

Search for RPV Stops in Multi-jet Events

G Moultaka

L2C-Montpellier

Top-LHC France 2017, Marseille 4-5 May '17

Based partly on: arXiv:1611.05850 S Diglio, L Feligioni, GM, + ongoing collab: PESBLADe

R Kukla, A Calandri, N Desai, N Nguyen

0 0 0 0

• No TNP discovered so far, where contemporary paradigm expects it!

.

- No TNP discovered so far, where contemporary paradigm expects it!
 - $1 \rightarrow {\sf TNP}$ realized in a more complex way? more data? different signatures? more data?

OR

- No TNP discovered so far, where contemporary paradigm expects it!
 - $1 \rightarrow {\sf TNP}$ realized in a more complex way? more data? different signatures? more data?

OR

 $2 \rightarrow$ is the paradigm *half* wrong? ...TNP there but too heavy to be discovered at present energy frontiers? indirect glimpses from "low energy" observables?

- No TNP discovered so far, where contemporary paradigm expects it!
 - $1 \rightarrow {\sf TNP}$ realized in a more complex way? more data? different signatures? more data?

OR

 $2 \rightarrow {\rm is \ the \ paradigm} \ half \ wrong? ... TNP there but too heavy to be discovered at present energy frontiers? indirect glimpses from "low energy" observables?$

OR

- No TNP discovered so far, where contemporary paradigm expects it!
 - $1 \rightarrow {\sf TNP}$ realized in a more complex way? more data? different signatures? more data?

OR

 $2 \rightarrow$ is the paradigm *half* wrong? ...TNP there but too heavy to be discovered at present energy frontiers? indirect glimpses from "low energy" observables?

OR

 $3 \rightarrow$ is the paradigm *totally* wrong?

- No TNP discovered so far, where contemporary paradigm expects it!
 - $1 \rightarrow {\sf TNP}$ realized in a more complex way? more data? different signatures? more data?

OR

 $2 \rightarrow$ is the paradigm *half* wrong? ...TNP there but too heavy to be discovered at present energy frontiers? indirect glimpses from "low energy" observables?

OR

 $3 \rightarrow$ is the paradigm *totally* wrong?

could be a double-edged razor:

Let us bet on 1:

.....

Let us bet on 1:

RPV-MSSM

ightarrow add to the MSSM superpotential

$$W_{\not\!L} = \frac{1}{2} \lambda_{ijk} \hat{L}_i \cdot \hat{L}_j \, \hat{E}_k^c + \lambda'_{ijk} \hat{L}_i \cdot \hat{Q}_j \, \hat{D}_k^c + \mu_i \hat{L}_i \cdot \hat{H}_2$$

$$W_{\mathcal{B}} = \frac{1}{2} \lambda_{ijk}^{\prime\prime} \hat{U}_i^{\alpha c} \hat{D}_j^{\beta c} \hat{D}_k^{\gamma c} \epsilon_{\alpha\beta\gamma}$$

ightarrow extra $\mathcal{O}(45)$ new (free) parameters!

 \rightarrow other sources for RPV: e.g. non-holomorphic contributions (arXiv:1502.03096)

ightarrow further (free) parameters in the soft SUSY breaking sector

 \rightarrow no stable SUSY particle (perhaps meta-stable).

stop pair production and decays

QCD driven: direct, $pp
ightarrow ilde{t ilde{t}}$. or from gluino decays, $pp
ightarrow ilde{g} ilde{g}$.

ightarrow in this presentation, a simplified assumption, $m_{ ilde{g}} \gg m_{ ilde{t}}, \sigma_{ ilde{g} ilde{g}} \ll \sigma_{ ilde{t ilde{t}}}$.

 \Rightarrow a working assumption: reduced fine-tuning in ensuring REWSB and a $125~{
m GeV}$ Higgs:

 \rightarrow light stop, light Higgsino-like chargino/neutralino.

- stop MSSM-LSP OR
- $m_{ ilde{t}} > m_{\chi^+}, m_{\chi^0}$ MSSM-LSP

 $\Rightarrow \lambda_{33i}'
eq 0$, $(i=1,2) \rightarrow$ stop, chargino, neutralino unstable, decaying to SM particles.

.

Stop decay channels

If $m_{\tilde{t}} - m_{\chi^0} > m_t$

Naively $\Gamma_{(a)} > \Gamma$

.

Further assumptions for this workshop

 \rightarrow all MSSM susy particles decoupled from LHC except for one $\tilde{t}_{\rm r}$ one χ^+ , two $\chi^0.$

$$\begin{array}{l} \rightarrow \ m_{\tilde{t}} \gtrsim m_{\chi_2^0} \gtrsim m_{\chi^+} \gtrsim m_{\chi^0} > m_t \\ m_{\tilde{t}} - m_{\chi^0} < m_t \\ m_{\tilde{t}} - m_{\chi^+} > m_b \end{array}$$

ightarrow no tops from direct stop decays! somewhat provocative for a top-LHC workshop...

