MPGD simulation: models, ingredients, precision

Material properties
Fields
Electron transport
Ion chemistry

Caen, October 4th 2017

Operating principles of MPGDs:

- ► A charged particle passes through the gas and ionises molecules;
- ► the electric field in the gas volume provokes multiplication and transports the ionisation electrons and ions;
- ► the movement of electrons and ions leads to induced currents in electrodes.

Ingredients of MPGD simulation

- Ionisation
 - PAI models: Heed for low energy electrons, Geant4;
 - Degrad: extension to higher energy of Magboltz.
- Field:
 - dielectric constants, resistive layers;
 - finite and boundary element methods, meshing;
 - closed expressions, thin-wire approximation.
- Electrons in a gas:
 - electron cross sections, isotropy;
 - Penning and quenching rates.
- Ions in a gas:
 - mobility and diffusion;
 - chemistry, rate coefficients.
- Transport:
 - Runge-Kutta;
 - microscopic tracking based on cross sections;
 - Magboltz: ergodic principle, SST corrections;
 - charging-up.

Issues with ionisation

- ▶ PAI models (Heed, Geant 4):
 - Simulate ionisation of a gas by a charged particle;
 - Heed contains relaxation, not all PAI models do;
 - the model as such is contested;
 - be the photo-absorption cross section is not well known.

Degrad:

- extension of Magboltz to higher electron energy;
- naturally deals with electron scattering;
- also handles photons and minimum ionising particles;
- uses measured cross sections, does not rely on models.

SRIM:

simulates ions, closed source, interface questionable.

Basic formulae of the PAI model

► Key ingredient: photo-absorption cross section

$$\frac{\beta^2 \pi}{\alpha} \frac{d\sigma}{dE} = \frac{\sigma_{\gamma}(E)}{E} \log \left| \frac{1}{\sqrt{(1 - \beta^2 \epsilon_1)^2 + \beta^4 \epsilon_2^2}} \right| +$$

Cross section to transfer energy E
$$\frac{1}{N \bar{h} c} \left| \beta^2 - \frac{\epsilon_1}{|\epsilon|^2} \right| \theta +$$

$$\frac{\sigma_{\gamma}(E)}{E}\log\left|\frac{2m_ec^2\beta^2}{E}\right| +$$

$$\frac{1}{E^2} \int_0^E \sigma_{\gamma}(E_1) dE_1$$

With:

$$\epsilon_2(E) = \frac{N_e \hbar c}{E Z} \sigma_{\gamma}(E)$$

$$\epsilon_1(E) = 1 + \frac{2}{\pi} P \int_0^\infty \frac{x \epsilon_2(x)}{x^2 - E^2} dx$$

$$\theta = \arg(1 - \epsilon_1 \beta^2 + i \epsilon_2 \beta^2) = \frac{\pi}{2} - \arctan \frac{1 - \epsilon_1 \beta^2}{\epsilon_2 \beta^2}$$

Relativistic rise

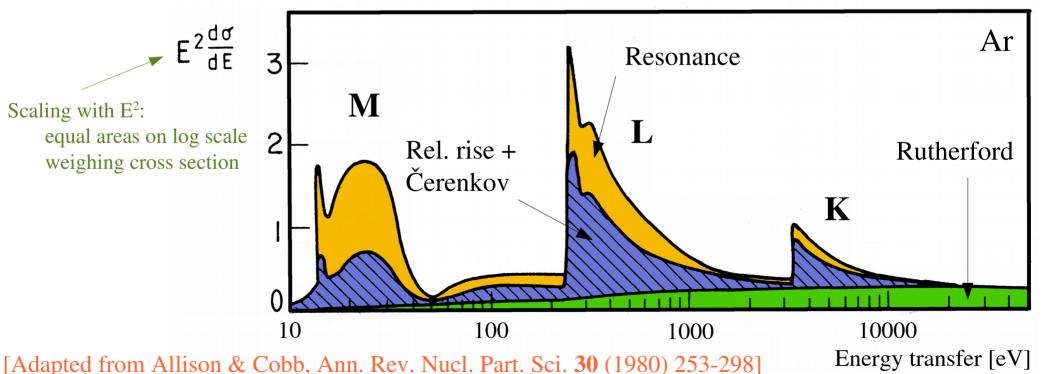
Черенков radiation

Resonance region

Rutherford scattering

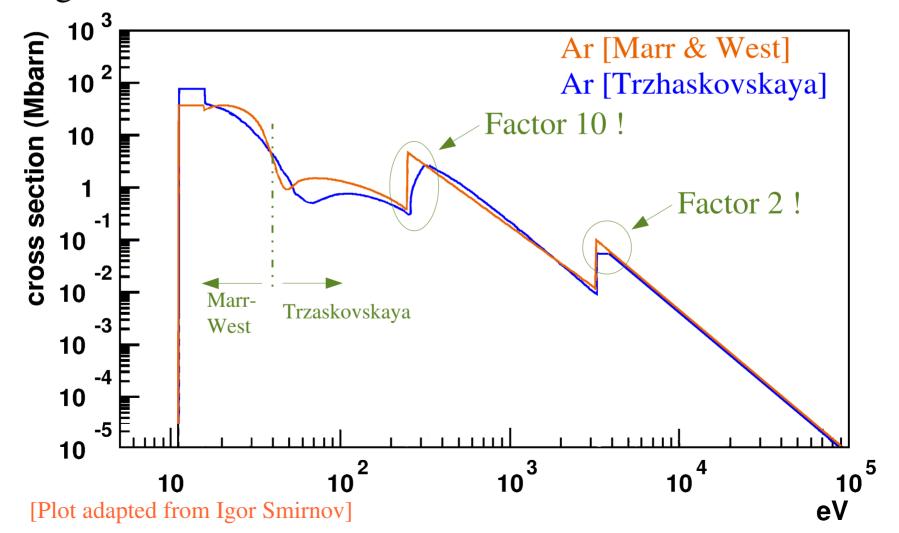
Importance of the PAI model terms

- ► All electron orbitals (shells) participate:
 - outer shells: frequent interactions, few electrons;
 - inner shells: few interactions, many electrons.
- ▶ All terms in the formula are important.



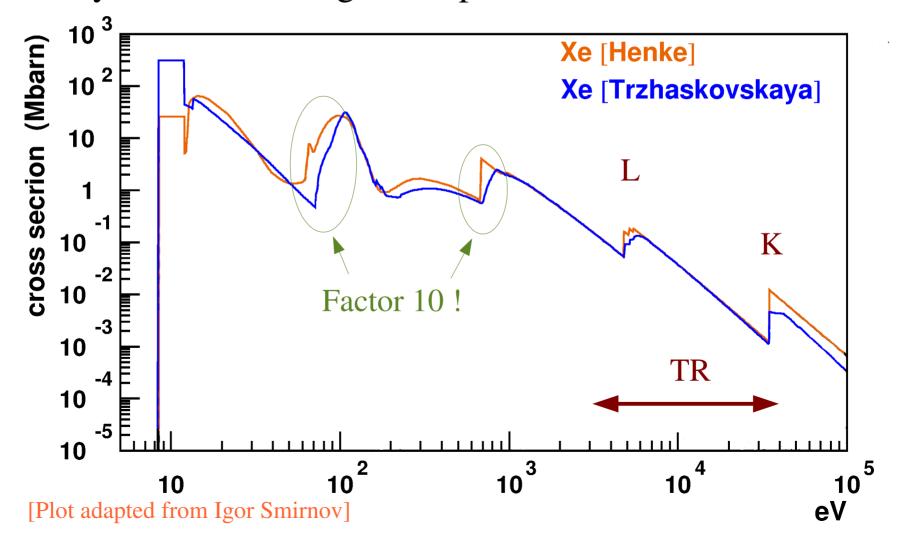
How well is the cross section known?

Disagreement at the shell borders!



