Recherche de nouvelle physique à l'aide de neutrons ultra froids

Stéphanie Roccia LPSC Grenoble

Clermont-Ferrand 21 Novembre 2008

Motivations I

Nouvelle force dépendante du spin

Contraindre *"spin-dependent macroscopic forces from new particle exchange"* (JHEP Nov, 03, 2006)

B. A. Dobrescu and I. Mocioiu, JHEP 0611 (2006) 005.

Motivations II

Test de la symétrie de Lorentz

Motivations II

Test de la symétrie de Lorentz

D. Colladay and V.A. Kostelecty, Phys. Rev. Lett. D 55 (1997) 6760.

Motivations II

Test de la symétrie de Lorentz

Gravité quantique affecte potentiellement la structure de l'espace temps. Tester les symétries de l'espace temps : bonne approche de la physique à l'échelle de Planck.

2 approches phénoménologiques de la gravité quantique

		01 0 1	•
Nouvelles transformati	ions	Champ d'arrièi	e plan
Vide conventionnel Structure non Minkowskienne Cône de lumière déformé	е	Champ externe dans le vide Structure Minkowskienne c Cône de lumière convention	onventionnelle nnel
			$\sigma \cdot \mathbf{b}$
			+

Principe de la mesure

Potentiel d'interaction

$$V = \frac{\hbar}{2} \gamma_n \ \sigma \cdot \mathbf{B} + \sigma \cdot \tilde{\mathbf{b}}$$
Fréquence de précession

$$f_n = \frac{1}{2\pi} \left| \gamma_n \mathbf{B} + \frac{2}{\hbar} \tilde{\mathbf{b}} \right|$$

Modulation journalière

$$f_{\rm n}(t) = \frac{\gamma_n}{2\pi} B + \frac{1}{\pi\hbar} b_{\perp} \cos(\lambda) \sin\left(2\pi t/24h + \phi\right) + \frac{1}{\pi\hbar} b_{||} \sin(\lambda)$$

Principe de la mesure

L'appareillage nEDM de l'ILL

P.G. Harris, D.J.R. May, J.M. Pendlebury, D. Shiers, K.F. Smith, M. van der Griten, C.A. Backer, K. Green, P. Iaydjiev, S. Ivanov, P. Geltenbort. Nucl. Inst. Method. in Phys. Res. A 440 (2000) 479.

L'appareillage nEDM de l'ILL

P.G. Harris, D.J.R. May, J.M. Pendlebury, D. Shiers, K.F. Smith, M. van der Griten, C.A. Backer, K. Green, P. Iaydjiev, S. Ivanov, P. Geltenbort. Nucl. Inst. Method. in Phys. Res. A 440 (2000) 479.

L'appareillage nEDM de l'ILL

Les neutrons ultra-froids

Les neutrons ultra-froids

Production à l'ILL

Extraction des UCNs

 Proportion 10⁻⁹ du spectre maxwellien à 20 K

Densité 8 UCN / cm³

La mesure de la fréquence neutron

🛧 La méthode de Ramsey des champs oscillants alternés

Des neutrons polarisés entrent dans la chambre

16

On applique un champ radiofréquence : Une impulsion $\pi/2$

Précession libre

On applique un champ radiofréquence : Une impulsion $\pi/2$

La mesure de la fréquence neutron

La méthode de Ramsey des champs oscillants alternés

Probabilité pour que le spin soit mesuré up après le processus de Ramsey

Fréquence appliquée Nombre de neutrons: $N_{\pm}[i] = N_{\text{avg}} \left[1 \mp \alpha_{\text{avg}} \cos \left(\pi \frac{f_{\text{n}}[i] - f_{1}}{\Delta \nu} \right) \right]$ $N_{\rm avg}$ Nombre moyen de neutrons α_{avg} Visibilité moyenne $\Delta \nu$ Largeur de la frange centrale

Fréquence appliquée

Fréquence de précession du neutron

La mesure de la fréquence neutron

★ La méthode de Ramsey des champs oscillants alternés

La mesure de la fréquence mercure

	UCN	MERCURE
Spin	1/2	1/2
Vitesse	5 m.s ⁻¹	200 m.s ⁻¹
Température	2 mK	300 K
Moment magnétique	-1.9 μ _N	0.5 μ _N

