MPGD simulation: models, ingredients, precision
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Operating principles of MPGDs:

» A charged particle passes through the gas and
1onises molecules;

» the electric field in the gas volume provokes
multiplication and transports the 1onisation
electrons and 10ns;

» the movement of electrons and 1ons leads to
induced currents 1n electrodes.



P Ionisation
» PAI models: Heed for low energy electrons, Geant4;
» Degrad: extension to higher energy of Magboltz.
P Field:
» dielectric constants, resistive layers;
» finite and boundary element methods, meshing;
» closed expressions, thin-wire approximation.
P Electrons in a gas:
» electron cross sections, isotropy;
» Penning and quenching rates.
P Ions in a gas:
» mobility and diffusion;
» chemistry, rate coefficients.
P Transport:
» Runge-Kutta;
» microscopic tracking based on cross sections;
» Magboltz: ergodic principle, SST corrections;
» charging-up.



» PAI models (Heed, Geant 4):
» Simulate 1onisation of a gas by a charged particle;
» Heed contains relaxation, not all PAI models do;
» the model as such 1s contested;
» the photo-absorption cross section 1s not well known.

» Degrad:
» extension of Magboltz to higher electron energy;
» naturally deals with electron scattering;
» also handles photons and minimum 10nising particles;
» uses measured cross sections, does not rely on models.

» SRIM:
» simulates 1ons, closed source, interface questionable.



Basic formulae of the PAI model

» Key ingredient: photo-absorption cross section o, (E)
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Importance of the PAI model terms

» All electron orbitals (shells) participate:
» outer shells: frequent interactions, few electrons;
» 1nner shells: few interactions, many electrons.

» All terms 1n the formula are important.

Scaling with E*:

equal areas on log scale 2

weighing cross section

[Adapted from Allison & Cobb, Ann. Rev. Nucl. Part. Sci. 30 (1980) 253-298]
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How well 1s the cross section known ?

Disagreement at the shell borders !
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How well 1s the cross section known ?

» Fairly well in TR range, except at 5 keV and at 35 keV.
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cross section (Mbarn)

Heed: Photo-absorption in argon

» Argon has 3 shells, hence 3 groups of lines:
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» Metals:

» treated as perfect conductors;
» not difficult: simple value boundary conditions.

» Perfect insulators:
» treated as zero-conductivity materials;
» transition between materials of different dielectric constant;
» break the 1* law of gas-based detectors.

» Resistive materials: next major challenge
» far from perfect conductor, imperfect resistor;
» charging-up, charge evacuation and “warming-up”;
» effect on signals, time-dependent weighting fields;



Dielectric media

» Dielectric ridge on a
dielectric surface




PMDA-ODA: almost perfect insulator

» Building block of a widely used polyimide:

- —



PMDA-ODA reaction

» Sequence:
» N 1s attracted by the carbonyl group,
» the anhydride ring 1s broken and
» intermediate polyamic acid forms,

» 1f heated, the ring closes again between COOH and NH:

o /N 0
+ H N@ NN o D
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[From Varun Ratta, PhD thesis, Virginia Tech, 1999.]



PAA — PI vs baking temperature

» The quantity of remaining
PAA depends on the baking
temperature.

» The proton density therefore
also varies.

Imidization Ratio

P [H. Oji et al., Memoirs of the Synchrotron
Radiation Center, Ritsumeikan University,
Kyoto, Japan 8 (2006) 187-188.]
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Charging-up current

» When applying voltage
across a new GEM, a
current flows:
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» not constant
(1.e. not a resistor)

» decay 1s not exponential
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Rudolf Hermann Arndt Kohlrausch
(November 6™ 1809, Géttingen -
March 8" 1858, Erlangen)

Kohlrausch relaxation

» This time dependence 1s known since 1854 at least.
Also known as Curie-von Schweidler behaviour.

» Numerous models have been proposed
H. Kliem, Kohlrausch relaxations: new aspects about the everlasting story,
doi: 10.1109/TDEI.2005.1511096.

» One of the simplest models specifically assumes 1ons
(e.g. protons, not electrons) as charge carriers and has thin
insulating barriers between dielectric medium and electrodes.