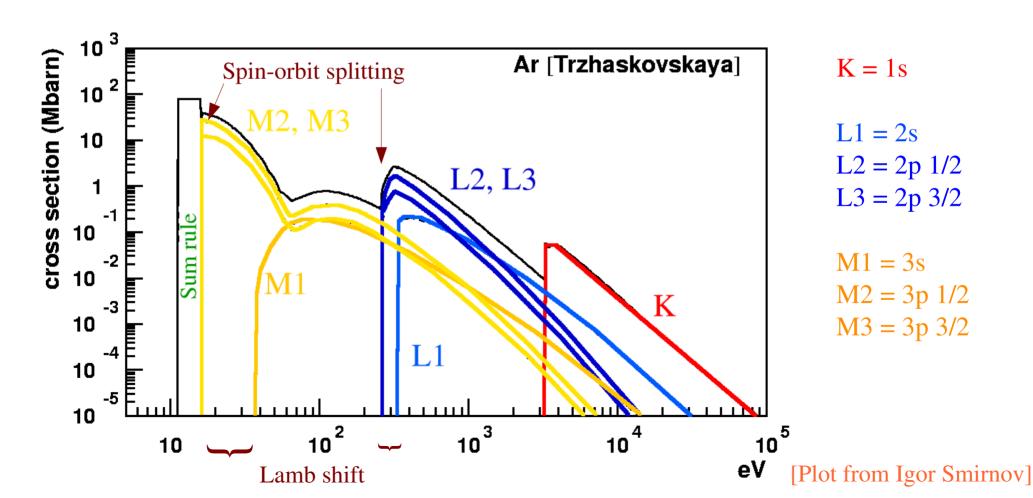
How well is the cross section known?

► Fairly well in TR range, except at 5 keV and at 35 keV.



Heed: Photo-absorption in argon

► Argon has 3 shells, hence 3 groups of lines:

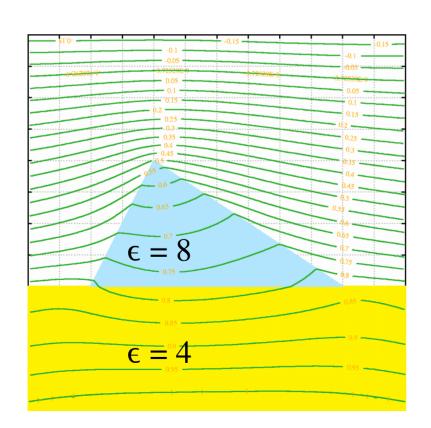


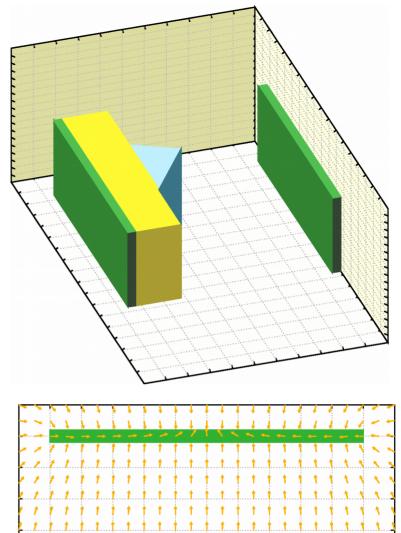
Materials used to construct MPGDs

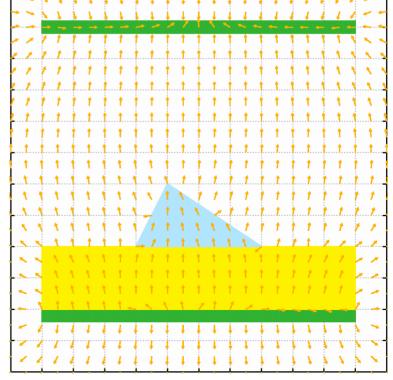
- Metals:
 - treated as perfect conductors;
 - not difficult: simple value boundary conditions.
- Perfect insulators:
 - treated as zero-conductivity materials;
 - transition between materials of different dielectric constant;
 - break the 1st law of gas-based detectors.
- ► Resistive materials: next major challenge
 - far from perfect conductor, imperfect resistor;
 - charging-up, charge evacuation and "warming-up";
 - effect on signals, time-dependent weighting fields;

Dielectric media

Dielectric ridge on a dielectric surface







PMDA-ODA: almost perfect insulator

Building block of a widely used polyimide:

▶ The name comes from the imide group:

PMDA-ODA reaction

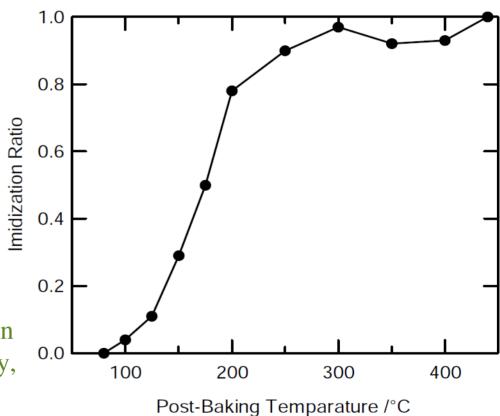
Sequence:

- N is attracted by the carbonyl group,
- the anhydride ring is broken and
- intermediate polyamic acid forms,
- if heated, the ring closes again between COOH and NH:

[From Varun Ratta, PhD thesis, Virginia Tech, 1999.]

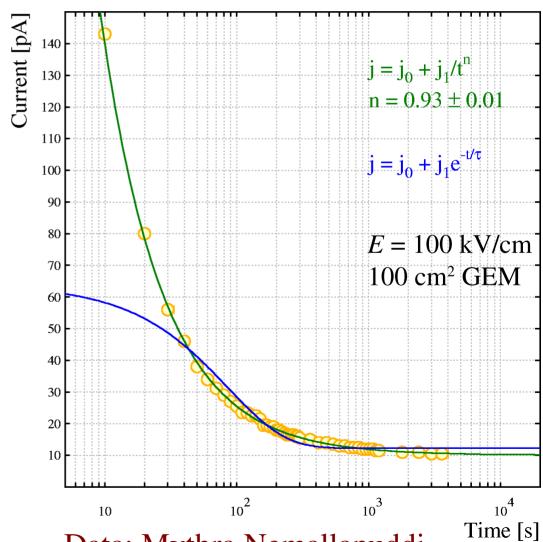
PAA → PI vs baking temperature

- ► The quantity of remaining PAA depends on the baking temperature.
- The proton density therefore also varies.
- H. Oji *et al.*, Memoirs of the Synchrotron Radiation Center, Ritsumeikan University, Kyoto, Japan **8** (2006) 187-188.]



Charging-up current

- When applying voltage across a new GEM, a current flows:
 - not constant(i.e. not a resistor)
 - decay is *not* exponential (i.e. not a capacitor);
 - decay is *not* linear(i.e. not evacuation);
 - but a *power law* with a steady-state term.



Data: Mythra Nemallapuddi

Rudolf Hermann Arndt Kohlrausch (November 6th 1809, Göttingen - March 8th 1858, Erlangen)

Kohlrausch relaxation

- This time dependence is known since 1854 at least. Also known as Curie-von Schweidler behaviour.
- Numerous models have been proposed

H. Kliem, *Kohlrausch relaxations: new aspects about the everlasting story*, doi: 10.1109/TDEI.2005.1511096.

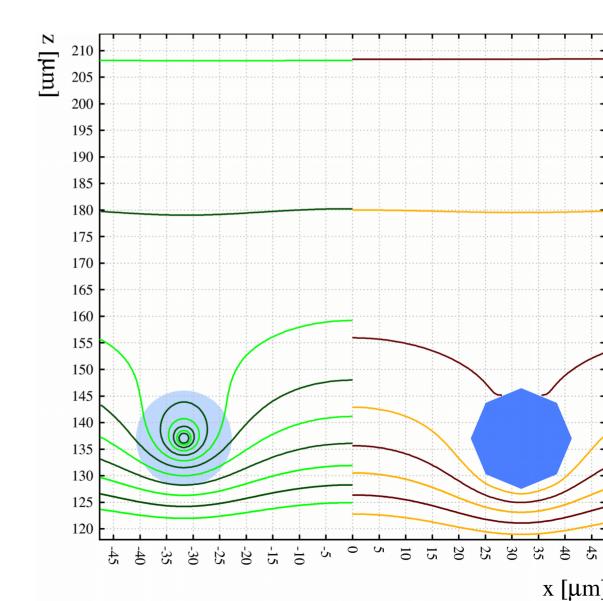
- One of the simplest models specifically assumes ions (e.g. protons, not electrons) as charge carriers and has thin insulating barriers between dielectric medium and electrodes.
- Note: Kohlrausch mentions both the power law and the stretched polynomial. The latter model of Kliem leads to a power law.