	UCN	MERCURE
Spin	1/2	1/2
Vitesse	5 m.s ⁻¹	200 m.s ⁻¹
Température	2 mK	300 K
Moment magnétique	-1.9 μ _N	0.5 μ _N

UCNs VS Mercure

***** Vérification expérimentale

	Neutron	Mercure	Cesium
Polarisation	Nucléaire	Nucléaire	Electronique
Fréquence sous 1 μT	30 Hz	8 Hz	3.5 KHz
Précision	1 pT	100 fT	10 fT

23

Magnétométrie externe

Développements techniques en cours

S. Groeger, A.S. Pazgalev1, A. Weis, Appl. Phys B 80 (2005) 6.

La pré-analyse

L'analyse CL

27

(Confidence Level)

$$\begin{aligned} Q(A,\phi) &= \chi^2_{\text{null}} - \chi^2_{\text{signal}} \\ &= \frac{1}{N} \left(\sum_{i=1}^N \left(\frac{R[i]}{\Delta R[i]} \right)^2 - \sum_{i=1}^N \left(\frac{R[i] - A \sin(2\pi t[i]/24h + \phi)}{\Delta R[i]} \right)^2 \right) \\ & \mathbf{Q} \text{ est une quantité pertinente car elle inclut} \\ & \mathbf{Q} \text{ est une quantité pertinente car elle inclut} \\ & \mathbf{Q} \text{ est une quantité pertinente car elle inclut} \\ & \mathbf{Q} \text{ est une quantité pertinente car elle inclut} \\ & \mathbf{Q} \text{ est une quantité pertinente car elle inclut} \\ & \mathbf{Q} \text{ est une quantité pertinente car elle inclut} \\ & \mathbf{Q} \text{ est une quantité pertinente car elle inclut} \\ & \mathbf{Q} \text{ est une quantité pertinente car elle inclut} \\ & \mathbf{Q} \text{ est une quantité pertinente car elle inclut} \\ & \mathbf{Q} \text{ est une quantité pertinente car elle inclut} \\ & \mathbf{Q} \text{ est une quantité pertinente car elle inclut} \\ & \mathbf{Q} \text{ est une quantité pertinente car elle inclut} \\ & \mathbf{Q} \text{ est une quantité pertinente car elle inclut} \\ & \mathbf{Q} \text{ est une quantité pertinente car elle inclut} \\ & \mathbf{Q} \text{ est une quantité pertinente car elle inclut} \\ & \mathbf{Q} \text{ est une quantité pertinente car elle inclut} \\ & \mathbf{Q} \text{ est une quantité pertinente car elle inclut} \\ & \mathbf{Q} \text{ est une quantité pertinente car elle inclut} \\ & \mathbf{Q} \text{ est une quantité pertinente car elle inclut} \\ & \mathbf{Q} \text{ est une quantité pertinente car elle inclut} \\ & \mathbf{Q} \text{ est une quantité pertinente car elle inclut} \\ & \mathbf{Q} \text{ est une quantité pertinente car elle inclut} \\ & \mathbf{Q} \text{ est une quantité pertinente car elle inclut} \\ & \mathbf{Q} \text{ est une quantité pertinente car elle inclut} \\ & \mathbf{Q} \text{ est une quantité pertinente car elle inclut} \\ & \mathbf{Q} \text{ est une quantité pertinente car elle inclut} \\ & \mathbf{Q} \text{ est une quantité pertinente car elle inclut} \\ & \mathbf{Q} \text{ est une quantité pertinente car elle inclut} \\ & \mathbf{Q} \text{ est une quantité pertinente car elle inclut} \\ & \mathbf{Q} \text{ est une quantité pertinente car elle inclut} \\ & \mathbf{Q} \text{ est une quantité pertinente car elle inclut} \\ & \mathbf{Q} \text{ est une quantité pertinente car elle inclut} \\ & \mathbf{Q} \text{ est une quantité pertinente car elle inclut} \\ & \mathbf{Q$$

L'analyse CL

★ Le résultat

L'analyse CL

30

***** Le contrôle des systématiques

	Authors, reference	System	Particle	Limit on
		used		$ b_{\perp} $ in eV
	Berglund $et \ al., [12]$	Hg & Cs	neutron inside nucleus	9×10^{-22}
			electron	2×10^{-20}
AE	Bear <i>et al.</i> , $[5]$	Xe & He	neutron inside nucleus	2×10^{-22}
I	Phillips $et \ al., [13]$	Н	proton	4×10^{-18}
	Heckel $et al.$, [6]	е	electron	7×10^{-22}
	Bennet $et al., [14]$	μ	positive muon	2×10^{-15}
			negative muon	3×10^{-15}
	This analysis	n & Hg	free neutron	6×10^{-20}

