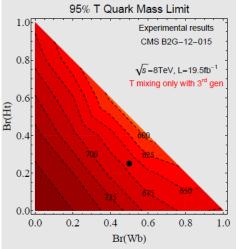
 $mg^{\sim} = MU_3 = MD_3 = 3 \text{ TeV},$ $\tan \beta = 10$, $X_t = A_t - \mu \cot \beta = 0$


arXiv:1402.0492v1

XQCAT

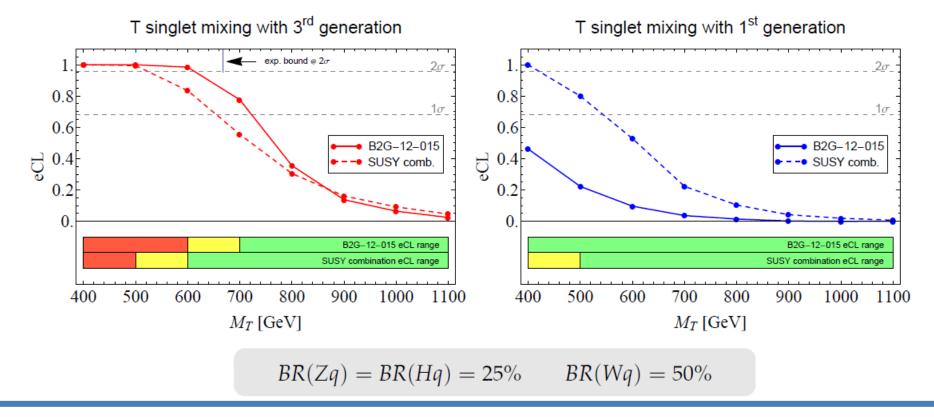
XQCAT = eXtra Quark Combined Analysis Tool


Designed for heavy extra quarks and based on efficiency maps


Reinterpreting in terms of pair-production of VLQ in the NWA

$$N_S = L_{exp} \sum_{Q} \sigma_{QCD}(m_Q) \sum_{ij} BR_i(Q) BR_j(\bar{Q}) \epsilon_{ij}$$

Validation:


Reproduction of CMS 95% CL bounds within 50-60 GeV in the whole BR range

XQCAT

Example of results:

Combining VLQ direct research (BG2-12-015)

+ SUSY combination @ 7 & 8 TeV (αT, monolepton, SS dilepton, OS dileptons) (arXiv:1304.2185)

- 1. Motivations
- 2. Recasting with CHECKMATE & MADANALYSIS5
 - 3. Recasting with RIVET & derived tools
 - 4. Reinterpreting simplified models
 - 5. Required inputs
 - 6. Summary

What we need for recasting one analysis?

S. KRAMEL et al, Les Houches Recommendations for the Presentation of LHC Results, arXiv:1203.2489v2

Clear description of the selection in the paper:

- Definition of the reconstructed objects
- Each step of the selection
- Source code of specific and sophisticated of observables (SUSY transverse observable)

Clear description of the results:

- Crucial numbers
- Final likelihood expression

Detector modeling:

- Resolution & efficiency plots for reconstruction of exotic objects, trigger?
- Efficiency maps

Materials for validation:

- Cut-flow chart
- Description of the signal benchmarks and its generation (the best is to have the LHE files)
- Plots of key observables

Analysis combination?

Support for describing an analysis

- Service for storing information:
 - INSPIRE
 - HEPDATA
- Description of the analysis could be achieved by a universal metalanguage:
 - MADANALYSIS5 metalanguage: intuitive but too much simple
 - AEACUS & RHADAMANTHUS: advanced metalanguage but not enough
 - Framework-independent language:

Towards an analysis description accord for the LHC (arXiv:1605.02684)

LHADA (Les Houches Analysis Description Accord for the LHC) in development

All-in-one service: RECAST project (still in development)

- 1. Motivations
- 2. Recasting with CHECKMATE & MADANALYSIS5
 - 3. Recasting with RIVET & derived tools
 - 4. Reinterpreting simplified models
 - 5. Required inputs
 - 6. Summary

