

### Tumulus @ LAPP

#### Maximilien Chefdeville, Corinne Goy & Yannis Karyotakis + Sabine Elles

### Status of the software and perspectives Some acceptance studies

### Reminder

- Geant4 based software
- Located :
  - https://lapp-svn.in2p3.fr/subversion/groups/lc/Tumulus

### Status of the software

- Versatile setup where the geometry can be parametrized
  - Tumulus
    - Dimensions
    - Material (density)
  - Monument
    - Dimensions
    - Position
    - Material
  - Detector
    - Dimensions
    - Position / Orientation
    - Nb of chambers/detectors

### Too versatile ! -> MetaData ntuple

#### X TreeViewer

\_ 0 %

| <u>F</u> ile <u>E</u> dit <u>R</u> un <u>O</u> ptions |                         |                        |                     |                                  |                  | Help  |  |  |
|-------------------------------------------------------|-------------------------|------------------------|---------------------|----------------------------------|------------------|-------|--|--|
| Command Opti                                          | ion 🛛                   | Histogram              | htemp               | 🗌 Hist                           | 🔲 Scan           | 🔽 Rec |  |  |
| Current Folder                                        | Current Tree : MetaData |                        |                     |                                  |                  |       |  |  |
| 🔄 TreeList                                            | X:-empty-               |                        | 🔖 DetRotation       |                                  |                  |       |  |  |
| 😟 🥂 MetaData                                          | Y:-empty-               | 🤖 Mat                  | 🔖 DetNbChamber      |                                  |                  |       |  |  |
|                                                       | Z:-empty-               | 🤖 Den                  | DetThickness        |                                  |                  |       |  |  |
|                                                       | °k −empty-              | 🔖 InnerMat             | 🔖 DetPos            |                                  |                  |       |  |  |
|                                                       | 😚 Scan box              | 🔖 Inner Den            |                     |                                  |                  |       |  |  |
|                                                       | E()-empty-              | 🔖 TumMat               |                     |                                  |                  |       |  |  |
|                                                       | E()-empty-              | TumDen                 | The <b>setun</b> is | The <b>catup</b> is identified b |                  | v tho |  |  |
|                                                       | E()-empty-              | 💸 TumHeight            | TumHeight           | iuciiti                          | dentified by the |       |  |  |
|                                                       | E()-empty-              | 🔖 TumMaxRad run number |                     |                                  |                  |       |  |  |
|                                                       | E()-empty-              | 🔖 TumMinRad            |                     |                                  |                  |       |  |  |
|                                                       | E()-empty-              | E()-empty- 🦥 MonSize   |                     |                                  |                  |       |  |  |
|                                                       | E()-empty-              | MonPos                 |                     |                                  |                  |       |  |  |
|                                                       | E()-empty-              | 🔖 MonThick             |                     |                                  |                  |       |  |  |
|                                                       | E()-empty-              | 🔖 DetHoleSize          |                     |                                  |                  |       |  |  |
|                                                       | E()-empty-              | 🔖 DetHolePos           |                     |                                  |                  |       |  |  |
|                                                       |                         |                        |                     |                                  |                  |       |  |  |
| :   : 💹 SPIDER 💷 🃀                                    |                         |                        | 0%                  |                                  |                  |       |  |  |
| IList OList Fi                                        | irst entry : 0 L        | ast entry : O          |                     | н                                |                  | RESET |  |  |

### Other (rather) recent additions

- Sensitive detector was added
  - Allows to perform a "digitization" with PadSize 1cm
  - (to add noise, attenuation etc)
- PrimaryGeneratorAction
  - Several option available from data cards
    - Monokinetic pointing to the detector
    - A la "Yannis"
    - A la "Corinne"
    - Interface to CRY generator
    - Acceptance (see later)

### A la "Yannis"



### A la "Corinne"



- Generate the direction randomly on the surface of the detector in limited θ and φ range.
- Range can be limited to the monument, to the tumulus etc ...
- Extrapolate back on the other side of the tumulus and change direction.
- Energy is randomly taken from a (θ, E) distribution generated by CRY
   <sup>C</sup>



### Maximum range in $\theta$ and $\phi$

Ratio of the number of tracks reaching the detector hole to the number of generated tracks