P Note: Kohlrausch mentions both the power law and the stretched polynomial.
The latter model of Kliem leads to a power law.



» Fields in wire chambers:
» closed expressions, thin-wire approximation;
» well-understood conditions of applicability.

» Finite elements for complicated shapes:
» spotting the inaccuracy of FEM calculations 1s delicate:
» respect of the boundary conditions 1s guaranteed;
» but the “solution” does not solve the Maxwell equations.

» Boundary elements for complicated shapes:
» the field 1s guaranteed to be a Maxwell solution;
» all that can go wrong 1s respect of the boundary conditions.



Thin-wire approximation

» Compare: =

B

» left: a thin wire
approximation of a
Micromegas mesh,

» right: neBEM
calculation of the
same (using
polygon elements):
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Are polynomial N. suitable for V' ?

» Polynomial shape functions imply a polynomial potential,
here a 3.2 cm tube with a 30 pm wire at 3 kV 1inside:
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Are polynomial N. suitable for £ ?

» ... and a polynomial E field that 1s one order lower !
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The price to pay tfor finite elements

» Finite element programs are flexible but they focus on the
wrong thing: they solve V well, but we do not really need it:
» quadratic shape functions do a fair job at approximating
V~ log(r) potentials;
» potentials are continuous;
» potentials and fields are not Maxwell compliant.

» E 1s what we use to transport charges, but:
» gradients of quadratic shape functions are linear and not
suitable to approximate E ~1/r, left alone E ~1/r* fields;
» electric fields are discontinuous at element boundaries;
» alocal accuracy of ~50 % in high-field areas 1s not unusual.



Food tfor thought ...

» The Finite Element Method 1s a very useful tool which
can make a good engineer better, but it can make a bad

engineer dangerous. [Robert D. Cook, Professor of Mechanical
Engineering University of Wisconsin, Madison]



Boundary element methods

» The elements are 2d surface panels located on the
boundaries, not inside the problem domain.
Charges are computed for the boundary elements.

» The field in the problem domain is calculated as the sum
of Maxwell-compliant field functions, each extending over
the entire problem domain. There are no discontinuities 1n
the problem domain (only on the surface).

» But ... the method poses substantial numerical challenges:
large non-sparse matrices and inherent singularities. The
technique 1s time consuming.



neBEM — the prlce 10 pay 2+ o

» For cbmputlng the fleld at any pomt neBEM sums
the fields'due to'€ach element on that'point.” '
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» For a modest dbubly perlodlc 1000 sohd model there
would be ~10° functlon efvalwatmns For:zan avalanche
study we would love to have lOOO We then need to
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BEM vs FEM

» neBEM

» not widely used, few
commercial programs;

» boundary conditions
respected at collocation
points;

P Maxwell compliant electric
fields & potentials;

P plausible Green's functions;

P ficlds without
discontinuities;

» fully populated influence
matrix, limiting problem size

» FEM

P well-tested, efficient
programs widely available
commercially;

P boundary conditions
respected on the nodes;

» polynomial potentials do not
solve the Maxwell equations;

» locally linear E-fields;

» E-fields discontinuous on
element boundaries;

P sparse matrix, virtually no
limitations on the problem
size



» Cross sections are obtained from
» fits of transport data at low electron energy and
» from electron beam measurement at higher energy.
» Some cross sections are purely theorethical.

» Illustrated with anisotropic scattering cross sections.

» Vel
and

ocity data 1s generally reproduced to 1 % or better,

1 diffusion to better than 10 %, but the

mu|

tiplication can be wrong by orders of magnitude.

» Illustrated with the Penning effect.



L Xcat people

» Art Phelps,

» [ eanne Pitchford — Toulouse,
» Klaus Bartschat — lowa,

» Oleg Zatsarinny — Iowa,

» Michael Allan — Fribourg,

» Steve Biagi
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Magboltz: microscopic e transport

» A large number of cross sections for 60 molecules...
» Numerous organic gases, additives, e.g. CO,:

-~ elastic scattering (isotropic and anisotropic),

44 1nelastic cross sections (5 vibrations and 30 rotations +
super-elastic and 9 polyads),

attachment,

6 excited states,

11 1onisations (CO,*, C_, O, 2 excitations, 6 dissociations),

\

64 dissociations (charged and neutral),
2 bremstrahlung (C and O).

