Search for dark matter in mono-top signature at the LHC

Top-LHC-France 2017 4-5 May 2017, Marseille

Ren-Jie Wang LPNHE, Institut Lagrange de Paris on behalf of the ATLAS and CMS Collaborations

Motivation

- mono-top: a final state of a single-top plus large missing transverse energy (E_T^{miss})
- In SM, this signature could only occur as the loop-induced associate production with a Z boson decaying into a pair of neutrinos
- But such Flavour-Changing Neutral Current (FCNC) process is suppressed in SM (by the GIM mechanism)
- Therefore, any significant excess in such a final state would be a clear and strong sign of new physics
- Comparing with the final states of mono-jet, the mono-top search gives a much clearer and easier signature to discriminate than a light jet, and more advantages of fixing the flavor of the final state and restricting the partons in the initial state.

Friday, May 05, 2017

Introduction of signal models

Resonant scalar mediator:

Majorana fermion as DM, a colored scalar (φ) decaying to top quark and DM

$$\mathcal{L} = \mathcal{L}_{SM} + \mathcal{L}_{kin}(\phi_s, \chi) + \left[\phi \overline{d}_i^C [(a_{SR}^q)^{ij} + (b_{SR}^q)^{ij} \gamma^5] d_j + \phi \overline{t} [a_{SR}^{1/2} + b_{SR}^{1/2} \gamma^5] \chi + \text{h.c.}\right]$$

- Non-resonant vector mediator FCNC model:
 - Dirac fermion as DM (or vector mediator as DM directly)

$$\mathcal{L} = \mathcal{L}_{SM} + \mathcal{L}_{kin} + V_{\mu}(g_{R_{\chi}}\bar{\chi}_{R}\gamma^{\mu}\chi_{R} + g_{L_{\chi}}\bar{\chi}_{L}\gamma^{\mu}\chi_{L}) + V_{\mu}\bar{u}_{i}[(a_{FC})^{ij}\gamma^{\mu} + (b_{FC})^{ij}\gamma^{\mu}\gamma^{5}]u_{j} + \text{h.c.}$$

NLO model is being used now in both CMS & ATLAS

Friday, May 05, 201

- ATLAS
 Eur. Phys. J. C75 (2015) 79 EXPERIMENT
- Signature: one isolated charged lepton (electron/muon) from the W decay, one b-tagged jet, large E_T^{miss}
 - a well-defined electron or muon with $p_T > 30$ GeV
 - one b-tagged jet with $p_T > 25$ GeV (Eff: 57%)
 - $E_T^{miss} > 35 \text{ GeV, mT}(\ell, E_T^{miss}) + E_T^{miss} > 60 \text{ GeV}$

SRI (resonant model)	mT(ℓ , E _T ^{miss}) > 210 GeV $ \Delta \varphi(\ell, b) < 1.2$
SR2 (non- resonant model)	mT(ℓ , E _T ^{miss}) > 250 GeV $ \Delta \varphi(\ell, b) < 1.4$
CR1	60 < mT(ℓ, E _T ^{miss}) < 120 GeV
CR2	120 < mT(ℓ , E _T ^{miss}) < 150 GeV $ \Delta \varphi(\ell, b) < 1.8$
CR3	one extra bjet, pT < 50 GeV mT(ℓ , E $_{T}^{miss}$) > 150 GeV, $ \Delta \varphi(\ell)$, b) $ $ < 1.8

Good agreement between data and prediction!

- Experimental uncertainties in signal (background)
 - jet energy scale: 1-5% (9-10%), jet energy resolution: 2-3% (1-2%)
 - jet vertex fraction: 2-3% (2-6%), b-tagging efficiency 3-5%
 - luminosity: 2.8%
- Signal & background acceptance modeling
 - PDF+as: 4-11% (5-6%)
 - ttbar: 5-11% (different generators), Wt: 5-8%
- Background normalization
 - ttbar: 5-6%, Wt: 7%, VV/W+jets: 25%

	SR1	SR2
Total background	240±10±50	124±11±27
Data	238	133

Good agreement between data and background, no significant excess is observed!

- No excess is observed.
- At 95%CL, resonant model with effective coupling = 0.2 are excluded in the whole mass range
- For the non-resonant model, cross-sections corresponding to coupling = 0.1 (0.2, 0.3) are excluded up to mV = 432 GeV (657 GeV, 796 GeV)

- A muon channel of mono-top search is also performed by CMS
 - one isolated muon ($p_T > 33$ GeV), no extra leptons
 - one b-tagged jet with pt > 70 GeV, no extra jets (p_T > 30 GeV)
 - $\Delta \phi$ (muon, jets) < 1.7 rad, E_T^{miss} > 100 GeV, $mT(\ell, E_T^{miss})$ > 50 GeV
- Two CRs (zero btag, two btags) are defined to estimate the W+jets and ttbar background from data
- Simultaneous fit is performed on the SR and two CRs, good agreement between the data and the SM predictions, no excess is observed.
- At 95%CL, mV < 523 GeV is excluded for vector mediator, mφ < 1.6 TeV is excluded for mDM = 10 GeV for scalar mediator