Issues with the electric field

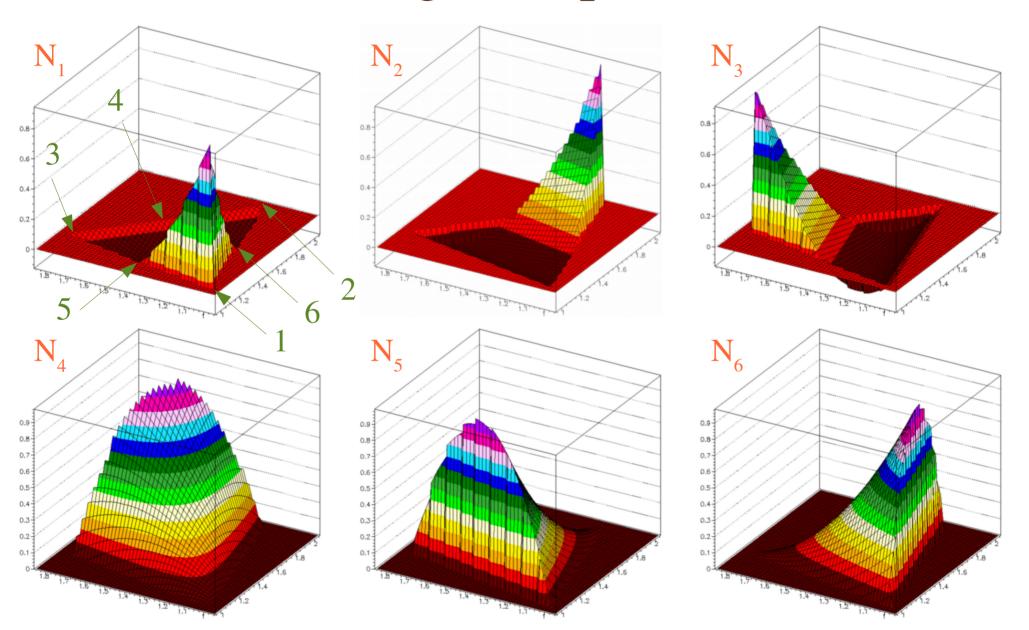
- Fields in wire chambers:
 - closed expressions, thin-wire approximation;
 - well-understood conditions of applicability.
- ▶ Finite elements for complicated shapes:
 - spotting the inaccuracy of FEM calculations is delicate:
 - respect of the boundary conditions is guaranteed;
 - but the "solution" does not solve the Maxwell equations.
- ▶ Boundary elements for complicated shapes:
 - the field is guaranteed to be a Maxwell solution;
 - all that can go wrong is respect of the boundary conditions.

Thin-wire approximation

- **Compare:**
 - left: a thin wire approximation of a Micromegas mesh,
 - right: neBEM calculation of the same (using polygon elements):

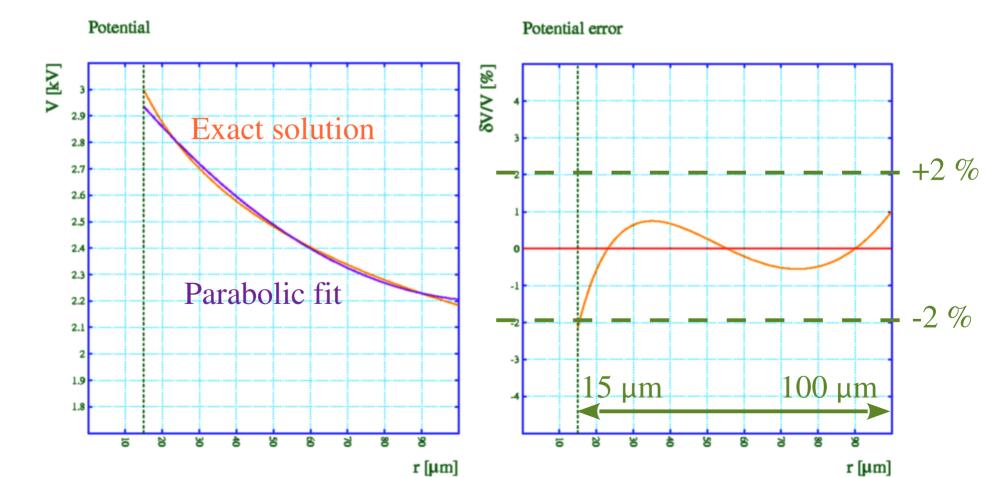


2nd Order triangle shape functions



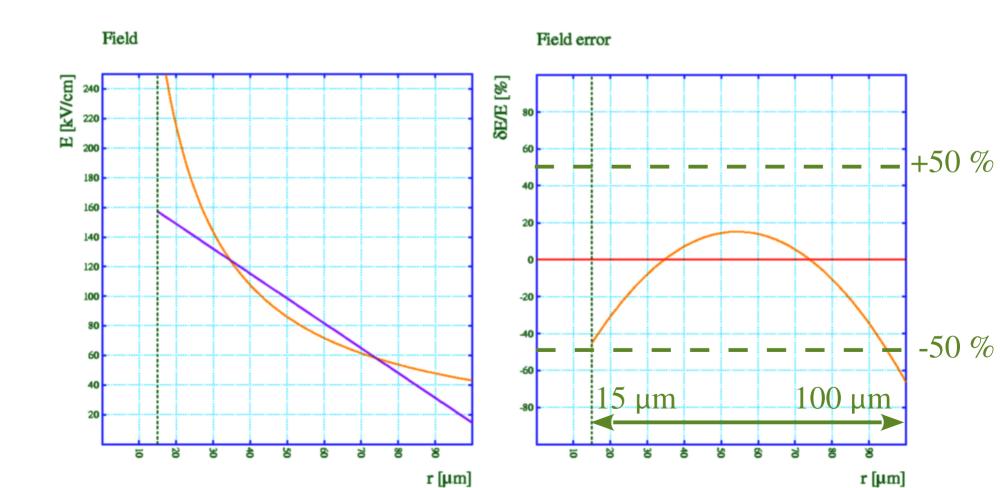
Are polynomial N_i suitable for V?

Polynomial shape functions imply a polynomial potential, here a 3.2 cm tube with a 30 μm wire at 3 kV inside:



Are polynomial N_i suitable for E?

ightharpoonup ... and a polynomial E field that is one order lower!



The price to pay for finite elements

- Finite element programs are flexible but they focus on the wrong thing: they solve *V* well, but we do not really need it:
 - quadratic shape functions do a fair job at approximating $V \approx \log(r)$ potentials;
 - potentials are continuous;
 - potentials and fields are not Maxwell compliant.
- E is what we use to transport charges, but:
 - ▶ gradients of quadratic shape functions are linear and not suitable to approximate $E \approx 1/r$, left alone $E \approx 1/r^2$ fields;
 - electric fields are discontinuous at element boundaries;
 - ▶ a local accuracy of ~50 % in high-field areas is not unusual.

Food for thought ...