Corínne Goy - LAPP







| X TreeViewer                          | 1 × 5 0 0 0             |                 |                       |                            |
|---------------------------------------|-------------------------|-----------------|-----------------------|----------------------------|
| <u>File Edit R</u> un <u>O</u> ptions |                         |                 |                       | Help                       |
| Command                               | Option                  | Histogram htemp |                       | 🗖 Hist 🗖 Scan 🔽 Rec        |
| - <sup>or</sup> Current Folder        | Current Tree : Tumul    | us              |                       |                            |
| 🔄 TreeList                            | X:-empty-               | 騻 Run           | 🔖 TruTumL             | 💸 throw_tomb               |
| 🖻 🖗 Tumulus                           | Y:-empty-               | 🗽 Event         | 🗽 TruInnerL           | 🗽 final_charge             |
|                                       | Z:-empty-               | 🗽 GenE          | 🗽 TruTumFlag          | <pre>% final_pos</pre>     |
|                                       | & -empty-               | 🍢 GenDir        | 🌇 TruMonFlag          | 🔖 final_chamber_number     |
|                                       | 🌱 Scan box              | 🍢 GenPos        | 🗽 HitNb               | 🔖 final_momentum           |
|                                       | > E()-empty-            | 🍢 GenWei        | 🔖 HitDet              | 🔖 final_momentum_direction |
|                                       | E()-empty-              | 🧞 GenCryEvnum   | 🗽 HitPos              | 🔖 final_kinetic_energy     |
|                                       | E()-empty-              | 🍢 GenTime       | 🔖 HitEdep             | 🔖 final_total_energy       |
|                                       | E()-empty-              | 🔖 TruMeanPos    | 🔖 HitPad              | 🔖 final_pdg_code           |
|                                       | E()-empty-              | 🍢 TruDx         | 🔖 initial_pos         |                            |
|                                       | > E()-empty-            | 🔖 TruFinalE     | 🔖 initial_momentum    |                            |
|                                       | E()-empty-              | 🔖 TruFinalPos   | 🔖 initial_momentum_di | irection                   |
|                                       | E()-empty-              | 🔖 TruFinalDir   | 🔖 initial_energy      |                            |
|                                       | E()-empty-              | 🧞 TruMarbleL    | 🔖 nb_hit              |                            |
|                                       | E()-empty-              | 🔖 TruDirtL      | 🔖 CryEventNumber      |                            |
| SPIDER 👰 📀                            |                         |                 | 02                    |                            |
| IList OList                           | First entry : 0 Last en | try : 99999     |                       | RESET                      |

#### Response of the detectors

### **Further developments**

- Several detectors
- Used the true geometry for the tumulus
  - Seems possible to interface it with Geant4

### **Geometrical acceptance studies**

Essentially based on the paper below published in 1971

NUCLEAR INSTRUMENTS AND METHODS 95 (1971) 5-11; © NORTH-HOLLAND PUBLISHING CO.

#### GEOMETRICAL FACTOR AND DIRECTIONAL RESPONSE OF SINGLE AND MULTI-ELEMENT PARTICLE TELESCOPES\*

J. D. SULLIVAN<sup>†</sup>

Enrico Fermi Institute and Dept. of Physics, The University of Chicago, Chicago, Illinois 60637, U.S.A.

### Counting rate through a surface

$$C(\mathbf{x}, t_0) = (1/T) \int_{t_0}^{t_0 + T} dt \int_{S} d\boldsymbol{\sigma} \cdot \hat{\boldsymbol{r}} \int_{\Omega} d\omega \int_{0}^{\infty} dE \times \sum_{\alpha} \varepsilon_{\alpha}(E, \boldsymbol{\sigma}, \omega, t) J_{\alpha}(E, \omega, \mathbf{x}, t), \quad (1)$$



Fig. 1. A telescope with a single plane detector viewing one

Main simplification :

- E dependence can be decoupled from θ
- Flux Isotropic in Phi

 $>> J(E,\omega,x,t) = JO(E)*F(\theta)$ 

Detector efficiency == 1
 (and does not depend on E, time position, particle type)

$$C(\mathbf{x}, t_0) = (1/T) \int_{t_0}^{t_0 + T} dt \int_{S} d\boldsymbol{\sigma} \cdot \hat{\boldsymbol{r}} \int_{\Omega} d\omega \int_{0}^{\infty} dE \times \sum_{\alpha} \varepsilon_{\alpha}(E, \boldsymbol{\sigma}, \omega, t) J_{\alpha}(E, \omega, \mathbf{x}, t), \quad (1)$$



#### Examples : Geometrical factor of an horizontal surface

 $F(\theta) = 1$ ; Isotropic Typically cosmic rays in space.

 $\mathsf{F}(\theta) = \cos^2(\theta)$ 

Cosmic muons on earth



$$G = \int de \cdot \int \int d \cdot bm \partial \partial \partial \partial \phi dr \cdot n$$
  

$$= S \left[ \varphi \right]_{0}^{2\pi} \left[ \pm \frac{1}{2} \cos^{2} \theta \right]_{1/2}^{1/2}$$
  

$$= TIS$$

$$G = S \iint \cos^{2} \Theta \operatorname{sm} \Theta \cos \Theta d\Theta d\Theta$$
$$= S \left[ \Theta \right]_{0}^{2T} \left[ + \frac{1}{4} \cos^{4} \Theta \right]_{\frac{TT}{2}}^{TT}$$
$$= \frac{TTS}{2}$$

# We don't have just a surface but a detector



Fig. 3. An ideal cylindrically symmetric telescope with two rectangular detectors.