» noble gases (He, Ne, Ar, Kr, Xe), e.g. Ar:

elastic scattering (isotropic and anisotropic),

44 excited states,

7 1onisations (Ar*, Art, Art**, K, L1, L2, L3),

attachment, And counting ...
bremsstrahlung.

> VYV VUV U

vV V¥V N



do/dQ

Simple cross sections

N W A ool

» Hard-sphere scattering:

2
do r
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» Coulomb scattering:
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do 1
dQ sin*(0/2)

» Screened Coulomb scattering, 1* Born approximation:

do 1 1+8€le,
dQ 4TT(1—F4€/€0—ﬂ4€/€OC089)2’

e, =27.21eV



Krypton data

DBSR_pol
* present expt.

» From a joint study with

high-precision data and
a theoretical model.
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Reason for structure

» Elastic Scattering:
“Away from Feshbach resonances, the most important
effect for elastic scattering 1s the polarization of the
target by the projectile.”

» “[...] DBSRpol model only included the 4s* 4p° ground
state with total electronic angular momentum J = 0 and
a single pseudostate with J =1 [...]”

[O. Zatsarinny, K. Bartschat and M. Allan 10.1088/1742-6596/388/1/012008]



» The Magboltz Townsend coefficients do not reproduce
the gas gain.

» Probably due to charge transfer from excited noble
atoms to quencher gas molecules, and the subsequent
1onisation of the quencher.



Magnitude of Penning effect
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Lross sectlon, me
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L¥cat, http:sAumw.lxzcat.laplace.univ-tlse.fr
Generated on 21 Jan 2011,

ELASTIC_Ar (Biagi-wg.9)
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Direct vs Exchange 1onisation
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Simple Penning model

» Let A be a noble gas and B a quencher, A™ is excited
with excitation energy > 1onisation energy of B*.

» In a time step, A” produces n dr electrons:
» A" collides with B and transfers its excess energy, or
» A" decays and radiatively ionises B

f - frad p = pressure
n = pCx—+=- ¢ = quencher fraction
o AB A f . = transfer probability
» A" can try again if A" neither collides + i collision

ionises, nor decays. The probability 1s: ¢ = = radiative lifetime
T ... = collision time
dt ]_ f B'

1 A B
1—=— — = pc +
Tp’?  Tp p Tag Ta
[O Sahin et al., 2010 JINST 5 P05002]




Simple Penning model (cont'd)

» Summing to get the number of electrons from A™:

dt de [
= + —— |+ —— | +...
r(p,c) ndt+ndt|1 T ndt|l T,
— nTP I . I
Nothing happened

. . in the first step
» r(p,c) is the fraction of the excitation frequency to be

added to the 1onisation frequency in order to correct the
Townsend coefficient for the Penning effect.

» There are only two a priort unknown parameters:
» f . the radiative 1onisation probability

» f.+: the collisional transfer probability



AI‘—C02 transfer rates

[Loss of excitation

» Penning parameter
fits with data from

Tadeusz Kowalski
et al. 1992 and 2013.
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AGH

AND TECHNOLOGY

Krakow: S5 orders of magnitude !

» Current reference 1s taken at the ionisation level.
» Main source of error: ~5 %.
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» I thought that the signal ions in Ar-CO, are Ar* 1ons.

» Ar*ions have a mobility in Ar of 1.5 cm?/V.s, in agreement
with the measurements.

But .. IP, >IP,, !

Ions transfer charge, combine, break up 1n nsec.
Rate constants are found in the literature, typically 10-30 %.