The Finite Element Method is a very useful tool which can make a good engineer better, but it can make a bad engineer dangerous. [Robert D. Cook, Professor of Mechanical Engineering University of Wisconsin, Madison]

Boundary element methods

- The elements are 2d surface panels located on the boundaries, not inside the problem domain. Charges are computed for the boundary elements.
- The field in the problem domain is calculated as the sum of Maxwell-compliant field functions, each extending over the entire problem domain. There are no discontinuities in the problem domain (only on the surface).
- ▶ But ... the method poses substantial numerical challenges: large non-sparse matrices and inherent singularities. The technique is time consuming.

$$\frac{1}{2}\left((z_{M}Y^{2}-XG)(LP_{1}+LM_{1}-LP_{2}-LM_{2})+i|Y|(z_{M}X+G)(LP_{1}-LM_{1}-LP_{2}+LM_{2})+IP_{1}(IP_{1}-IP_{2}-$$

For computing the field at any point, neBEM sums the fields due to each element on that point.

$$D_{21} = \sqrt{(X - x_2)^2 + Y^2 + (Z - z_1)^2}; I_1 = (X - x_1) |Y|; I_2 = (X - x_2) |Y|$$

- Evaluating the Green's functions, especially the one for triangular elements, is costly $H_2 = Y^2 + GZ$
- For a modest doubly-periodic 1000-solid model there would be $\sim 10^8$ function evaluations. For an avalanche study we would love to have 10^{00} . We then need to compute the field at $\sim 10^{72}$ points $i|Y|(E_2 iz_M D_{21})$

$$LM_2 = \frac{1}{G + iz_M |Y|} \frac{\log (\frac{(H_2 + GD_{21}) - i|Y|(E_2 - iz_M D_{21})}{1 - X - i|Y|})$$

BEM vs FEM

- neBEM
 - not widely used, few commercial programs;
 - boundary conditions respected at collocation points;
 - Maxwell compliant electric fields & potentials;
 - plausible Green's functions;
 - fields without discontinuities;
 - fully populated influence matrix, limiting problem size

FEM

- well-tested, efficient programs widely available commercially;
- boundary conditions respected on the nodes;
- polynomial potentials do not solve the Maxwell equations;
- locally linear E-fields;
- E-fields discontinuous on element boundaries;
- sparse matrix, virtually no limitations on the problem size

Electron-gas cross sections + transport

- Cross sections are obtained from
 - fits of transport data at low electron energy and
 - from electron beam measurement at higher energy.
 - Some cross sections are purely theorethical.
 - ▶ Illustrated with anisotropic scattering cross sections.
- ▶ Velocity data is generally reproduced to 1 % or better, and diffusion to better than 10 %, but the multiplication can be wrong by orders of magnitude.
 - Illustrated with the Penning effect.

Art Phelps

LXcat people

- Art Phelps,
- ► Leanne Pitchford Toulouse,
- ► Klaus Bartschat Iowa,
- Oleg Zatsarinny Iowa,
- ► Michael Allan Fribourg,
- Steve Biagi
- **.**..

Leanne Pitchford

Magboltz: microscopic e transport

- ► A large number of cross sections for 60 molecules...
 - Numerous organic gases, additives, *e.g.* CO₂:
 - elastic scattering (isotropic and anisotropic),
 - ▶ 44 inelastic cross sections (5 vibrations and 30 rotations + super-elastic and 9 polyads),
 - attachment,
 - 6 excited states,
 - \triangleright 11 ionisations (CO₂⁺, C_K, O_K, 2 excitations, 6 dissociations),
 - 64 dissociations (charged and neutral),
 - 2 bremstrahlung (C and O).
 - ▶ noble gases (He, Ne, Ar, Kr, Xe), e.g. Ar:
 - elastic scattering (isotropic and anisotropic),
 - > 44 excited states,
 - > 7 ionisations (Ar+, Ar++, Ar+++, K, L1, L2, L3),
 - attachment,

bremsstrahlung.

And counting ...

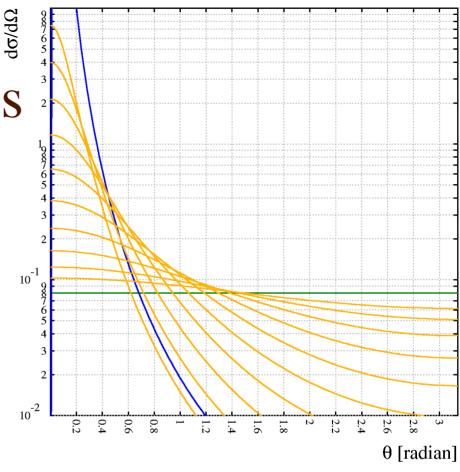
Simple cross sections

► Hard-sphere scattering:

$$\frac{\mathrm{d}\,\sigma}{\mathrm{d}\,\Omega} = \frac{r^2}{4}$$

► Coulomb scattering:

$$\frac{\mathrm{d}\,\sigma}{\mathrm{d}\,\Omega} = \frac{1}{\sin^4(\theta/2)}$$



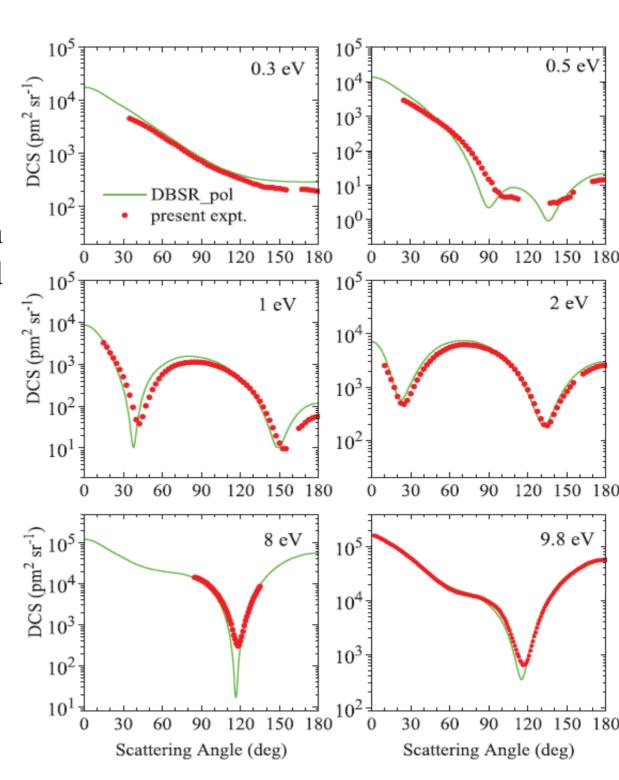
► Screened Coulomb scattering, 1st Born approximation:

$$\frac{d\sigma}{d\Omega} = \frac{1}{4\pi} \frac{1 + 8\epsilon/\epsilon_0}{(1 + 4\epsilon/\epsilon_0 - 4\epsilon/\epsilon_0 \cos \theta)^2}, \quad \epsilon_0 = 27.21 \text{ eV}$$

Krypton data

From a joint study with high-precision data and a theoretical model.

[O. Zatsarinny et al. (2011) 10.1103/PhysRevA.83.032713]



Reason for structure

- ► Elastic Scattering:
 - "Away from Feshbach resonances, the most important effect for elastic scattering is the polarization of the target by the projectile."
- "[...] DBSRpol model only included the $4s^2 4p^6$ ground state with total electronic angular momentum J = 0 and a single pseudostate with J = 1 [...]"