Calculated in the case of Isotropic flux shape !

2. Rectangular symmetry: For a telescope with rectangular detectors with sides  $(a_1, b_1)$  and (a and where  $a_1$  and  $b_1$  are parallel to  $a_2$  and  $b_2$  re tively (cf. fig. 3), the geometrical factor is still obta by integrating eq. (5). Whence

$$G = l^{2} \ln \frac{l^{2} + \alpha^{2} + \delta^{2}}{l^{2} + \alpha^{2} + \beta^{2}} \frac{l^{2} + \gamma^{2} + \beta^{2}}{l^{2} + \gamma^{2} + \delta^{2}} + + 2\alpha (l^{2} + \beta^{2})^{\frac{1}{2}} \tan^{-1} \frac{\alpha}{(l^{2} + \alpha^{2})^{\frac{1}{2}}} + + 2\beta (l^{2} + \alpha^{2})^{\frac{1}{2}} \tan^{-1} \frac{\beta}{(l^{2} + \beta^{2})^{\frac{1}{2}}} - - 2\alpha (l^{2} + \delta^{2})^{\frac{1}{2}} \tan^{-1} \frac{\alpha}{(l^{2} + \delta^{2})^{\frac{1}{2}}} - - 2\beta (l^{2} + \gamma^{2})^{\frac{1}{2}} \tan^{-1} \frac{\beta}{(l^{2} + \gamma^{2})^{\frac{1}{2}}} - - 2\beta (l^{2} + \beta^{2})^{\frac{1}{2}} \tan^{-1} \frac{\gamma}{(l^{2} + \beta^{2})^{\frac{1}{2}}} - - 2\delta (l^{2} + \alpha^{2})^{\frac{1}{2}} \tan^{-1} \frac{\delta}{(l^{2} + \alpha^{2})^{\frac{1}{2}}} + + 2\gamma (l^{2} + \delta^{2})^{\frac{1}{2}} \tan^{-1} \frac{\gamma}{(l^{2} + \delta^{2})^{\frac{1}{2}}} + + 2\delta (l^{2} + \gamma^{2})^{\frac{1}{2}} \tan^{-1} \frac{\delta}{(l^{2} + \gamma^{2})^{\frac{1}{2}}},$$

### Cross-checks (1)

- Use our simulation (forget about tumulus)
  - Last option of PrimaryGeneratorAction
- Generate Isotropic particles  $(F(\theta) = 1)$  on a vertical surface S.



#### G = 0.108 m^2.sr



 Sullivan formula with

25/07/2016

### Some cross-checks (2)

# Design and operation of a field telescope for cosmic ray geophysical tomography

N. Lesparre<sup>1,\*</sup>, J. Marteau<sup>2</sup>, Y. Déclais<sup>2</sup>, D. Gibert<sup>1</sup>, B. Carlus<sup>2</sup>, F. Nicollin<sup>3</sup>, and B. Kergosien<sup>3</sup>



#### **Useful case:** $F(\theta) = \cos^2(\theta)$ Generation on a vertical plane





G = Nrec/Ngen \* Agen (=  $\pi$  S /8 m<sup>2</sup>.sr)

#### $G = 0.00096 \text{ m}^2.\text{sr}$

Number of muons per hour from CRY in the acceptance

• Flux = 92 muons/m2.s

-317 muons/ hour (Efficiency = 1)

• > 1 GeV : Flux = 73 muons/m2.s

- 252 muons / hour

- > 60 GeV : Flux = 0.7 muons/m2.s
  - 2.7 muons / hour in the acceptance of the detector

### Check that CRY flux is generated as $\cos^2(\theta)$

Generation on horizontal plane so :



### Theta distribution of the CRY particle



26

# Inclined detector (to be checked)



ل ۲۰

Gain with respect to the horizontal position

### Conclusion

- The simulation program was consolidated:
  - Improve the "digitization" step with customable granularity.
  - Interface with other cosmic generators
  - Interface with "real" geometry
- The geometrical acceptance is understood and computable.
  - Optimization of inclination, length of the detector depending of the position ...

## Geometrical factor of a surface



 $F(\theta) = 1$ Isotropic flux - typically cosmic rays in space

 $F(\theta) = \cos^2(\theta)$ Cosmic muon on earth

### PrimaryGeneratorAction

```
// Option 4 - generation according to cos^2 for acceptance only
fGenCos2th = new TF1("fGenCos2th", "cos(x)*cos(x)*sin(x)*sin(x)", acos(-1.)/2., acos(-1.));
fGenCos2ph = new TF1("fGenCos2ph", "cos(x)", -acos(-1)/2., acos(-1.)/2);
```

```
G4double th = fGenCos2th->GetRandom(acos(-1.)/2.,acos(-1.))
G4double ph = fGenCos2ph->GetRandom();
```

```
dir[0] = sin(th)*cos(ph);
dir[1] = sin(th)*sin(ph);
dir[2] = cos(th);
```