Resonant ionization spectroscopy of ⁹⁴Ag and neutron-deficient Sn isotopes Iain Moore (for the S³-LEB collaboration) Department of Physics, University of Jyväskylä, Finland # A nuclear fingerprint in the atomic levels #### Selective resonant laser ionization - ✓ Selective process - ✓ Short lifetimes, low yields (<1 atom/s) </p> - ✓ High detection efficiency - ✓ Poor resolution (100-1000× < collinear laser spectroscopy) ## The study of $N=Z^{94}Ag$ - Ground state (0+), $T_{1/2} = 29 \text{ ms}$ - Low-spin (7⁺) isomer, $T_{1/2} = 0.59(2)s$ - High-spin (21⁺) isomer, $T_{1/2} = 0.39(4)s$ Schmidt et al., Z. Phys A (1994) Commara et al., NPA (2002) Mukha et al., PRC (2004), PRL (2005), Nature (2006) Plettner et al., NPA (2004) #### High-spin isomer (21+): - β decay (highest spin) - β-delayed proton emission - 1-proton decay - Unexpected 2-proton decay #### The conundrum: - Non-observation of states in ⁹²Rh *Pechenya et al., PRC (2007)* - Contradiction from masses - No sign of 2-proton decay Cerny et al., PRL (2009) - Large-scale SM calculations do not accept large deformation picture Kaneko et al., PRC (2008) 1p sep energy & 1p decay 2p sep energy & 2p decay Kankainen et al., PRL 101 (2008) 142503 # In-gas-cell laser spectroscopy of Ag 1≥3/2 $\Delta \nu$ I.P. 61106.2 cm⁻¹ 4d¹⁰ 5p ²P_{3/2} 4d¹⁰ 5s ²S_{1/2} 30472.8 cm⁻¹ 0 cm⁻¹ 308 nm 328.07 nm Αg 92 Mo(14 N – 130 MeV,2pxn) $^{104-x}$ Ag 64,nat Zn(36 Ar – 125 MeV,pxn) $^{101-x}$ Ag Count rates: ¹⁰¹Ag = 2.3 pps ⁹⁷Ag = 0.9 pps Overall ε_{total}~2% R. Ferrer et al., Phys. Lett. B 728 (2014) 191 ## Results from the Ag data analysis - Magnetic moments are a sensitive probe of configurations - Tentative spin assignment of ^{97,99}Ag to 9/2 approaching Schmidt value R. Eder et al., PRC 31 (1985) 190 V. V. Golovko et al., PRC 81 (2010) 054323 - Mean charge radii show parabolic trend similar to isotopic chains of Cd, In and Sn - In-gas cell results show trend towards spherical nuclear shape as predicted by droplet model R. Ferrer et al., Phys. Lett. B **728** (2014) 191 U. Dinger et al. NPA, 503 (1989) 331W. Fischer et al. Z. Phys. A, 274 (1975) 79 ## The study of Sn isotopes #### Darek, Lucia (100Sn region) - Ideal laboratory for testing validity of shell model calculations - Improving understanding of p-n interaction and related pairing effects (large spatial overlap between single-particle wavefunctions) - Study evolution of Z=50 proton shell across a full neutron shell - Study of beta decay/beta decay strengths (eg, "superallowed" GT decay in ¹⁰⁰Sn (Nature 2012) - General astrophysical interest (rp process, X-ray burst light curves....) - In-beam γ-ray, α-decay, lifetime measurements & Coulomb excitation - Suggestion of enhanced B(E2) values as ¹⁰⁰Sn approached (strong correlation with deformation) T. Bäck et al., Phys. Rev. C 87 (2013) 031306 # Mean-square charge radii (Ag to Sn) - Persistent and regular trends throughout the major shell (32 neutrons) - Quadrupole contribution, proportional to product of particles and holes, with constant odd-even staggering, added to linearly increasing <r²> - Late d-shell systems are refractory, studies at exotic shell closures requires experimental sensitivity and selectivity beyond collinear laser spectroscopy P. Campbell, IM, and M. Pearson PPNP 86 (2016) 127 ## A first attempt at spectroscopy of Sn Scheme b) A. Nadeem et al., J. Phys. B 33 (2000) 3729. 