

Resonant ionization spectroscopy of ⁹⁴Ag and neutron-deficient Sn isotopes

Iain Moore (for the S³-LEB collaboration)

Department of Physics,

University of Jyväskylä, Finland

A nuclear fingerprint in the atomic levels

Selective resonant laser ionization

- ✓ Selective process
- ✓ Short lifetimes, low yields (<1 atom/s)
 </p>
- ✓ High detection efficiency
- ✓ Poor resolution (100-1000× < collinear laser spectroscopy)

The study of $N=Z^{94}Ag$

- Ground state (0+), $T_{1/2} = 29 \text{ ms}$
- Low-spin (7⁺) isomer, $T_{1/2} = 0.59(2)s$
- High-spin (21⁺) isomer, $T_{1/2} = 0.39(4)s$

Schmidt et al., Z. Phys A (1994) Commara et al., NPA (2002) Mukha et al., PRC (2004), PRL (2005), Nature (2006) Plettner et al., NPA (2004)

High-spin isomer (21+):

- β decay (highest spin)
- β-delayed proton emission
- 1-proton decay
- Unexpected 2-proton decay

The conundrum:

- Non-observation of states in ⁹²Rh *Pechenya et al., PRC (2007)*
- Contradiction from masses
- No sign of 2-proton decay
 Cerny et al., PRL (2009)
- Large-scale SM calculations do not accept large deformation picture
 Kaneko et al., PRC (2008)

1p sep energy & 1p decay 2p sep energy & 2p decay

Kankainen et al., PRL 101 (2008) 142503

In-gas-cell laser spectroscopy of Ag

1≥3/2

 $\Delta \nu$

I.P. 61106.2 cm⁻¹

4d¹⁰ 5p ²P_{3/2}

4d¹⁰ 5s ²S_{1/2}

30472.8 cm⁻¹

0 cm⁻¹

308 nm

328.07 nm

Αg

 92 Mo(14 N – 130 MeV,2pxn) $^{104-x}$ Ag 64,nat Zn(36 Ar – 125 MeV,pxn) $^{101-x}$ Ag

Count rates: ¹⁰¹Ag = 2.3 pps ⁹⁷Ag = 0.9 pps

Overall ε_{total}~2%

R. Ferrer et al., Phys. Lett. B 728 (2014) 191

Results from the Ag data analysis

- Magnetic moments are a sensitive probe of configurations
- Tentative spin assignment of ^{97,99}Ag to
 9/2 approaching Schmidt value

R. Eder et al., PRC 31 (1985) 190 V. V. Golovko et al., PRC 81 (2010) 054323

- Mean charge radii show parabolic trend similar to isotopic chains of Cd, In and Sn
- In-gas cell results show trend towards spherical nuclear shape as predicted by droplet model

R. Ferrer et al., Phys. Lett. B **728** (2014) 191

U. Dinger et al. NPA, 503 (1989) 331W. Fischer et al. Z. Phys. A, 274 (1975) 79

The study of Sn isotopes

Darek, Lucia (100Sn region)

- Ideal laboratory for testing validity of shell model calculations
- Improving understanding of p-n interaction and related pairing effects (large spatial overlap between single-particle wavefunctions)
- Study evolution of Z=50 proton shell across a full neutron shell
- Study of beta decay/beta decay strengths (eg, "superallowed" GT decay in ¹⁰⁰Sn (Nature 2012)
- General astrophysical interest (rp process, X-ray burst light curves....)
- In-beam γ-ray, α-decay, lifetime measurements
 & Coulomb excitation
- Suggestion of enhanced B(E2) values as ¹⁰⁰Sn approached (strong correlation with deformation)

T. Bäck et al., Phys. Rev. C 87 (2013) 031306

Mean-square charge radii (Ag to Sn)

- Persistent and regular trends throughout the major shell (32 neutrons)
- Quadrupole contribution, proportional to product of particles and holes, with constant odd-even staggering, added to linearly increasing <r²>
- Late d-shell systems are refractory, studies at exotic shell closures requires experimental sensitivity and selectivity beyond collinear laser spectroscopy

P. Campbell, IM, and M. Pearson PPNP 86 (2016) 127

A first attempt at spectroscopy of Sn

Scheme b)
A. Nadeem et al., J. Phys. B 33 (2000) 3729.