Naively $\Gamma_{(a),(b),(c)} \sim \lambda_{33i}^{"}^2$ and $\Gamma_{(a)} \gg \Gamma_{(b)} > \Gamma_{(c)}$ unless $m_{\tilde{t}} \gg m_{\chi^+}$

Usually, consider one final state in a time, assuming 100% branching ratio \rightarrow exp. limits on \tilde{t} mass.

In fact, cascades and branching ratios \rightarrow much different sensitivities to $\lambda_{33i}^{\prime\prime}$.

0 0 0 0 0

$ ilde{t}$	€-RPV	χ -RPV	RPC-like
$ ilde{ ext{t}}$ -RPV	2b2j	4b2j	1t3b2j
χ -RPV		6b2j	1t5b2j
RPC-like			2t4b2j

$$r_1 = \frac{\Gamma_1(\tilde{t} \to \bar{b}\bar{s})}{\Gamma(\tilde{t} \to \chi^+ b)} , r_2 = \frac{\Gamma_1(\chi^+ \to \bar{b}\bar{s}\bar{b})}{\Gamma(\chi^+ \to \chi^0 f \bar{f}')}$$

$ ilde{t}$	ĩ-RPV	χ -RPV	RPC-like
$ ilde{ ext{t}}$ -RPV	2b2j	4b2j	1t3b2j
χ -RPV		6b2j	1t5b2j
RPC-like			2t4b2j

$$r_1 = \frac{\Gamma_1(\tilde{t} \to \bar{b}\bar{s})}{\Gamma(\tilde{t} \to \chi^+ b)} , r_2 = \frac{\Gamma_1(\chi^+ \to \bar{b}\bar{s}\bar{b})}{\Gamma(\chi^+ \to \chi^0 f \bar{f}')}$$

$ ilde{t}$	ĩ-RPV	χ -RPV	RPC-like
$ ilde{ ext{t}}$ -RPV	2b2j	4b2j	1t3b2j
χ -RPV		6b2j	1t5b2j
RPC-like			2t4b2j

NWA

$$\begin{split} \sigma(2b2j) &\simeq \sigma_{\tilde{t}\tilde{t}} \times \frac{r_1^2 \times (\lambda''_{33i})^4}{\left(1 + r_1 \times (\lambda''_{33i})^2\right)^2} \\ \sigma(4b2j) &\simeq \sigma_{\tilde{t}\tilde{t}} \times \frac{2r_1r_2 \times (\lambda''_{33i})^4}{\left(1 + r_1 \times (\lambda''_{33i})^2\right)^2 \left(1 + r_2 \times (\lambda''_{33i})^2\right)} \\ \sigma(6b2j) &\simeq \sigma_{\tilde{t}\tilde{t}} \times \frac{r_2^2 \times (\lambda''_{33i})^4}{\left(1 + r_1 \times (\lambda''_{33i})^2\right)^2 \left(1 + r_2 \times (\lambda''_{33i})^2\right)^2} \\ \sigma(1t5b2j) &\simeq \sigma_{\tilde{t}\tilde{t}} \times \frac{2r_2 \times (\lambda''_{33i})^2}{\left(1 + r_1 \times (\lambda''_{33i})^2\right)^2 \left(1 + r_2 \times (\lambda''_{33i})^2\right)^2} \\ \sigma(2t4b2j) &\simeq \sigma_{\tilde{t}\tilde{t}} \times \frac{1}{\left(1 + r_1 \times (\lambda''_{33i})^2\right)^2 \left(1 + r_2 \times (\lambda''_{33i})^2\right)^2} \end{split}$$

_

.....

10/18

Benchmark points	1	2
aneta	10	
M_1	2.5 TeV	
M_2	1.5 TeV	
M_3	1.7	TeV
$(m_{ ilde{Q}})_{33}$	2 TeV	
$(m_{ ilde{U}})_{33}$	$570 { m GeV}$	$964~{ m GeV}$
$(m_{\tilde{D}})_{33} = (m_{\tilde{U}})_{ii} = (m_{\tilde{D}})_{ii} =$	3 TeV	
$(m_{\tilde{E}})_{ii} = (m_{\tilde{Q}})_{ii} = (m_{\tilde{L}})_{ii}, i=1,2$		
$(T^u)_{33}$	-2100 GeV	-2150 GeV
m_A	2.5 TeV	
μ	400-650 GeV	$750-10^3$ GeV
$\lambda_{33i}'' \equiv \sqrt{(\lambda_{332}'')^2 + (\lambda_{331}'')^2}$	$10^{-7} - 10^{-1}$	
$T^l, T^d, (T^u)_{ij}, (m_{\tilde{Q}, \tilde{U}, \tilde{D}, \tilde{L}, \tilde{E}})_{ij}, T_{33i}^{\prime\prime}$	()
$i \neq j = 1, 2, 3, \ (T^u)_{ii}, i = 1, 2$		

11/18

.