92 Mo(16 O 100 MeV,2-3n) 105,106 Sn σ=3.7 mb for 106 Sn; ε_{total} ~**0.5**% R. Ferrer et al., NIMB 317 (2013) 570 ## REGLIS³ @ SPIRAL² | Process | Efficiency (%) | | | |--|--------------------------|--|--| | Transmission through S ³ | 50 | | | | Thermalisation, diffusion and gas cell transport | 50 | | | | Neutralisation | 50 | | | | In-gas jet laser ionization | 50 | | | | Transport efficiency | 80 | | | | Overall performance | 5 ("realistic" estimate) | | | R. Ferrer et al., NIMB 317 (2013) 570 #### In the following, please note: - decay losses assumed to be negligible (optimization of gas cell in particular cases) - Significant neutralization should be possible (due to in-flight cocktail) - Additional neutralization to be studied (eg. beta source in gas cell, could be done at MARA) - Conservative selectivity of 1000 (LoI assumes 10000, ²¹⁵Ac Nature Comm. paper projects >3000) # 94 Ag & 105 Sn - expected rates (LoI uPdated) EDELTY OF DAY S CAM S - 58Ni(40Ca 4.78 MeV/nucl, p3n)94Ag - Assume >1 p μ A of 40 Ca $^{14+}$ (factor of 10 < LoI), 500 μ g/cm 2 enriched 58 Ni foil - Estimated cross section (experimental & GSI HIVAP code) | Nucleus | Estimated σ | Half-life
(ms) | Production
(at/μC) | S3 image 4 focal plane (pps) | Detected ions (pps) after transport | |---|-------------|-------------------|-----------------------|------------------------------|-------------------------------------| | ⁹⁴ Ag (J ^π =21 ⁺) | 71 nb | 590 | 0.009 | 0.6 | 0.06 (need A/Q = 7) | | ⁹⁴ Ag (J ^π =7 ⁺) | 579 nb | 390 | 0.072 | 5 | 0.5 | | ⁹⁴ Pd | 400 μb | | 460 | 3.2×10^4 | 26 | | ⁹⁴ Rh | 4 mb | | 4600 | 3.2×10^5 | 256 | | ⁹⁴ Ru | 40 mb | | 46000 | 3.2×10^{6} | 2560 | • High intensity(>1 p μ A) of ⁵⁸Ni¹⁸⁺between 3.6 and 4.34 MeV/u on 500 μ g/cm² enriched foils of ⁴⁸Ti and ⁵⁰Ti | Nucleus | Estimated σ
(mb) | Half-life (s) | Production
(at/μC) | S3 image 4 focal plane (pps) | Detected ions (pps)
after transport | |-------------------|---------------------|---------------|-----------------------|------------------------------|--| | ¹⁰¹ Sn | ~10 nb* | 1.7 | | 0.2 | 0.02 (need A/Q = 7) | | ¹⁰⁵ Sn | 1.16 | 34 | 1.21×10 ² | 1.09×10^3 | 100 | | ¹⁰⁵ In | 34 | | 3.57×10 ⁴ | 3.21×10 ⁵ | 250 | | ¹⁰⁵ Cd | 100 | | 1.04×10 ⁵ | 9.40×10^{5} | 750 | ^{*}La Commara et al., NPA 669 (2000) 43, 58 Ni(50 Cr, α 3n) 101 Sn ## Summary - The Low Energy Branch at S³ will provide a unique opportunity for the study of neutron deficient Sn isotopes and to solve the conudrum of the unique case of ⁹⁴Ag - In-gas cell and in-gas jet spectroscopy with provide access to fundamental nuclear structure properties: I, μ , Q_s and $\delta < r^2 >$ - Isomerically enriched low-energy beams (eg of ⁹⁴Ag) may be sent to a decay spectroscopy station for further studies, or to the MR-TOF, Pilgrim, (several MeV between 7⁺ and 21⁺ isomeric states) for mass measurement - High-resolution RIS for actinides (talk by R. Ferrer) - 80Zr and related isotopes of interest. Needs gas cell facilities due to refractory nature (study of shape coexistence, shape changes) ### REGLIS @ S3 ## Participants for ⁹⁴Ag and Sn (LoIs) The LISOL group at IKS KU Leuven GANIL IPN Orsay **JYFL** RIKEN