[O. Zatsarinny, K. Bartschat and M. Allan 10.1088/1742-6596/388/1/012008]

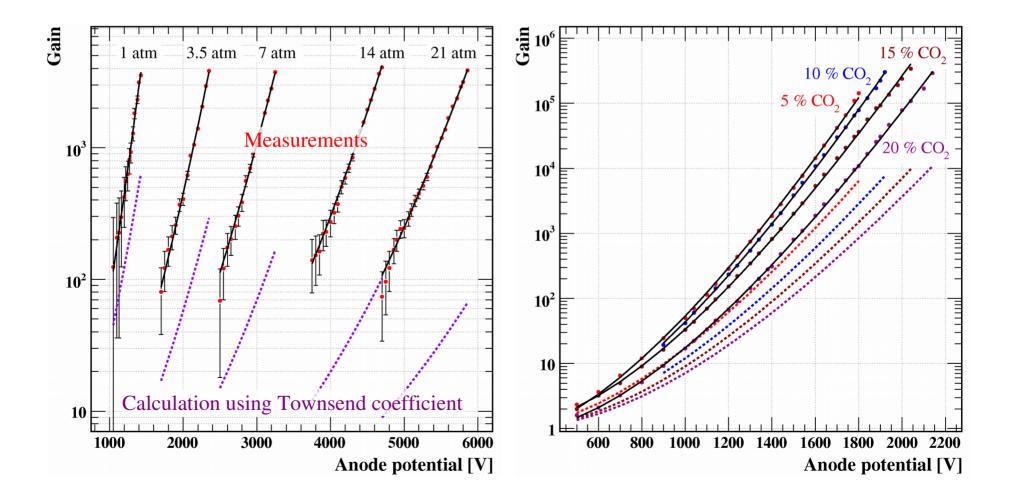
Electrons: Penning parameter

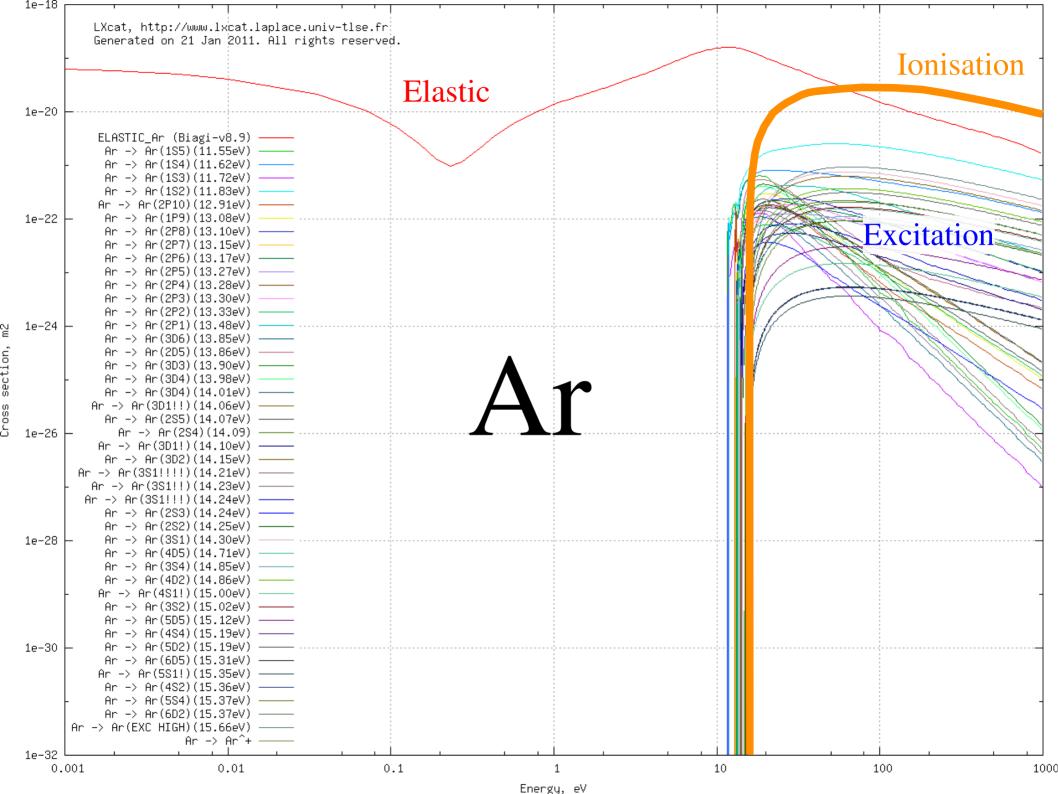
- ► The Magboltz Townsend coefficients do not reproduce the gas gain.
- Probably due to charge transfer from excited noble atoms to quencher gas molecules, and the subsequent ionisation of the quencher.

Magnitude of Penning effect

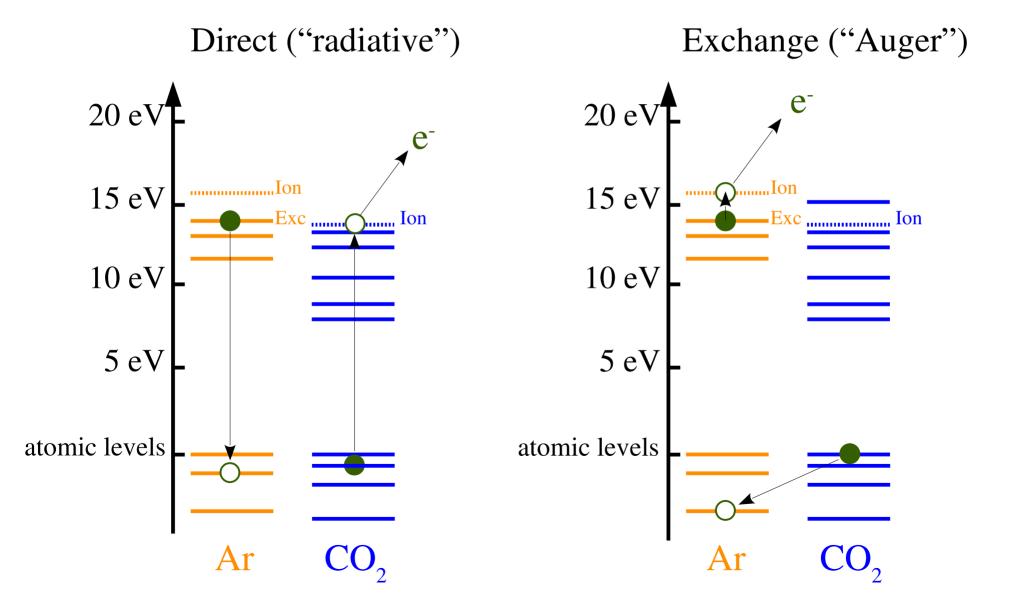
► Ar - CH₄

► Ar - CO₂





Direct vs Exchange ionisation



Simple Penning model

- Let A be a noble gas and B a quencher, A^* is excited with excitation energy > ionisation energy of B^+ .
- la lime step, A^* produces n dt electrons:
 - \triangleright A^* collides with B and transfers its excess energy, or
 - \triangleright A^* decays and radiatively ionises B

$$n = p c \frac{f_{B^+}}{\tau_{A^*B}} + \frac{f_{\text{rad}}}{\tau_{A^*}}$$

 $ightharpoonup A^*$ can try again if A^* neither collides + ionises, nor decays. The probability is:

$$1 - \frac{\mathrm{d}\,t}{\tau_{\mathrm{P}}}, \quad \frac{1}{\tau_{\mathrm{P}}} = p \, c \, \frac{f_{B^{+}}}{\tau_{A^{*}B}} + \frac{1}{\tau_{A^{*}}}$$

$$p = \text{pressure}$$
 $c = \text{quencher fraction}$
 $f_{B^+} = \text{transfer probability}$
 in collision
 $f_{\text{rad}} = \text{radiative lifetime}$
 $\tau_{A^*B} = \text{collision time}$

Simple Penning model (cont'd)

ightharpoonup Summing to get the number of electrons from A^* :

$$r(p,c) = n dt + n dt \left| 1 - \frac{dt}{\tau_p} \right| + n dt \left| 1 - \frac{dt}{\tau_p} \right|^2 + \dots$$

$$= n \tau_p$$
Nothing happened in the first step

- r(p,c) is the fraction of the excitation frequency to be added to the ionisation frequency in order to correct the Townsend coefficient for the Penning effect.
- There are only two a priori unknown parameters:
 - $\triangleright f_{\rm rad}$: the radiative ionisation probability
 - $\triangleright f_{\rm B}$ +: the collisional transfer probability

Ar-CO₂ transfer rates

- Penning parameter fits with data from Tadeusz Kowalski et al. 1992 and 2013.
- ightharpoonup At p = 1070 hPa.