Difficulties:
» not all reactions relevant for us have been measured;

» our measurements suffer from the lack of a mass spectrometer.

vwYyy




Ions drifting 1in pure Ar

» In pure argon, dimers [ P rrerrre P e

are formed:
150 Argon -
- AI’J’(ZPO3 )+ 2Ar — ArtAr + Ar p =7.04 Torr
(k=2.3+0.1 103" cm®s, 7 ns) E/N =30Td
100 | -

_I_
Ar,

» Note: dimers move faster
than ions due to Ar <> Ar" 4 |

resonant charge exchange. lContaminantsl,#
0 Eubekl ML T L vl -

[PNB Neves et al. 10.1063/1.3497651] 0 50 100 150 200 250

Arrival time spectrum [us]




Clustering reactions involving CO,

» Ar*: charge exchange, T =~ 0.85 ns
» Art + CO,— Ar + CO*

» Ne*: charge transfer 1in 2-steps, T =~ 8 ns
» Ne* + CO, - Ne + CO* + O

» CO* + CO, —» CO + CO,’

» CO,: 3-body association, 7-20 ps or 0.7-2.0 ns
» CO,"+2C0O,— CO,=CO, + CO,

» [For 10 % CO,, atmospheric pressure, room temperature]



Situating cluster 10ns

» Chemically bound molecules: 0.75-11.1eV

» covalent or 1onic bond

» Cluster 10ns: 0.09-1.7 eV
» bound by charge-induced dipole forces;
» constituents retain their identity.

» van der Waals molecules: 0.0009-0.1 eV
» bound by van der Waals forces;
» observed at low temperatures.

[B.M. Smirnov, “Cluster Ions and Van Der Waals Molecules,” CRC press]|



lons drifting in Ar-CO, and Ne-CO,

» Neither CO_*, Ar* nor Ne* but CO,**(CO,))
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Ar-CH )

Long lived

No further
reactions
reported

l. 1
¢ 1mpact

1on-CH ) and 10n-Ar interactions
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Atlas TRT signal

» Data:
» Xe-CF,-CO, 70/20/10
» V =1530V
» r =15um, r =2 mm
» it
» i, manually adjusted
» ¢, =24 ns, equivalent to
» u=0.15cm?*V.s
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Mobility of 10ons 1n X

é 28 — Langevin polarisation
» E/N =10 Td, e | ‘ HEREED. (-
extrapolated from higher 5 =f \ Eotiihke oA
E/N where needed (Xe*). % 2‘2_
§ 1.8F
» Polarisation limit L6}
assuming o, =4.01 D. B

[~ X62+ and Xe3+ are below the s}

polarisation limit. i
04F
[From the H.W. Ellis et al. compilations 02
except Xe* and Xe,*, which are from PEETE L éé%éé'z L éé%éé.S
P.N.B. Neves, 10.1063/1.3497651] = 10 10

Ion mass [Da]



lonisation 1n Xe-CF,-CO, (70-20-10)

Xe

CF

CO

Ion
Xe*

CF.*
CF*

co,’
Co,*
Co,*
O+
Co*

Energy [eV] Rate [GHz]

12.12984

15.70
21.47

13.776
17.314
18.077

19.07
19.47

53.75

1.24
0.01399

1.072
0.09423
0.05669

0.02739
0.02597

Fraction

95.5 %

2.2 %

1.9 %

Magboltz 11.2bis,
E =100 kV/cm
1 atm, 20 C



Reactions in Xe-CF 4—CO2

P Xet+Xe+M— Xet+M k=2.0+0.2 107!
[A.P. Vitols and H.J. Oskam, Phys. Rev. A 8 (1973) 1860-1863.]

[ Conr + COz +M - COz.C02+ +M k=2.4107%
[B.M. Smirnov, Cluster Ions and Van Der Waals Molecules]|

b COf+Xe — CO,+Xe? k=6.010" £30 %
[V.G. Anicich and W.T. Huntress Jr., Astrophys. J. Suppl. 62 (1986) 553-672.]



Evolution of Xe-CF 4—C()2

P Initial ion mix for 100 kV/cm;

P Xetand Xe2+ dominate from
10 ns on, Xe * for n > 2 are not
shown: rates are not known.

» CFE." 1s an avalanche product;
with its low IP, 1t does not react;

» CF, " is not produced, CF, has a
high IP, 1s not attacked by 1ons.

» CO,* transfers to Xe* and
rapidly forms clusters.