Summary

- Importance of recasting for:
 - Preserving LHC analyses
 - Identifying holes in the ATLAS/CMS research program
- Public recasting tools:
 - Constraints from SM measurements: RIVET
 - Based on simplified models: SMODELS, FASTLIM, XQCAT
 - Based on detector simulation/smearing:
 - CHECKMATE, MADANALYSIS5 + SUSY-AI
 - Incoming tools: **RIVET** for BSM

Private tools:

Contur

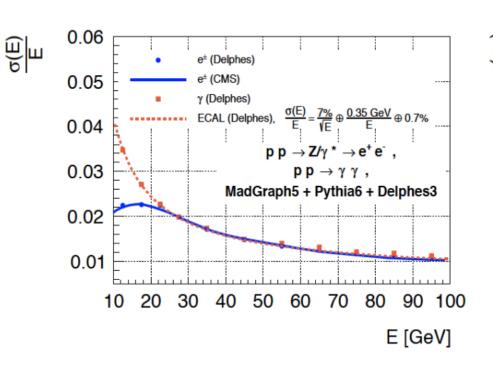
- ATOM, GAMBIT and SCYNET
- ATLAS/CMS collaborations contribute to the recasting efforts by providing more and more useful infos. What are the next steps?
 - A common language such as LHADA?
 - Extension of the well-known RIVET format to the BSM?
 - Use RECAST service?
- Join the effort?

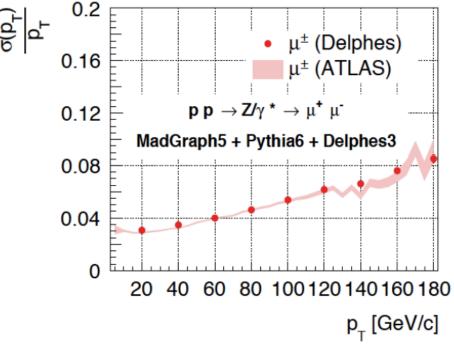
https://twiki.cern.ch/twiki/bin/view/LHCPhysics/InterpretingLHCresults

List of discussed tools & projects

Name	Public / Private	Home site	Reference
Aeacus & RHADAManTHUS	Public	http://joelwalker.net/code/	
АТОМ	Private	http://fastlim.web.cern.ch/fastlim/	See Fastlim papers currently
CheckMate	Public	https://checkmate.hepforge.org/	arXiv:1312.2591, arXiv:1611.09856
Contur	Private	https://contur.hepforge.org/	arXiv:1606.05296
Fastlim	Public	http://fastlim.web.cern.ch/fastlim/	arXiv:1402.40492 , EPJC74 (2014) 11
Gambit	Private	http://www.mn.uio.no/fysikk/english/research/projects/gambit/	
HepData	Public	https://hepdata.net/	arXiv:1704.05473
Inspire	Public	https://inspirehep.net	
LHADA	Public	https://indico.cern.ch/event/572170/	arXiv:1605.02684, section 16 & 17

List of discussed tools & projects


Name	Public / Private	Home site	Reference
MadAnalysis5	Public	https://launchpad.net/madanalysis5	arXiv:1206.1599, arXiv:1405.3982, arXiv:1407.3278
Recast	Public	http://recast.perimeterinstitute.ca/ https://github.com/recast-hep	arXiv:1010.2506
Rivet	Public	http://rivet.hepforge.org/	arXiv:1003.0694
ScyNET	Private		arXiv:1703.01309
SModelS	Public	http://smodels.hephy.at/wiki	arXiv:1701.06586, arXiv:1312.4175
Susy-Al	Public	http://susyai.hepforge.org/	arXiv: 1605.02797
XQCAT	Public	https://launchpad.net/xqcat	JHEP 1412 (2014) 080,arXiv:1405.0737, arXiv:1409:3116