[10.1016/0168-9002(92)90305-N, 10.1016/j.nima.2014.09.061]

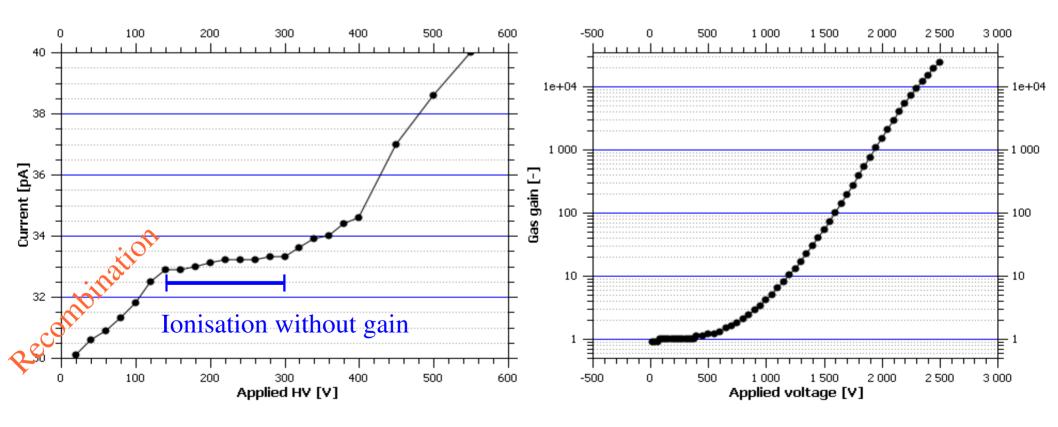
Fransfer rate (r_{Pen} 0.55 0.5 0.45 0.4 0.35 0.3 0.25 0.2 ■ This work 0.15 • Ref. [11] 0.1 Photo-ionisation 0.05

Loss of excitation

CO₂ fraction [%]

Kraków: 5 orders of magnitude!

- ► Current reference is taken at the ionisation level.
- ► Main source of error: ~5 %.



Ions chemistry: rate constants

- ► I thought that the signal ions in Ar-CO₂ are Ar⁺ ions.
- ► Ar⁺ ions have a mobility in Ar of 1.5 cm²/V.s, in agreement with the measurements.

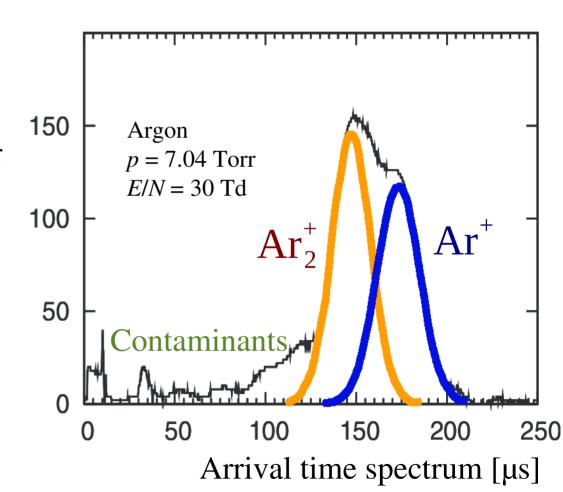
But ...
$$IP_{Ar^+} > IP_{CO_2^+}$$
!

- ▶ Ions transfer charge, combine, break up in nsec.
- ▶ Rate constants are found in the literature, typically 10-30 %.
- Difficulties:
 - not all reactions relevant for us have been measured;
 - our measurements suffer from the lack of a mass spectrometer.

Ions drifting in pure Ar

- In pure argon, dimers are formed:
 - Ar⁺(${}^{2}P^{o}_{3/2}$) + 2Ar \rightarrow Ar⁺•Ar + Ar ($k = 2.3 \pm 0.1 \ 10^{-31} \ \text{cm}^{6}/\text{s}, \ 7 \ \text{ns}$)
 - Note: dimers move faster than ions due to $Ar \leftrightarrow Ar^+$ resonant charge exchange.

[PNB Neves et al. 10.1063/1.3497651]



Clustering reactions involving CO₂

- ► Ar⁺: charge exchange, $\tau \approx 0.85$ ns
 - $Ar^+ + CO_2 \rightarrow Ar + CO_2^+$
- ► Ne⁺: charge transfer in 2-steps, $\tau \approx 8$ ns
 - $ightharpoonup Ne^+ + CO_2 \rightarrow Ne + CO^+ + O$
 - $ightharpoonup CO^+ + CO_2^- \rightarrow CO + CO_2^+$
- ► CO₂: 3-body association, 7-20 ps or 0.7-2.0 ns
 - $ightharpoonup CO_2^+ + 2CO_2 \rightarrow CO_2^+ \cdot CO_2^- + CO_2^-$
- ► [For 10 % CO₂, atmospheric pressure, room temperature]

Situating cluster ions

Chemically bound molecules:

0.75-11.1 eV

covalent or ionic bond

Cluster ions:

0.09-1.7 eV

- bound by charge-induced dipole forces;
- constituents retain their identity.

van der Waals molecules:

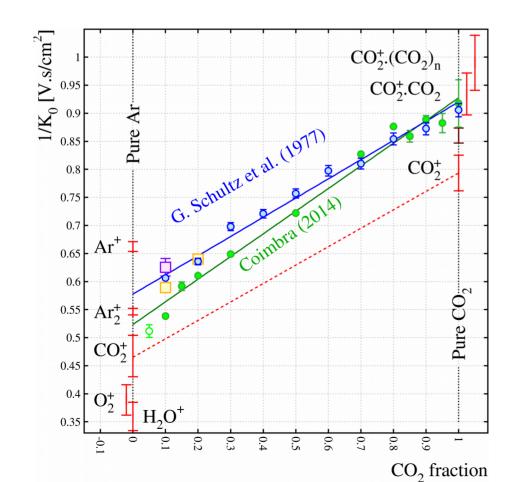
0.0009 - 0.1 eV

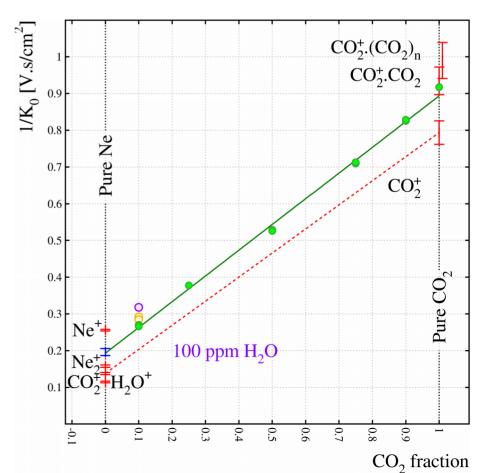
- bound by van der Waals forces;
- observed at low temperatures.