[—y

Ion fraction
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Evolution of Xe-CO_-C H, (70-27-3)

[—y

P Initial ion mix for 100 kV/cm;

» CO," rapidly forms clusters due

Ion fraction

to the large CO, fraction;

» CO, does not affect the
dominance of CXHy over Xe.

| Xen+ for n > 2 are not shown
because rates are not known.

10~
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+ +
X€2 Xe3

» We have not found the rate comstant for Xe * production
in the literature, but H. Helm has measured:

Kez[Xe;]EXE][Xe]Ikr=2.8iO.5 10"
[Xe3][Xe] K

» where kf 1s the rate coefficient for the transformation of

Xe,*to Xe,", and k_the rate for the reverse reaction.

» Given that [Xe "]/ [Xe,*] =3.6 £ 0.6 10 N, the ratio

of concentrations 1s 9.7 £ 1.6 at 293 K, atmospheric

pressure and zero field.
[H. Helm, 10.1103/PhysRevA.14.680]



Mobility and stability of small Xe *

» Mobilities are known for the smallest Xe clusters;
» these are remarkably stable;
» AH for n = 5 clusters 1s nearly constant at ~0.1 eV.

Xe *  Mass U((E=0,T=300K) AH n-1 ->n  References

[Da] [cm?/V .s] [eV]
Xe* 131.293 0.55 - Helm, Viehland-Mason
Xe, " 262.586 0.61 1.05 (5 %) NIST, Helm 1976
Xe 393.879 0.57 0.29 (5 %) NIST, Helm 1976
Xe 525172 ? 0.26 (3 %) NIST, Hiraoka
Xer 6560465 ? 0.11 (5 %) NIST, Hiraoka

[Kenzo Hiraoka et al. 10.1063/1.457751, M. Amarouche et al. 10.1063/1.454267]



Large Xe_ clusters

» Much larger clusters, with a typical size of 10, have
been observed.

» They are produced by “‘supersonic adiabatic expansion
through a nozzle.”

» A topic of current investigation in RD351.



» Devices much larger than the electron mean free path:
» 1f diffusion can be neglected, Runge Kutta integration;

» devices with structural elements at the micron scale:
» electron tracking at the molecular level;

» i0ns:
» cross sections for microscopic 1on tracking not available,
and anyhow not practical: A__. ~ 50 nm;
gas-ion

» Monte Carlo based on measured diffusion and mobility;
» chemistry remains to be implemented.



Single avalanche %

» Diffusion diminishes
on passing the mesh.

» Circles indicate
» excitation,
» jonisation and
» attachment.
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double-periodic structure
ESTGHAL

sel p g (3}

window 0 0.000005

area -0.0100 -0.0100 0 0.0100 0.0100 0.0200 view -3*x-E*y+z=0 rot 180 34
int-par mc-coll 10

Call plot drift _area

Global delay = 0O

Call microscopic_awalanche (0, 0O, 0.0190,
"plot-electron, signal, sbort-100, mark-excitation, mark-ionisation, mark-attachment,
1oad, 1,
0, 0, 0, edist, rates, n_e, n_i, delay)

Call plot_drift line

Call plot_end



Flux vs microscopic ?

» A diffusion-free flux

argument does not
reproduce the data ...

» but the microscopic
approach works.

Field calculations: finite elements.

Transparency
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Summary of uncertainties

P Ionisation:

» PAI: factor of 10 at shell edges of the photo-absorption cross section.
P Material properties:

» dielectric constants known to a few percent (manufacturer);

» conductivity known to an order of magnitude, not pure resistors;

» properties depend strongly on humidity, temperature, surface treatment ...
P Fields:

» finite elements: larger for E than V, poor near charges, error-prone;

» boundary elements: depends on discretisation;

» general resistive layers remain to be implemented.
P Electron transport:

» electron velocity: better than 1 % for reasonable settings;

» electron diffusion: worse;

» avalanche gain: orders of magnitude in Penning mixtures;

» attachment: several-body reactions.
P Ion transport:

» signal ions can be CXHy, CO,*(CO,) , Xe* , Ar,*, Ne * ...

» not all rate constants relevant for us are available.
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