

Can we produce new isotopes of Sg→Cn with an uranium target? Or Np one ?

Ch. Stodel et al First Physics with the Super separator Spectrometer S³ 27-30 Mars 2017, Saclay

Isotope discovery project

Atomic Data and Nuclear Data Tables 99 (2013) 312-344							1												
Contents lists available at SciVerse ScienceDirect																			
Atomic Data and Nuclear Data Tab																			
ELSEVIER journal homepage: www.elsevier.com/locate/adt																			
	-											294							
Discovery of isotopes of elements with $Z \ge 100$	-											293	294						
M. Thoennessen National Superconducting Cyclotron Laboratory and Department of Physics and Astronomy Michigan State University Fast	-										290 <mark>2</mark> 91	292	293						
							-							.:	287	288	289 290	D	
Flerovium														285	286	287	<mark>288</mark> 289	Э	
Z = 113							-	278				282	283	284	285	286			
Copernicium				_			-	277				281	282	283	284	285			
Roentgenium	_			27	2	274			2	278	279	280	281	282					
Darmstadtium	267		269 2	270 27	1	273			1	277		279		281					
Meitnerium	266		268	27	0			274	275	276		278							
Hassium 263 264	265	266	267 2	268 <mark>26</mark>	9 270	271		273	1	275		277							
Bohrium 260 261 262	264	265	266 2	267		270	271	272	1	274									
Seaborgium 258 259 260 261 262	263	264	265 2	266 26	7	269		271											
Dubnium 256 257 258 259 260 261	262	263		26	6 267	268		270											
Rutherfordium — 253 254 255 256 257 258 259 260	261	262	263	26	5	267													
Lawrencium — 252 253 254 255 256 257 258 259	260																		

)piral**/**

Pure Appl. Chem. 2016; aop

IUPAC Technical Report

Paul J. Karolª,*, Robert C. Barber, Bradley M. Sherrill, Emanuele Vardaci and Toshimitsu Yamazaki

Discovery of the elements with atomic numbers Z = 113, 115 and 117 (IUPAC Technical Report)

We would like to point out that for the newest super heavy elements, cross-reaction experiments have achieved increasing importance. Cross-reactions were established as one of the Criteria for discovery in 1991 by the TWG [1] and their growing influence has been extensively deliberated within the previous and current JWPs. The key to this importance of cross-reaction lies in the fact that, even in the case of missing anchors, the *Z* of the super heavy can be reliably assigned as the sum of the *Z*s of the target and projectile if different combinations of projectile and target are found to produce the same states. Such combinations essentially circumvent possible misidentifications of *Z*.

The new elements identified in the claims considered here have distinct features from their assigned Z = 114 and Z = 116 neighbors [5]. The nature of the alpha energy spectra observed in the decays of nuclides with atomic numbers 113, 115, and 117 differ from their even-Z neighbors and show a wider energy spread corresponding to decay to excited states. This is further evidence that new atomic number has been produced in these studies and disfavor charged-particle emission in the evaporation process or electron capture in the decay chains. As a result a large group of super heavy nuclides are now on an island without connection to the main peninsula of known nuclei where reliable identification of Z, N becomes more and more difficult. Firmly connecting this island to the nuclear mainland should remain a priority. We encourage development of direct physical methods to determine Z. Particularly promising are the prospects for X-ray measurements and identification as was now attempted [22].

Courtesy of M. Kowal

Excitation Functions

Spiral 2

Cold (GSI) and Hot (FLNR) Fusion

Courtesy: D. Ackermann

S³: from « stable » to actinides ?