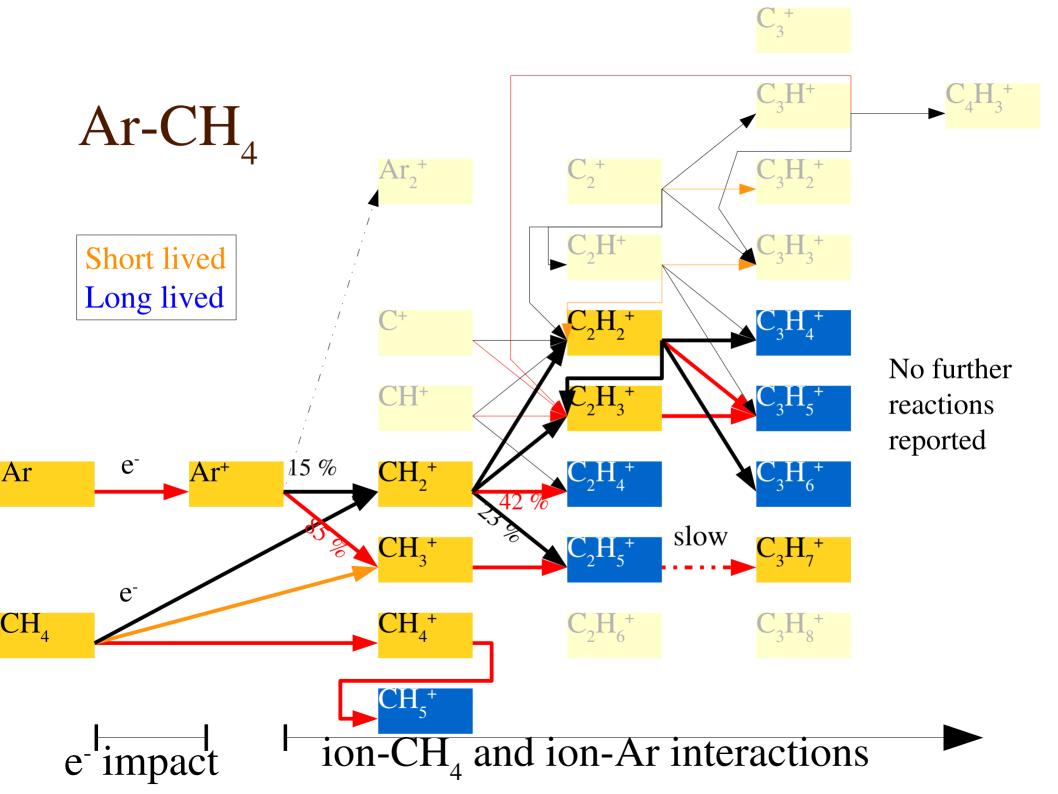
[B.M. Smirnov, "Cluster Ions and Van Der Waals Molecules," CRC press]

Ions drifting in Ar-CO₂ and Ne-CO₂

Neither CO_2^+ , Ar^+ nor Ne^+ but $CO_2^{+\bullet}(CO_2)_n$

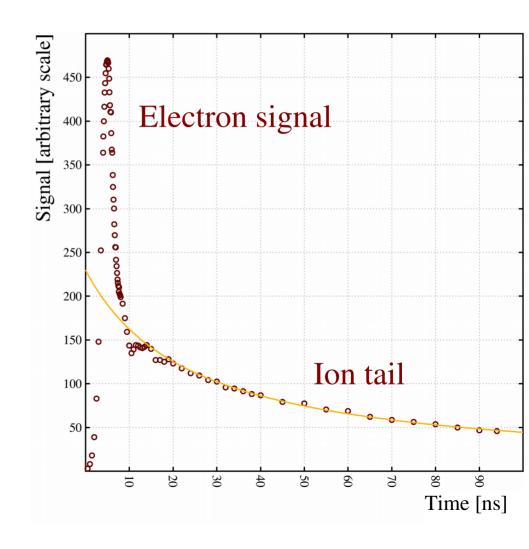






Atlas TRT signal

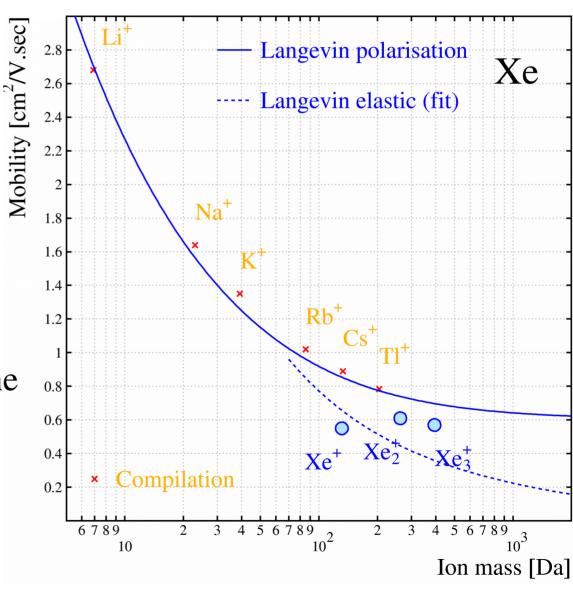
- **Data:**
 - ► Xe-CF₄-CO₂ 70/20/10
 - $V_{\rm w} = 1530 \text{ V}$
 - $r_{\rm w} = 15 \ \mu \text{m}, r_{\rm t} = 2 \ \text{mm}$
- Fit:
 - \triangleright i_0 manually adjusted
 - $t_0 = 24$ ns, equivalent to
 - $\mu = 0.15 \text{ cm}^2/\text{V.s}$



Mobility of ions in Xe

- E/N = 10 Td,extrapolated from higher E/N where needed (Xe⁺).
- Polarisation limit assuming $\alpha_{Xe} = 4.01 D$.
- ► Xe₂⁺ and Xe₃⁺ are below the polarisation limit.

[From the H.W. Ellis et al. compilations except Xe⁺ and Xe₂⁺, which are from P.N.B. Neves, 10.1063/1.3497651]



Ionisation in Xe-CF₄-CO₂ (70-20-10)

	Ion	Energy [eV]	Rate [GHz]	Fraction
Xe	Xe ⁺	12.12984	53.75	95.5 %
CF ₄	CF ₃ ⁺	15.70	1.24	2.2 %
	CF ₂ ⁺	21.47	0.01399	
CO_2	CO ₂ +	13.776	1.072	1.9 %
	CO ₂ +*	17.314	0.09423	
	CO_2^{+*}	18.077	0.05669	
	O^+	19.07	0.02739	
	CO^+	19.47	0.02597	

Magboltz 11.2bis, E = 100 kV/cm1 atm, 20 C

Reactions in Xe-CF₄-CO₂

$$Xe^+ + Xe + M \rightarrow Xe_2^+ + M$$

$$k = 2.0 \pm 0.2 \cdot 10^{-31}$$

[A.P. Vitols and H.J. Oskam, Phys. Rev. A 8 (1973) 1860-1863.]

$$k = 2.4 \cdot 10^{-28}$$

[B.M. Smirnov, Cluster Ions and Van Der Waals Molecules]

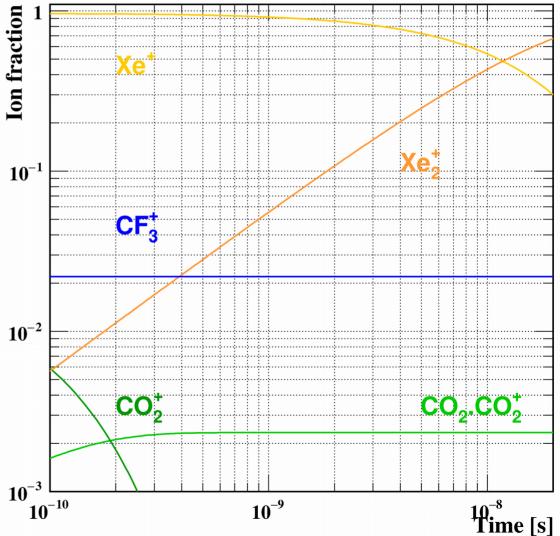
$$CO_2^+ + Xe \rightarrow CO_2 + Xe^+$$

$$k = 6.0 \ 10^{-10} \ \pm 30 \ \%$$

[V.G. Anicich and W.T. Huntress Jr., Astrophys. J. Suppl. **62** (1986) 553-672.]