Hadronic channel @13TeV

- Signature: large E_Tmiss plus a hadronically decaying W boson from top quark decay
 - largest branching fraction
 - reconstructible of boosted top quark: a single large-R jet, jet substructure
- Trigger: no muon MET/MHT > 110 GeV, (Eff>99%, when E_Tmiss>250 GeV)
- Background:
 - Z(vv) + jets, ttbar, W(ℓv) + jets (data-driven)
 - Single-top, VV, QCD (MC estimated)
- Selection:
 - $E_T^{miss} > 250 \text{ GeV}$
 - Narrow jet (anti-kT (0.4), $p_T>30$ GeV, |eta|<4.5) veto QCD and ttbar
 - $\Delta \phi(E_T^{miss}, jets) > 1.1$, no extra b-jet with ΔR (Fatjet, bjets) < 1.5
 - Electron (p_T > 10 GeV), muon(p_T > 15 GeV), hadronic tau(p_T > 18 GeV) veto
 - Large-R jet

110 GeV < mJ < 210 GeV

Hadronic channel @13TeV— boost top tagging

- Large-R jet (Cambridge-Aachen (1.5), pT > 250 GeV, |eta|<2.5) selecting hadronically-decaying top quark
 - mach with bjet inside the fat jet cone
 - τ_3/τ_2 (eff:13%), compatibility of a jet has N subjet (τ_N)

-0.5

- top tagging efficiency: 3% (ttbar)
- mis-tagging of a non-top jet: 3% (t γ +jets)

7 CRs

Hadronic channel @13TeV — Background estimation

- To constrain three main backgrounds: Z(vv) + jets, ttbar, and $W(\mathcal{E}v)$ + jets, global simultaneous likelihood fits to 7 CRs and SR are used
 - Z(vv) + jets: CRs from $Z(ee/\mu\mu)$ + jets, and γ + jets (large statistics, similar jet multiplicity, underlying event, and pileup conditions as the DY process for the region of interest at high pT region)
 - ttbar: Single-lepton CRs, requiring at least one narrow btagged jet, and ΔR (Fatjet, bjets) > 1.5
 - $W(\ell v)$ + jets: Single-lepton CRs, **no narrow btagged jet** with ΔR (Fatjet, bjets) > 1.5

$$\mathcal{L}^{Bkg}(\mu_{i}^{Bkg}, \mu, \theta_{i}) = \prod_{X}^{ee,\mu\mu,\gamma,e,\mu,eb,\mu b} \operatorname{Poisson}\left(\frac{d_{i}^{X}|B_{i}^{X}(\theta_{i})}{R_{i}^{X}(\theta_{i})} + \frac{\mu_{i}^{Bkg}}{R_{i}^{X}(\theta_{i})}\right) \times \operatorname{Poisson}\left(\frac{d_{i}^{SR}|B_{i}^{SR}(\theta_{i})}{R_{i}^{SR}(\theta_{i})} + \mu_{i}^{Bkg} + \mu \cdot S_{i}(\theta_{i})\right)$$

$$R_i^X(\theta_i) = \frac{\mu_i^{Bkg}}{N_i^X(\theta_i)}, \qquad X = \begin{cases} ee, \mu\mu, \gamma, & Bkg = Z \to \nu\nu \\ e, \mu, & Bkg = W \to \ell\nu \\ eb, \mu b, & Bkg = t\bar{t} \end{cases}$$

3 Bkgs

	$S_i(\theta_i)$		the expected number of signal events in SR
	μ_i^{Bkg}		the number of bkg events in SR regions
) 	$R_i^X(\theta_i)$		transfer factor from SR to each of CRs
	$B_i^X(heta_i)$	$B_i^{SR}(heta_i)$	the number of other expected background in CR the number of other expected background in SR
	d_i^X	d_i^{SR}	the observed number of events in CR the observed number of events in SR

Hadronic channel @13TeV — Background estimation

Good agreement between data and prediction!

Friday,

Hadronic channel @13TeV— Results

Good agreement between data and background, no significant excess is observed!

- Experimental uncertainties
 - electron/muon/photon/tau selection efficiency: 2-3%
 - top tagging efficiency: 3% (ttbar)
 - mis-tagging of a non-top jet: 3% (t_{γ} +jets)
 - luminosity: 6.2%
- Background modeling:
 - V+jets: 1-4% (W+HF: 21%, Z+HF: 22%)
 - single-top, VV: 20%
 - QCD: 80% (negligible)

Hadronic channel @13TeV— Results

- Good agreement with SM predictions
- The FCNC is excluded for vector mediator 0.3 < mV < 1.5 TeV, assuming mx = 10 GeV
 - with 100% FC, much more sensitive than mono-V, complementary to mono-jet
- For mχ = 100 GeV, the resonant scalar model is excluded for 0.9 < Mφ < 2.7 TeV at 95% CL

Conclusion & outlook

- Dark Matter searches in mono-top signature from ATLAS & CMS at 8/13 TeV are summarized
- Both leptonic and hadronic channels are considered
 - @8 TeV: ATLAS LPC Clermont + CMS IPHC Strasbourg
 - @13 TeV: ATLAS LPNHE-Paris: mono-top (hadronic, leptonic) + CMS IPHC Strasbourg
- Consistent with Direct and Indirect searches, no DM candidate has been seen at the LHC yet
 - with 100% FC, mono-top is more sensitive than monocomplementary to mono-jet
 - becoming one of important DM+HF channel: sizable contribution to tt+DM searches (in range 30% to 200%)

Results from using full 2015+2016 dataset is being prepared, stay tuned!