Isotope discovery project

Spiral2

Z=112 Cn isotopes

										Yu. T. Oganessian, J. Phys.G. : Nucl.	
					1+0	ر م م	ر م م	Ϋ́ς Ϋ́	₹ Y	Topical Review	_
		1			²⁸⁵ F	2901 V	297LV	292 N	²⁹³ 2 4-	(a) $3n \rightarrow V$ $4n \rightarrow W$ 7 ev. $\frac{283}{112}$ 1 ev. $\frac{282}{112}$	
	277	278	279	280	281	282	283	284	285	α_1 12 12 α_2 9.54 MeV SF α_2 110 5.1 ^{+4.7} s 222 MeV 0.21 ms	
beam	⁷⁰ Zn					⁴⁸ Ca	⁴⁸ Ca			1 ev. α_3 9.80 MeV α_3 0.13 ^{+0.14} s (SF+ α) 271 9.29 MeV α_4 106 0.01s	
target	²⁰⁸ Pb					²³⁸ U	²³⁸ U			²⁶⁷ 104 SF 3.33 h	
channel	1n					4n	3n			(c) α_1 112 α_2 112 α_3 112	
σ (pb)	1.1					0.6	2.45			110 2.05 mm 110 5.155 s 186 MeV 0.776 s 22.8 mm 185 MeV 0.21 s 5.155 s 2.2.8 mm 4 120 125 A mm 122 cm 121 cm 121 cm 279 escape 7.3 MeV 270 9.56 MeV 11.3 MeV	
ref	ZPA354 (1996)					PRC70 (2004)	PRC70 (2004)			110 14.0 mm 110 8.746 s 32.0 mm 132 MeV 32.55 s 9.80 MeV (0.99+8.81) 32.55 s 14.9 mm 275 9.80 MeV (0.99+8.81) 286 108 275 112 286 110 110 112 112 112	
										E _x =35.0 MeV 271 0.012 0.0	

110 0.458 s

196 MeV × 0.180 s SF 20.6 mm 9.57 MeV 13.6 MeV 0.458 s 20.5 mm

(<u>96.9-0.65</u>-0.14-<u>2.1</u>-0.004<u>-0.187</u>%)

Yu. T. Oganessian, J. Phys.G. : Nucl. Part. Phys. 34(2007) R165-242

Z=110 Ds isotopes

106 Sg 108 Hs

110 Ds ¹¹² Cn

							²⁷⁷ Cn+0	-			²⁸⁵ F/+20		²⁸³ Ch+a		²⁸⁹ F1+2a
	267	268	269	270	271	272	273	274	275	276	277	278	279	280	281
beam	⁵⁹ Co		⁶² Ni	⁶⁴ Ni	⁶⁴ Ni		³⁴ S								
targe	²⁰⁹ Bi t		²⁰⁸ Pb	²⁰⁷ Pb	²⁰⁸ Pb		²⁴⁴ Pu								
chanr	nel		1n	ln	ln		5n								
σ (pb)		3.3	13	15		0.4								
ref	PRC 51 (1995)		ZPA350 (1995)	EPJA10 (2001)	RPP61 (1998)		PRC54 (1996)								
						" N=162	•								

Spiral2

α decay of 273110: Shell closure at N=162 244Pu + ³⁴S= ²⁷³110 + 5n 0.4 pb

	sta sta			0+0 +0	•	1+20	2+0 7	رې ۲		ကို	3	* 2%		
			Q_{697}	570 D ¢	521D6		^{2/7} C	2694 H ²⁶³ Ds)	خخخ چ	²⁸⁵ FIH	Ċċ;	²⁸³ Ch	ć
	263	264	265	266	267	268	269	270	271	272	273	274	275	276
beam	⁵⁶ Fe	⁵⁸ Fe	⁵⁸ Fe		³⁴ S	³⁴ S ²⁵ Mg	²⁶ Mg	²⁶ Mg	²⁶ Mg					
target	²⁰⁸ Pb	²⁰⁷ Pb	²⁰⁸ Pb		238U	²³⁸ U ²⁴⁸ Cm	²⁴⁸ Cm	²⁴⁸ Cm	²⁴⁸ Cm					
channel	ln	ln	ln		5n	4n 5n	5n	4n	3n					
σ (pb)	$21^{+13}_{-8.4}$	2.8 ^{+5.1} -1.8	19 ⁺¹⁸ -11		1.8 ^{+4.2} -1.5	0.54 ^{+1.3} _0.45	6	3						
ref	PRC 79 (2009)	ZPA328 (1987)	ZPQ (1984- 1997)		PRL 75 (1995) PRC82 (2010)	PRC82 (2010) PRC79(2009)	EPJA17 (2003) PRL97(2006)	PRL97 (2006)	PRL100 (2008)					
							^	1=162						

Ch.	Stod	el, C	SAN	IL
-----	------	-------	-----	----

Spiral2

I= 2 \rightarrow 10 pµA σ= 10 pb; ε= 10% 5 atoms/day <u>S³:</u>

Excitation functions ? Checking $\sigma(3n) \approx \sigma(4n)$ Observation of ^{269..271}Hs Scarce data on ²⁶⁸Hs Influence of neutrons in beams

Référence cross-sections ?

