Quadrupole moments of isomeric states @S3

G. Georgiev et al. M. Hass et al.
D.L. Balabanski et al.
G. de France et al.
A.E. Stuchbery et al.
D. Yordanov et al.
Y. Hirayama et al.
T. Nilsson et al.

CSNSM, Orsay, France
The Weizmann Institute, Rehovot, Israel
ELI-NP/IFIN, Bucharest, Romania
GANIL, Caen, France
ANU, Canberra, Australia
IPN, Orsay, France
KEK, Japan
Chalmers University, Göteborg, Sweden

Nuclear quadrupole deformation in the $\mathrm{N} \sim \mathrm{Z}$ region

- Spherical shapes in the vicinity of N~50; Z~50
- Shape coexistence in the $\mathrm{Se} / \mathrm{Kr} / \mathrm{Sr}$ region

Sign of quadrupole moment - how?

- TDPAD with quadrupole interaction $W(t)=1+\sum_{k_{1}, k_{2}, q} a_{k_{1}, k_{2}}^{q} \sqrt{2 I+1} \rho_{k_{1}}^{q} F_{k_{2}} G_{k_{1}, k_{2}}^{q q}(t) \rightarrow$ the angular distribution
the perturbation factors:

$$
G_{k_{1}, k_{2}}^{q q}=\left\{\begin{array}{lll}
\sum_{n} S_{n q}^{k_{1} k_{2}} \cos \left(n \omega_{0} t\right) & \text { for } k_{1}+k_{2}=\text { even } & \text { alignment } \\
-i \sum_{n} S_{n q}^{k_{1} k_{2}} \sin \left(n \omega_{0} t\right) & \text { for } k_{1}+k_{2}=\text { odd } & \text { polarization }
\end{array}\right.
$$

With a polarized ensemble of nuclei one can obtain both the magnitude and the sign of the quadrupole moment

Tilted Foils experiments from the 80 's

In-beam TDPAD experiments

- some 12 - 18 C foils ($3-5 \mu \mathrm{~g} / \mathrm{cm}^{2}$) @ 60° wrt beam axis
- compact geometry - reaction channels
$\rightarrow \quad \sim 5-10 \%$ of the total reaction x-section

Q-TDPAD with polarized beams

E. Dafni et al. / Nuclear polarization
E. Dafni et al., NPA 443, 135 (85)

(Atomic) Spin polarization from Tilted foils

T. Tolk et al. PRL47, 487 (1981)

The polarization identified as a result of the ion-surface interactions (no bulk-effects influences)

Large circular polarization observed $\sim 50 \%$ for a specific optical transition

Transfer to nuclear polarization

Strong dependence on the atomic spin J and the number of the foils:

- higher nuclear polarization at lower J
- higher nuclear polarization at higher I
- $\mathrm{P}_{\mathrm{I}}>\mathrm{P}_{\mathrm{J}}$

Systematic studies with post-accelerated ISOL beams @ TRIAC

Y. Hirayama et al., Eur.Phys.J A48, 54 (2012)

- ${ }^{8} \mathrm{Li}\left(\mathrm{I}^{\pi}=2^{+}\right)$beam
- accelerated to few hundreds of $\mathrm{keV} / \mathrm{u}$
- thin carbon or polystyrene foils ($1-20$)
- up to 7.3 (5) \% polarization observed
- A study as a function of the number of foils, beam energy, tilt angle ...
- Considered contributions of different atomic states configuration to the nuclear polarization

$30 \mathrm{~nm} \sim 3.1 \mu \mathrm{~g} / \mathrm{cm}^{2}$
$15 \times 15 \mathrm{~mm}^{2} @ 70$ deg.

TF β-NMR setup @ REX-ISOLDE

NMR of ${ }^{8}$ Li g.s. (2 $\left.{ }^{+}\right)$
Beam energy $\rightarrow 300 \mathrm{keV} / \mathrm{u}$ 1 mylar foil ($0.5 \mu \mathrm{~m}$) - energy degrader 10 carbon foils of $4 \mu \mathrm{~g} / \mathrm{cm}^{2}$
3.6(3) \% nuclear polarization

July 2012: TF test at REX-ISOLDE

Isomeric states in the N~Z region accessible @ S3

29 March 2017, S3 workshop, Saclay, France

Q-TDPAD measurements @ S ${ }^{3}$

Requirements:

- Beam intensity -10^{3} pps or higher
- Beam purity $\sim 10 \%$ at implantation point
- Time definition - beam pulsing (???) or implantation definition?
- γ-ray detectors at specific positions

Limitations:

- Beam spot size
o $20 \times 70 \mathrm{~mm}$ foils for 15 mm diameter
- Decay in flight
o $50-100 \mathrm{~ns} / \mathrm{m}$ flight path $\rightarrow \mathrm{t}_{1 / 2} \sim 1 \mu \mathrm{~s}$ or higher?

Thank you!