Meilleure limite existante pour le neutron libre

Complémentaire avec la limite du neutron lié dans un noyau

mais sans correction nucléaire

Complémentaire avec la limite du proton

La collaboration « nEDM »

M. Burghoff, S. Knappe-Grüneberg, T. Sander-Thoemmes, A. Schnabel, L. Trahms	Physikalisch Technische Bundesanstalt, Berlin
G. Ban, Th. Lefort, O. Naviliat-Cuncic, E. Pierre ¹ , G. Rogel ²	Laboratoire de Physique Corpusculaire, Caen
K. Bodek, St. Kistryn, A. Kozela ³ , M. Kuzniak ¹ , J. Zejma	Institute of Physics, Jagiellonian University, Cracow
N. Khomutov	Joint Institute of Nuclear Reasearch, Dubna
M. Cvijovic, P. Knowles, A.S. Pazgalev, A. Weis	Département de physique, Université de Fribourg, Fribourg
P. Fierlinger, M. Horras ¹ , F. Kuchler	Excellence Cluster Universe, Garching
N.N.	Institut Laue-Langevin, Grenoble
G. Quéméner, D. Rebreyend, S. Roccia	Laboratoire de Physique Subatomique et de Cosmologie, Grenoble
G. Bison	Biomagnetisches Zentrum, Jena
N. Severijns, N.N.	Katholieke Universiteit, Leuven
N. Du Fresne von Hohensche, G. Hampel, J.V. Kratz,	Inst. für Kernchemie, Johannes-Gutenberg-Universität, Mainz
W. Heil, Yu. Sobolev ⁴	Inst. für Physik, Johannes-Gutenberg-Universität, Mainz
I. Altarev, E. Gutsmiedl, S. Paul, R. Stoepler	Technische Universität, München
M. Daum, R. Henneck, <u>K. Kirch</u> , A. Knecht ⁵ , B. Lauss, A. Mtchedlishvili, G. Petzoldt, G. Zsigmond	Paul Scherrer Institut, Villigen

34

also at: ¹Paul Scherrer Institut, ²ILL Grenoble, ³INP Cracow, ⁴PNPI Gatchina, ⁵University of Zürich

Le résultat dans le contexte

🖈 Test de la symétrie de Lorentz

Tester "a general extension of the standard model of particle physics incorporating a consistent microscopic theory of Lorentz violation, including terms both even and odd under CPT" _Kostelecky_ (Phys. Rev. **D 60** 116020)