109 Mt

Ch. Stodel, GANIL

Spiral2

Z= 106 Sg isotopes*

		- 265HS+a 265HS+a			²⁷⁰ Ds+2a ²⁷¹ Ds+2a			209HS+0	²⁷⁰ Hs+a	271HS+0	²⁸⁵ F1+40			²⁸³ Cn+3 _Q	
	258	259	260	261	262	263	264	265	266	267	268	269	270	271	
beam	⁵¹ V	⁵⁴ Cr	⁵⁴ Cr	⁵⁴ Cr	³⁰ Si	¹⁸ O ³⁰ Si	³⁰ Si	²² Ne ³⁰ Si	²² Ne			1			
target	²⁰⁹ Bi	²⁰⁷ Pb	²⁰⁷ Pb ²⁰⁸ Pb	²⁰⁸ Pb	²³⁸ U	²⁴⁹ Cf ²³⁸ U	²³⁸ U	²⁴⁸ Cm ²³⁸ U	²⁴⁸ Cm			1			
channel	2n	2n	1n 2n	1n	6n	4n 5n	4n	5n 3n	4n						
σ (pb)	38	320	22 280	500	22 ⁺⁵¹ -18	≈300 67 ⁺⁶⁷ -37	10 + ₁₀ -6	260 3.5 ^{+8.1} 2.9	80			 			
ref	ZPA359 (1997)	Z	PA322 (198:	5)	EPJA29 (2006)	PRL33 (1974) EPJA29 (2006)	EPJA29 (2006)	PRC57 (1998) EPJA29 (2006)	PRC57 (1998)			1			
	N=152	1			PR	C74, 20	006			٨	N=162	1			

<u>EPJA21 (2004) K. Morita:</u> ²⁰⁸Pb(⁶⁴Ni,n)²⁷¹Ds (15pb) Isomeric states ?

 $\alpha 5$

10

Ea /MeV

-3.7

Δt

106 Sg Hs Ds Cn

Z versus N–Z

Some isotopes have scarce data (1970's and 80's experiments) and still some questions about their structure; it looks worth to reproduce these data with higher statistics.

✓ Production via 2 channels?

✓ Study for Z even with U target to be done with ²³⁷Np target: 237 Np + 36 S → 273 Mt or other odd Z isotopes ?

✓ What about reaction mechanism ?

- \circ no full experimental excitation functions on SHE
- \odot latest data on Z=90-92 and for SHE only with one system projectile/target
- Which experiments could help theory ?
- \circ What are experimental and theoretical "precisions" ? (to estimate the cross-section)

.

Spiral**Z**

<u>Vidéo 1</u> <u>Vidéo 2</u>

VHE-SHE

Production of SHE with Z=106-108-110-

112

Spiral Z

At the crossing road for

Reaction of synthesis :

- Link hot to cold fusion
 Isospin dependent reaction mechanism studies
- X-section systematics
 Decay properties :
- K-isomers

SF decay (T_{SF} half-lives)
 Alpha decays (Qα & half-lives)
 Trans-actinide chemistry
 GS properties

 \circ Mass measurements ...

Toward the Heaviest elements

An evaluation of Opportunities & Difficulties

A very prospective evaluation: NOT a first year experiment In the framework of a full SHE study program

The island of stability today

N=184 : common to all models, strong effect observed

Z=114, 120, 126 ?

shell stabilization lowers:

the ground-state energy,

creates a fission barrier,

and thereby enables the SHN to exist.

Production cross sections Seem to indicate a shell closure $Z \ge 120$

R. Smolańczuk, Phys. Rev. C 56 (1997) 812

Journée Physiciens – 15 juin 2010 - Day one

Ch. Stodel, GANIL Yuri Oganessian. "Heaviest Nuclei". Semimareat GANIL, March 18, 2010, Caen, France

Figure 27. Alpha-decay energy versus neutron number of trans-fermium nuclei. (a) Isotopes of even-*Z* elements with *Z* 100. (b) Isotopes of odd-*Z* elements with *Z* 103. Circles denote nuclei synthesized in hot fusion reactions with light ions (22Ne, 26Mg, 36S) and in cold fusion with massive projectiles; squares correspond to the nuclei, produced in 48Ca-induced reactions. Dashed lines represent long sequences of correlated decays of the nuclei 288115 and 291116, observed in the reactions 243Am + 48Ca and 245Cm + 48Ca (see panel (a)), respectively. The solid lines are drawn through the values of $Q\alpha$ (small open circles), calculated in the MM-model [39, 144]. The closed neutron shells N = 152 and N = 162 are shown by the vertical dashed-dotted lines.