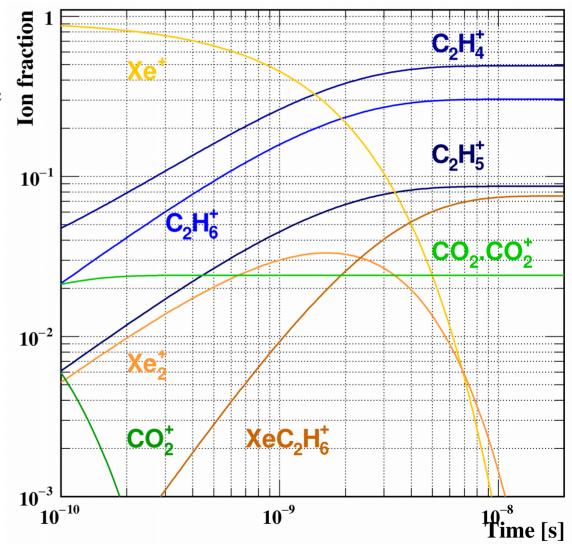
Evolution of $Xe-CF_4-CO_2$ (70-20-10)

- ▶ Initial ion mix for 100 kV/cm;
- Ne⁺ and Xe_2^+ dominate from 10 ns on, Xe_n^+ for n > 2 are not shown: rates are not known.
- CF₃⁺ is an avalanche product; with its low IP, it does not react;
- ► CF₄⁺ is not produced, CF₄ has a high IP, is not attacked by ions.
- CO₂⁺ transfers to Xe⁺ and rapidly forms clusters.



Evolution of $Xe-CO_2-C_2H_6$ (70-27-3)

- ▶ Initial ion mix for 100 kV/cm;
- ► CO₂⁺ rapidly forms clusters due to the large CO₂ fraction;
- CO₂ does not affect the dominance of C_xH_y over Xe.
- \sum_{n}^{+} for n > 2 are not shown because rates are not known.



$$Xe_2^+ - Xe_3^+$$

► We have not found the rate comstant for Xe₃⁺ production in the literature, but H. Helm has measured:

$$K_{\rm e} = \frac{[{\rm Xe}_2^+][{\rm Xe}][{\rm Xe}]}{[{\rm Xe}_3^+][{\rm Xe}]} = \frac{k_{\rm r}}{k_{\rm f}} = 2.8 \pm 0.5 \ 10^{18}$$

- where k_f is the rate coefficient for the transformation of Xe_2^+ to Xe_3^+ , and k_r the rate for the reverse reaction.
- Given that $[Xe_3^+] / [Xe_2^+] = 3.6 \pm 0.6 \ 10^{-19} N$, the ratio of concentrations is 9.7 ± 1.6 at 293 K, atmospheric pressure and zero field.

Mobility and stability of small Xe_n⁺

- ▶ Mobilities are known for the smallest Xe clusters;
- these are remarkably stable;
- \blacktriangleright ΔH for $n \ge 5$ clusters is nearly constant at ~0.1 eV.

>	$\langle e_n^+ \rangle$	Mass	$\mu \ (E = 0, T = 300 \text{ K})$	$\Delta H \ n$ -1 $\rightarrow n$	References
		[Da]	[cm ² /V.s]	[eV]	
>	Ke ⁺	131.293	0.55	_	Helm, Viehland-Mason
Y	Κe ₂ ⁺	262.586	0.61	1.05 (5 %)	NIST, Helm 1976
Y	Κe ₃ +	393.879	0.57	0.29 (5 %)	NIST, Helm 1976
Y	Κe ₄ +	525.172	?	0.26 (3 %)	NIST, Hiraoka
Y	Κe ₅ ⁺	656.465	?	0.11 (5 %)	NIST, Hiraoka

Large Xe_n clusters

- ► Much larger clusters, with a typical size of 10⁴, have been observed.
- They are produced by "supersonic adiabatic expansion through a nozzle."
- ► A topic of current investigation in RD51.

Tracking techniques

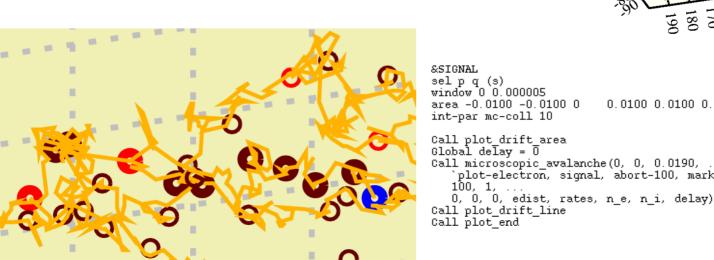
- ▶ Devices much larger than the electron mean free path:
 - if diffusion can be neglected, Runge Kutta integration;
- devices with structural elements at the micron scale:
 - electron tracking at the molecular level;

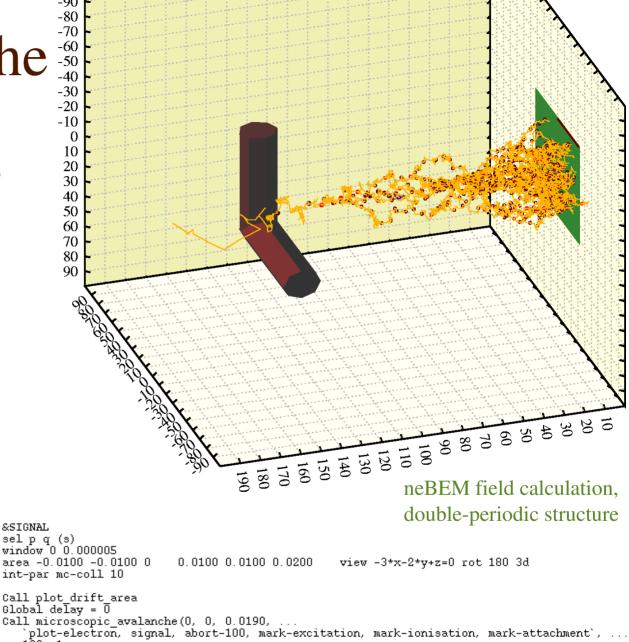
ions:

- ross sections for microscopic ion tracking not available, and anyhow not practical: $\lambda_{gas-ion} \sim 50$ nm;
- Monte Carlo based on measured diffusion and mobility;
- chemistry remains to be implemented.

Single avalanche

- Diffusion diminishes on passing the mesh.
- Circles indicate
 - excitation,
 - ionisation and
 - **attachment.**

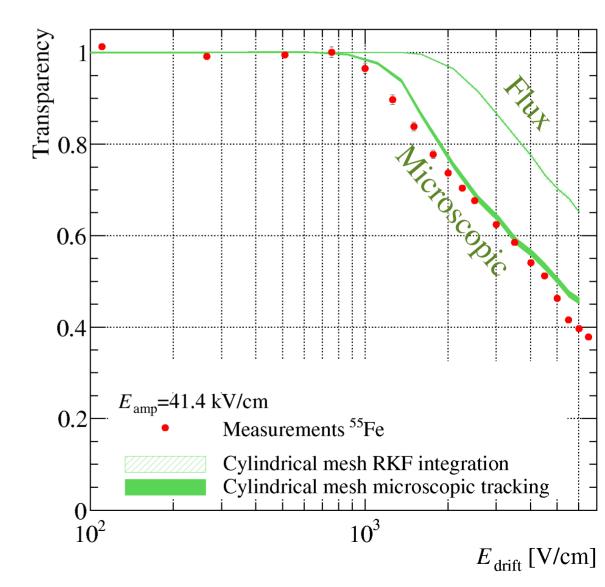




Flux vs microscopic?

- A diffusion-free flux argument does not reproduce the data ...
- but the microscopic approach works.

Field calculations: finite elements.



Summary of uncertainties

- Ionisation:
 - PAI: factor of 10 at shell edges of the photo-absorption cross section.
- Material properties:
 - dielectric constants known to a few percent (manufacturer);
 - conductivity known to an order of magnitude, not pure resistors;
 - properties depend strongly on humidity, temperature, surface treatment ...
- Fields:
 - \triangleright finite elements: larger for E than V, poor near charges, error-prone;
 - boundary elements: depends on discretisation;
 - general resistive layers remain to be implemented.
- Electron transport:
 - electron velocity: better than 1 % for reasonable settings;
 - electron diffusion: worse;
 - avalanche gain: orders of magnitude in Penning mixtures;
 - attachment: several-body reactions.
- lon transport:
 - signal ions can be C_xH_y , $CO_2^{+\bullet}(CO_2)_n$, Xe_n^+ , Ar_2^+ , Ne_2^+ ...
 - **not all rate constants relevant for us are available.**