										1										
			Р	roton s	sensitiv	ity only	y						Neu	itron sen	sitivity o	only				
	A	Ζ	N	Ι	D_p	Q_p	D_n	Q_n			A	Ζ	N	Ι	D_p	Q_p	D_n	Q_n		
Н	1	1	0	1/2	Υ	_	_	_	**	п	1	0	1	1/2	-	-	Υ	-	**	
Ν	15	7	8	1/2	Υ	_	_	_	*	Не	3	2	1	1/2	-	-	Y	-	**	
Р	31	15	16	1/2	Υ	_	_	_		C	13	6	7	1/2	_	_	Υ	_		Pas de correction
Υ	89	39	50	1/2	Υ	_	_	_	*	Si	29	14	15	1/2	_	_	Υ	_		
Rh	103	45	58	1/2	Υ	_	_	_		Sn	115	50	65	1/2	_	_	Υ	_	*	nucléaire
Tm	169	69	100	1/2	Υ	-	-	_		Sn	117	50	67	1/2	_	_	Υ	-	*	
в	11	5	6	3/2	Υ	Υ	_	_		Sn	119	50	69	1/2	_	_	Υ	_	*	
Al	27	13	14	5/2	Υ	Υ	_	_		Yb	171	70	101	1/2	_	_	Υ	_		
Cl	37	17	20	3/2	Υ	Υ	_	_	*	Pb	207	82	125	1/2	_	_	Υ	_	*	
Κ	39	19	20	3/2	Υ	Υ	_	_	*	0	17	8	9	5/2	_	_	Υ	Υ	**	
V	51	23	28	7/2	Υ	Υ	-	-	*	S	33	16	17	3/2	-	_	Υ	Υ		
Со	59	27	32	7/2	Υ	Υ	_	_		Ca	41	20	21	7/2	_	_	Υ	Υ	**	
Ga	69	31	38	3/2	Υ	Υ	-	-		Ca	43	20	23	7/2	-	_	Υ	Υ	*	
Ga	71	31	40	3/2	Υ	Υ	_	_		Ni	61	28	33	3/2	_	_	Υ	Υ	*	
Rb	87	37	50	3/2	Υ	Υ	_	_	*	Ge	73	32	41	9/2	_	_	Υ	Υ		
In	113	49	64	9/2	Υ	Υ	_	_		Sr	87	38	49	9/2	_	_	Υ	Υ		
Sb	121	51	70	5/2	Υ	Υ	_	_		Zr	91	40	51	5/2	_	_	Υ	Υ	*	
La	139	57	82	7/2	Υ	Υ	-	_	*	Gd	155	64	91	3/2	_	_	Υ	Υ		
Pr	141	59	82	5/2	Υ	Υ	_	_	*	Gd	157	64	93	3/2	_	_	Υ	Υ		
Re	185	75	110	5/2	Υ	Υ	_	_		Er	167	68	99	7/2	_	_	Υ	Υ		
Re	187	75	112	5/2	Υ	Υ	_	_		Yb	173	70	103	5/2	_	_	Υ	Υ		
Bi	209	83	126	9/2	Υ	Υ	_	-	**	U	235	92	143	7/2	-	-	Υ	Υ		
										1										

Le résultat dans le contexte

★ Test de la symétrie de Lorentz

Tester "a general extension of the standard model of particle physics incorporating a consistent microscopic theory of Lorentz violation, including terms both even and odd under CPT" _Kostelecky_ (Phys. Rev. **D 60** 116020)

