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Concept of the tt̄ resonances searches

I Many BSM scenarios predict new particles (X) decaying into a pair of top
quarks

I Z’ topcolor assisted technicolor
I Randall Sundrum → gluon/graviton: gKK/GKK
I 2 Higgs Doublet Models → heavy pseudoscalar/scalar A/H

Analysis strategy :
Build a model independent analysis

1. Select events

2. Reconstruct tt̄ invariant mass

3. Scan mtt̄ to find an excess/deficit

I ATLAS results from ATLAS-CONF-2016-014
I CMS results from CMS-B2G-16-015
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https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2016-014/
https://cds.cern.ch/record/2259455


Context

I tt̄ resonance search are now sensitive to new particles with a mass O(TeV )

I In such decay → the tops are produced with high momentum
I It leads to the collimation of the decay products

I Merging of jets
I Lepton-jet overlap
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Boosted hadronic top selection : top tagging

I Fat jet used to reconstruct boosted hadronic top
I Jet sub-structure used to differentiate QCD vs top

fat jet
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Boosted leptonic top selection

CMS strategy
I No isolation cut applied
I 2 dimentionnal cut :
I ∆R(l ; jet) > 0.4 or prel

T > 20GeV

prelT is the lepton pT component relative to the jet axis

I (pmiss
T + pl

T ) > 150GeV
I Select jet in ∆R(lep; jet) < 1.2
I Minimise χ2 to find best combination
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ATLAS strategy

I Isolation cut applied with pT dependant
cone (mini-isolation)

I Optimised in η × pT to have 99% lepton
selection efficiency

I leptonic b-jet : highest pT jet within
∆R(let; jet) < 1.5
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Overlap removal impact in ATLAS

I In ATLAS, electrons and jets are reconstructed with the same calorimeter
I But with independent algorithms
I To avoid double counting and contamination of electron in jet
⇒ apply overlap removal procedure
I Basically an electron cannot be within a jet ie ∆R > 0.4

But for boosted top , the prompt electron may fall within the top b-jet
I The higher is the mass of the signal, the worse is the effect
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The electron-in-jet removal method (ER)

Basic Idea: remove electron cluster before defining jets

1. First select the electrons in the event via kinematics cuts (pT ,quality,eta)→
intendt to select only top decay products

2. Match topoclusters to electron (radius=0.1)
3. The matched topocluster is removed if
3.1 it falls within the calo crack region
3.2 if the cluster has an EMfrac > 0.8

4. Apply jet algorithm on remaining topoclusters
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B-tagging in boosted topologies

ATLAS
I Track-jets (anti-kt R=0.2) are more efficiently

b-tagged in boosted cases
I tt̄ resonance search requires at least 1

b-tagged track-jet
I B-tagging algorithm WP has ≈ 70% efficiency
I Additionnal studies to optimise b-tagging

between high and low tt̄ mass
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Background estimation in boosted topologies (1)

I tt̄ is the dominant bkg (modeled via
Monte-Carlo)

I In 0 b-tag region the dominant background is
W+jets:

I Shape well modeled
I Scaling needed to be corrected in data

I CMS constrain it in the 0 b-tag control region
I ATLAS rescale it via the difference of charge

distribution
I The scale is computed via :

NData,W =

(
rMC + 1
rMC − 1

)
(N+

Data − N−
Data) ,with rMC =

NMC ,W +

NMC ,W−
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Background estimation in boosted topologies (2)

Multijet background (lepton+jets) :
I Strongly reduced by pmiss

t > 120GeV cut in CMS
I Estimated in data using the matrix method in ATLAS :

Multijet background (all hadronic) CMS:

I Measure the multijet background
using anti-tag and probe method:

I Select the anti-tag by reverting
t-tag cuts

I Determine the t-tag rate for the
second jet
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Important systematics

I Drawback of boosted topologies → large uncertainties on large R jets
I Here comparison of uncertainty of small vs large R jets in ATLAS
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I In CMS:
I The mistag rate uncertainty is in range [5− 100%]
I The mistag efficiency is estimated at 19%
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Results in the lepton + jet channel

I CMS Split space in 6 region (e,µ)× (1 t-tag, 0 t-tag+1 b-tag, 0 t-tag+0 b-tag)
I ATLAS Use 2 regions (e, mu) with >1 t-tag and >1 b-tagged track-jet.
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Results in the fully hadronic channel in CMS

I The requirement of 2 t-tag fat jet highly supress the QCD background
I Remaining QCD background estimated in data
I Space splitted into (y < |1|, |y | > 1.0) × (0 b-tag, 1 b-tag, 2 b-tag)
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Limits setting

Exclusion for narrow with (Γ/m ≈ 1% ) Z’
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CMS exclusion presented for several width
I Z’ for 10% (0.5-3.9) TeV
I Z with 30% (0.5-4.0) TeV
I RS KK graviton (0.5-3.3) TeV
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H/A → tt̄ case
ATLAS-CONF-2016-073