 92 Mo(16 O 100 MeV,2-3n) 105,106 Sn σ=3.7 mb for 106 Sn; ε_{total} ~**0.5**%

R. Ferrer et al., NIMB 317 (2013) 570

REGLIS³ @ SPIRAL²

Process	Efficiency (%)		
Transmission through S ³	50		
Thermalisation, diffusion and gas cell transport	50		
Neutralisation	50		
In-gas jet laser ionization	50		
Transport efficiency	80		
Overall performance	5 ("realistic" estimate)		

R. Ferrer et al., NIMB 317 (2013) 570

In the following, please note:

- decay losses assumed to be negligible (optimization of gas cell in particular cases)
- Significant neutralization should be possible (due to in-flight cocktail)
- Additional neutralization to be studied (eg. beta source in gas cell, could be done at MARA)
- Conservative selectivity of 1000 (LoI assumes 10000, ²¹⁵Ac Nature Comm. paper projects >3000)

94 Ag & 105 Sn - expected rates (LoI uPdated)

EDELTY OF DAY S CAM S

- 58Ni(40Ca 4.78 MeV/nucl, p3n)94Ag
- Assume >1 p μ A of 40 Ca $^{14+}$ (factor of 10 < LoI), 500 μ g/cm 2 enriched 58 Ni foil
- Estimated cross section (experimental & GSI HIVAP code)

Nucleus	Estimated σ	Half-life (ms)	Production (at/μC)	S3 image 4 focal plane (pps)	Detected ions (pps) after transport
⁹⁴ Ag (J ^π =21 ⁺)	71 nb	590	0.009	0.6	0.06 (need A/Q = 7)
⁹⁴ Ag (J ^π =7 ⁺)	579 nb	390	0.072	5	0.5
⁹⁴ Pd	400 μb		460	3.2×10^4	26
⁹⁴ Rh	4 mb		4600	3.2×10^5	256
⁹⁴ Ru	40 mb		46000	3.2×10^{6}	2560

• High intensity(>1 p μ A) of ⁵⁸Ni¹⁸⁺between 3.6 and 4.34 MeV/u on 500 μ g/cm² enriched foils of ⁴⁸Ti and ⁵⁰Ti

Nucleus	Estimated σ (mb)	Half-life (s)	Production (at/μC)	S3 image 4 focal plane (pps)	Detected ions (pps) after transport
¹⁰¹ Sn	~10 nb*	1.7		0.2	0.02 (need A/Q = 7)
¹⁰⁵ Sn	1.16	34	1.21×10 ²	1.09×10^3	100
¹⁰⁵ In	34		3.57×10 ⁴	3.21×10 ⁵	250
¹⁰⁵ Cd	100		1.04×10 ⁵	9.40×10^{5}	750

^{*}La Commara et al., NPA 669 (2000) 43, 58 Ni(50 Cr, α 3n) 101 Sn

Summary

- The Low Energy Branch at S³ will provide a unique opportunity for the study of neutron deficient Sn isotopes and to solve the conudrum of the unique case of ⁹⁴Ag
- In-gas cell and in-gas jet spectroscopy with provide access to fundamental nuclear structure properties: I, μ , Q_s and $\delta < r^2 >$
- Isomerically enriched low-energy beams (eg of ⁹⁴Ag) may be sent to a decay spectroscopy station for further studies, or to the MR-TOF, Pilgrim, (several MeV between 7⁺ and 21⁺ isomeric states) for mass measurement
- High-resolution RIS for actinides (talk by R. Ferrer)
- 80Zr and related isotopes of interest. Needs gas cell facilities due to refractory nature (study of shape coexistence, shape changes)

REGLIS @ S3

Participants for ⁹⁴Ag and Sn (LoIs)

The LISOL group at IKS KU Leuven GANIL IPN Orsay **JYFL** RIKEN