			Р	roton s	sensitiv	ity only	у						Net	tron sen	sitivity o	only				
	A	Ζ	N	Ι	D_p	Q_p	D_n	Q_n			A	Ζ	N	Ι	D_p	Q_p	D_n	Q_n		
Н	1	1	0	1/2	Υ	_	_	_	**	п	1	0	1	1/2	-	-	Υ	_	**	
Ν	15	7	8	1/2	Υ	_	_	_	*	He	3	2	1	1/2	_	_	Υ	-	**	Das de correction
Р	31	15	16	1/2	Υ	_	_	_		С	13	6	7	1/2	_	_	Υ	_		Pus de correction
Υ	89	39	50	1/2	Υ	_	_	_	*	Si	29	14	15	1/2	_	_	Υ	_		nuclóging
Rh	103	45	58	1/2	Υ	-	-	-		Sn	115	50	65	1/2	-	_	Υ	-	*	nucleaire
Tm	169	69	100	1/2	Υ	-	-	_		Sn	117	50	67	1/2	_	_	Υ	-	*	
В	11	5	6	3/2	Υ	Υ	_	_		Sn	119	50	69	1/2	_	_	Υ	_	*	
Al	27	13	14	5/2	v	v				Vb	171	70	101	1/2			v			
Cl	37	17	20	3/2	6	٬ ۱۸/	o h		اد د	cn i	ncli	Ido	d th	o no	utro	n it	colf	for	~	
Κ	39	19	20	3/2		vv		lave		301	nen	Jue	uu	ene	uur		3011	101		
V	51	23	28	7/2	1	om	nle	ten		s al	ltho	nıøł	n teo	hni	ral c	hall	eng		MOI	ild need
V Co	51 59	23 27	28 32	7/2 7/2	C	com	ple	eten	les	s, al	ltho	ugł	n teo	chnic	cal c	hall	eng	es v	woi	uld need
V Co Ga	51 59 69	23 27 31	28 32 38	7/2 7/2 3/2	t	com o b	nple e o	eten ver	ies: cor	s, al ne i	ltho to p	ougl berf	n teo orm	hnic Lore	cal c entz	hall -vio	eng lati	es v on e	wou exp	uld need eriment
V Co Ga Ga	51 59 69 71	23 27 31 31	28 32 38 40	7/2 7/2 3/2 3/2	t	com co b	nple e o	eten ver	ies: cor	s, al ne i	ltho to p	ougl perf	n teo orm	chnic Lore	cal c entz	hall -vio	eng latio	es v on e	woi exp	uld need eriment
V Co Ga Ga Rb	51 59 69 71 87	23 27 31 31 37	28 32 38 40 50	7/2 7/2 3/2 3/2 3/2	t	com co b with	nple e o n (ce	eten ver old)	ies: cor) ne	s, al ne i eutr	ltho to p ons	ougl berf 5."	n teo orm	chnic Lore	cal c entz	hall -vio	eng latio	es v on e	woi exp	uld need eriment
V Co Ga Ga Rb In	51 59 69 71 87 113	23 27 31 31 37 49	28 32 38 40 50 64	7/2 7/2 3/2 3/2 3/2 9/2	t v	com cob with	nple e o n (ce	eten ver old)	cor ne	s, al ne eutr	ltho to p ons	ougl berf s."	n teo orm	chnic Lore	cal c entz	hall -vio	eng latio	es v on e	woi exp	uld need eriment
V Co Ga Ga Rb In Sb	51 59 69 71 87 113 121	23 27 31 31 37 49 51	28 32 38 40 50 64 70	7/2 7/2 3/2 3/2 3/2 9/2 5/2	t t	com cob with Ko	nple e o n (co stel	eten ver old) leck	ies: cor) ne (y	s, al ne eutr (Ph	ltho to p ons iys.	ougl berf s." Rev	n teo orm /. D (chnic Lore 5 0 1	cal c entz 1602	hall -vio 20, 2	eng latio 199	es v on e 9)	woi exp	uld need eriment
V Co Ga Ga Rb In Sb La	51 59 69 71 87 113 121 139	23 27 31 31 37 49 51 57	28 32 38 40 50 64 70 82	7/2 7/2 3/2 3/2 3/2 9/2 5/2 7/2	כ ד ע -	com cob with _Ko	nple e o n (co stel	eten ver old) leck	ies: cor) ne (y_	s, al ne eutr (Ph	ltho to p ons iys.	ougl oerf s." Rev	n teo orm 1. D (chnic Lore 5 0 1	cal c entz 1602	hall -vio 20, 2	eng latio 199	es v on e 9)	wou exp	uld need eriment
V Co Ga Rb In Sb La Pr	51 59 69 71 87 113 121 139 141	23 27 31 31 37 49 51 57 59	28 32 38 40 50 64 70 82 82	7/2 7/2 3/2 3/2 3/2 9/2 5/2 7/2 5/2	t t v -	com cob with _Ko	nple e o n (co stel	eten ver old) leck	ies: cor) ne (y_	s, al ne eutr (Ph	ltho to p rons iys.	ough oerf s." Rev	n teo orm /. D (2013 2013 3/2	cal c entz 1602	hall -vio 20, 2	eng latio 199	es v on e 9)	wou exp	uld need eriment
V Co Ga Rb In Sb La Pr Re	51 59 69 71 87 113 121 139 141 185	23 27 31 31 37 49 51 57 59 75	28 32 38 40 50 64 70 82 82 110	7/2 7/2 3/2 3/2 9/2 5/2 5/2 5/2 5/2	ע ע ר י י י	com cob with _Ko	nple e o n (co stel	eten ver old) leck	ies: cor) ne (y_	s, al me eutr (Ph	10 p 00 p 00 s 10 s 157 167	ough oerf 5." Rev	n teo orm /. D (chnic Lore 50 1	cal c entz 1602	hall -vio 20, 2	eng latio 199	es v on e 9)	wou exp	uld need eriment
V Co Ga Rb In Sb La Pr Re Re	51 59 69 71 87 113 121 139 141 185 187	23 27 31 31 37 49 51 57 59 75 75	28 32 38 40 50 64 70 82 82 110 112	7/2 7/2 3/2 3/2 3/2 9/2 5/2 5/2 5/2 5/2	t v v v v v v	com cob with _Ko	nple oe o n (co stel	eten ver old) leck	ies: cor) ne (y_	s, al ne eutr (Ph ^{Gd Er} Yb	ltho to p rons 1ys. 157 167 173	ough oerf 5." Rev 64 68 70	n teo orm /. D (⁹³ 99 103	chnic Lore 50 1	cal c entz 1602	hall -vio 20, 2	eng latio 199	es v on e 9)	wou exp	uld need eriment

Motivations