Re-interpretation 8 TeV (20 fb−1) tt̄ resonances search
I 2HDM model predicts Scalar (H) or Pseudoscalar (A) decaying into tt̄
I Large interference (I) with SM gg →tt̄ production
I It would require signal (S)+ (I) + background (B) simulation at parton level

for each mass point
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√
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https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2016-073/


H/A→tt̄ analysis setup and results

Resolved
selection

I Exactly 1 lepton (electron or muon)
I 4 jets (1 or 2 b-tags)
I Jet ambiguity solved by minimizing

a χ2 over jet combinations

Invariant mass
muon selection electron selection
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Perspectives

I tt̄ resonance search performed both in ATLAS and CMS
I Probe TeV scale region without evidence of resonant signal

I In both experiments less than 10% of 13 TeV data are analysed
I Resolved channel will be studied but:

I Higher QCD background
I Stronger constrains due to high statistic at low mass

I Studies are ongoing to improve the top reconstruction and selection efficiencies

I Re-interpretaion of 8TeV data done for ATLAS and ongoing for CMS
I Limits set on low tan(β) regions for mass of H/A = 500 and 750 GeV.
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Jet selection boosted case

∆R(elTruth; b − quark) < 0.4 Compare jet resolution for above
and below 0.4
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Electron in jet removal is the only
method reconstructing well jets Resolution is similar in both case



Top Tagging details

CMS Soft drop ref
I Fat jet is reclustered with C/A
I In the last step get j1 and j2 the 2 last subjets

min(pT1,pT2)
pT1+pT2

> zcut

(
∆R12
R0

)β
The parameter used are : Zcut < 0.1, β = 0 and R0 = 0.8

I Fat jet fullfill this condition -> OK kepts af SD jet
I Else, the highest pt subjet is taken and restart the procedure.

ATLAS Trimming

I Recluster with kt algorithm Rsub = 0.2
I Remove sub-jets with a fraction pti/ptjet < fcut = 5%

https://arxiv.org/pdf/1402.2657.pdf


Complex variables mentionned in this talk

τ32 is the ratio of τ3/τ2 and represent oth probility that a Fat jet is rather 3-prong
than 2-prong
τN is the N-subjetiness and is computed as
τN = 1

d0

∑
k pTk × Rmin

k ,with d0 =
∑

k pTk × R
where k run over all the clusters and R is the characteristic size of sub-kt jets

amT2 target dilepton tt̄ events. For such topology it has an end-point at
mtop = 175GeV . Derived from mT2 variables

mW
T is teh w trasverse mass mW

T =
√

2plep
T Emiss

T [1− cos(∆φ)]



CMS anlysis precisions

χ =

(
Mlep−Mlep
σMlep

)2

+

(
Mhad−Mhad
σMhad

)2



H/A anlysis precisions

Generator modification:
The modified generator is MadGraph5_aMC@NLO

Systematics
JES/JER (SM tt̄) 6%

JES/JER (Signal S+I) 8%
JES/JER (Signal S) 4%

PDF on signal 12.3%
b-tag (bkg) 2%
b-tag (signal) 1%

tt̄ cross section 6.5%
tt̄ Parton Showering 5%
multijet bkg norm 20%
ST bkg norm 7.7 %

Z+jet bkg norm 48%
Signal remorm 7.5%

Inerference modeling 0.4%

To find better jet lepton combination
⇒ minimize χ2

χ2 =
[

mjj−mW
σW

]2
+
[

mjjb−mjj−mth−W
σth−W

]2
+[

mj`ν−mtl
σt`

]2
+
[

(pT,jjb−pT,j`ν )−(pT,th−pT,t`)

σdiffpT

]2
1. term constraint the W jet mass

2. term constraint the top-W mass

3. term constraint the top mass

4. term constraint the pt baance
between leptonic and hadronic side



Multijet background estimation

I Multijet background is dominant at LHC
I Analysis design to supress it a maximum
I Not enough MC to run representative amound of QCD bkg
I Faking lepton is not well modeled (else it would have been corrected! )
I Measure QCD background in data direcly

Matrix method
I define Tight and Loose lepton selection
I Measure ε (f ): the fraction of real(fake) lepton selected as tight lepton
I ε (f ) is measured in a signal (background) enriched region

ε = N real
tight/N

real
loose , f = N fake

tight/N
fake
loose

The system can be summarisez via :
(

Ntight

Nloose

)
=

(
ε f
1 1

)
×
(

N loose
prompt

N loose
fake

)
By inverting the system it yield Nprompt and Nfakes in fuction of ε, f , Ntight and
Nloose , the 2 latest being estimated directly in data.