Benchmark points	1	2
$m_{ ilde{t}}$	$\sim 600 \text{ GeV}$	$\sim 1 \text{ TeV}$
m_{χ^+}	$\sim 400-650 \text{ GeV}$	$\sim 750 - 1000 \text{ GeV}$
$m_{\chi +} - m_{\chi 0}$	$\sim 1.5 - 2$	$.5 {\rm GeV}$
$m_{ ilde{t}}{-}m_{\chi}{+}$	${\sim}{-45}$ – 200 GeV	${\sim}1$ - 245 GeV
$m_{\chi^0_2} - m_{\chi^+}$	$\sim 4-5$	GeV
$m_{\chi_3^0} \sim m_{\chi_2^+}, \ m_{\chi_4^0}$	~ 1.5 TeV,	~ 2.5 TeV
m_{h^0}	~ 125	GeV
$m_A \approx m_{H^0} \approx m_{H^{\pm}}$	$\sim 2.5 \text{ TeV}$	
$M_{ ilde{g}}$	~ 1.87 TeV	
$M_{\tilde{t}2} \approx M_{\tilde{b}1}$	~ 2 (ΓeV
$M_{\tilde{b}2} \approx M_{\tilde{u}1,2} \approx M_{\tilde{d}1,2}$	$\sim 3 \text{ TeV}$	
$M_{ ilde{l}1,2}, M_{ ilde{ u}1,2}$	$\sim 3 \text{ TeV}$	
$(g-2)^{ m SUSY}_{\mu}$	$3-3.3 \times 10^{-11}$	$3.2 - 3.3 \times 10^{-11}$
$\delta ho^{ m SUSY}$	$5.7 - 5.9 \times 10^{-5}$	$\sim 5.5 \times 10^{-5}$
$BR(B \rightarrow X_s \gamma)/BR(B \rightarrow X_s \gamma)^{SM}$	0.89 - 0.92	0.95 - 0.96
$BR(B^0_s{ ightarrow}\mu\mu)$	$3.36 - 3.39 \times 10^{-9}$	$3.38 - 3.40 \times 10^{-9}$
$BR(B^0_d { ightarrow} \mu \mu)$	$1.08 - 1.09 \times 10^{-10}$	$\sim 1.09 \times 10^{-10}$

12/18

.

Sensitivity to λ_{332}''

 $BR\left(\chi^{0} \rightarrow \tilde{t}^{*} \bar{t}(\tilde{\bar{t}}^{*} t) \rightarrow \bar{b} \bar{d}_{i} \bar{b}(b d_{i} b) f_{1} \bar{f}_{1}^{\prime}\right) \approx 1$

Diglio et al arXiv:1611.05850

.

13/18

Sensitivity to λ_{332}'' (Diglio et al arXiv:1611.05850)

14/18

Displaced vertices

Pair produced Higgsino-like electroweakinos

 $pp \rightarrow \tilde{H}^0 \tilde{H}^0, \tilde{H}^0 \tilde{H}^+, \tilde{H}^+ \tilde{H}^+$

.

$$c\tau[\text{mm}] \simeq \frac{2.6 \times 10^{-13}}{|\lambda_{33i}'|^2} \left(\frac{m_{\tilde{t}}}{600 \text{GeV}}\right)^4 \left(\frac{500 \text{GeV}}{m_{\chi}0}\right)^5 \begin{cases} & \Phi(\frac{m_t}{m_{\chi}0}) \ \alpha_{\chi}^{-1} & [\chi^0 \to tbd_i] \\ & 2 \ \alpha_{\chi}^{-1} & [\chi^+ \to bbd_i] \end{cases}$$

.

Conclusion

- RPV is not just a trick to avoid the (ever stronger) limits on signals with E_{T miss}
- We enter the era of experimental searches for RPV @LHC, $m_{\tilde{t}} \gtrsim 1$ TeV (all leptonic), $\gtrsim 100 - 400$ GeV (b + 1jet), $\gtrsim 1.2$ TeV (simplified model, 2t4b2j, e.g. ATLAS-CONF-2017-013)
- model-dependence should be considered, sensitivity to RPV couplings triggers the leading final states
- a combined strategy: limits on Xsections, limits from Long-lived particles.

0 0 0