Back-up slides

Very-Fast-Simulation package: Delphes

Validation for ATLAS & CMS

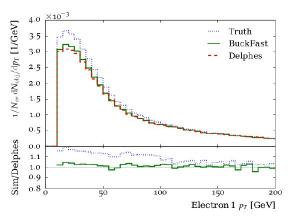
Other related tools

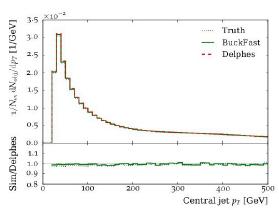
ATOM = Automated Testing Of Models

- Forked from Rivet
- Detector simulation: transfert functions between particle-objects and detector-objects
- Associated to the public package FastLim for limits
- Under development

Still a private tool

Gambit


GAMBIT = Global and Modular BSM Inference Tool

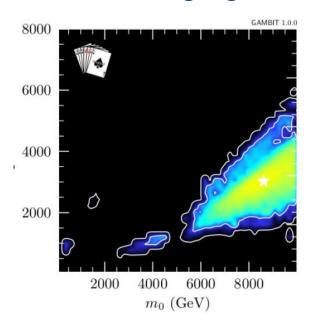

Goal: global statistical fit from different sources of data (frequentists & bayesian):

- Low physics,
- Astrophysics,
- Colliders, ...

Module devoted to LHC analyses: COLLISIONBIT

- Generation with parallelised Pythia
 Detector effects: BuckFast (efficiencies/smearing) or Delphes
- Multithread (OpenMP) available with BuckFast

Gambit


- First release will contain implementations of (8 TeV):
 - ATLAS SUSY searches (0 lep, 0-1-2 lep stop, b jets plus MET, 2 lep EW, 3 lep EW)
 - CMS DM searches (top pair plus MET, mono-b, mono-jet)
 - CMS multilepton SUSY search
 - good coverage for SUSY and DM effective field theory

Cut	ATLAS	GAMBIT	Ratio
$E_{\mathrm{T}}^{\mathrm{miss}} + \mathrm{jet} \; p_{\mathrm{T}} \; \mathrm{cuts}$	89.6%	91.0%	1.02
$\Delta \phi_{ m min} > 0.4$	81.0%	82.5%	1.02
$E_{\rm T}^{\rm miss}/\sqrt{H_{\rm T}} > 15 {\rm GeV}^{-1/2}$	56.0%	56.8%	1.01
$m_{ m eff}^{ m incl} > 1600{ m GeV}$	31.6%	33.4%	1.06

ATLAS 0 lepton cutflow performance, with **BuckFast**

Gambit

Use of Gambit: ongoing

CMSSM (also NUHM1 and NUHM2)

- $m_0, m_{\frac{1}{2}}, A_0, \tan \beta + 5$ nuisances
- H/A^0 funnel, χ^\pm co-annihilation, $\tilde{\tau}$ co-annihilation, \tilde{t} co-annihilation
- Includes LUX 2016, Panda-X + direct simulation of all relevant LHC Run 1 limits. Run 2 coming soon.

The tool will be public when the 9 expected papers will be released.

nMSSM benchmarks

Region	1	A	1	В
$\tan \beta$	6.6	10	6	8
λ	0.33	0.53	0.49	0.52
μ	240	400	350	430
m_0	0	1080	4040	4800
$M_{1/2}$	630	1200	280	440
A_0	-1700	50	6700	7900
A_{λ}	1400	6000	7000	7900
ξ_F	10	100	$-1.5 \cdot 10^4$	$-1.4 \cdot 10^4$
ξ_S	-6.10^4	$2 \cdot 10^{4}$	$-1.9 \cdot 10^7$	$-1.6 \cdot 10^7$
M_1	270	520	110	190
M_2	500	950	200	340
$m_{ ilde{q}}$	1300	2400	> 3	8000
$m_{ ilde{t}_1}$	350	1300	1050	1900
$m_{ ilde{l}}$	180	1100	> 3	8000
$m_{\widetilde{g}}$	1450	2600	780	1250