Deformations of Q -systems, character formulas and the completeness problem

Rinat Kedem

University of Illinois

Cargèse summer school Exact methods in low dimensional statistical physics 2017

Outline

(1) Counting graded dimensions of Heisenberg spin chains
(2) The Q-system and its q-deformation
(3) Discrete quantum integrability and exchange relations
4. Generalized Macdonald operators and quantum toroidal algebras

The Hilbert space of the $X X X$ model

The algebra is $Y\left(\mathfrak{s l}_{2}\right), V\left(\zeta_{i}\right) \simeq \mathbb{C}^{2}$ are representations of the Yangina and the Hilbert space is

$$
\mathcal{H}_{M} \simeq V^{\otimes M} \simeq \underset{\lambda}{\oplus} \mathcal{H}_{\lambda} \otimes V(\lambda) ; \quad V(\lambda)=\text { irreducible } \mathfrak{s l}_{2}-\bmod
$$

with dimension $\mathcal{H}_{M}=2^{M}$.

Generalized inhomogeneous Heisenberg spin chain

The representations $V_{i}\left(\zeta_{i}\right)$ are arbitrary representations of $Y\left(\mathfrak{s l}_{2}\right)$, and the Hilbert space

$$
\mathcal{H}_{\mathbf{n}} \simeq V_{1} \otimes \cdots \otimes V_{M}=\underset{k \geq 1}{\otimes} V\left(k \omega_{1}\right)^{\otimes n_{k}} \simeq \underset{\lambda}{\oplus} \mathcal{H}_{\lambda, \mathbf{n}} \otimes V(\lambda)
$$

where $V\left(k \omega_{1}\right) \simeq \mathbb{C}^{k+1}$ in the tensor product.

$$
\operatorname{dim} \mathcal{H}_{\mathbf{n}}=\operatorname{dim} \prod_{i=1}^{k} V\left(i \omega_{1}\right)^{\otimes n_{i}}=\prod_{i=1}^{k}(i+1)^{n_{i}}
$$

Completeness problem

- The hamiltonian conserves spin: it acts on the multiplicity space

$$
\mathcal{H}_{\lambda, \mathbf{n}}:=\operatorname{Hom}_{\mathfrak{s l}_{2}}\left(\mathcal{H}_{\mathbf{n}}, V(\lambda)\right) .
$$

- Spectrum of the hamiltonian in the subspaces is parameterized by solutions to the Bethe ansatz equations.
- The "completeness conjecture" is that the dimension of $\mathcal{H}_{\lambda, \mathbf{n}}$ is bijection with the combinatorial data associated with the BAE.

Combinatorial content of BAE for $\mathfrak{s l}_{2}$

- Fix a partition μ of $S=\frac{1}{2}\left(\sum_{i} i_{i}-\ell\right)$, and the integers m_{i} are defined by

$$
\mu=\left(1^{m_{1}}, 2^{m_{2}}, \cdots\right)
$$

We have

$$
\mathcal{H}_{\lambda, \mathbf{n}}=\underset{\mu}{\oplus} \mathcal{H}_{\lambda, \mathbf{n}}(\mu)
$$

- The basis of $\mathcal{H}_{\lambda, \mathbf{n}}(\mu)$ is parameterized by "riggings" of μ : m_{i} Distinct integers $l_{j}^{(i)} \in\left[1, p_{i}+m_{i}\right]$ for each row of length i. (Distinct partitions of length m_{i} and width at most $p_{i}+m_{i}$.)
- Grading: We weigh each rigging with a weight q^{d} where d is proportional to the sum of the integers.

Counting bosons vs. fermions

A bosonic Fock space has a basis parameterized by partitions:

$$
a_{-\lambda_{1}} a_{-\lambda_{2}} \cdots a_{-\lambda_{m}}|0\rangle
$$

with $\lambda_{i} \geq \lambda_{i+1}$.
Define the set of partitions $P(p \mid m)$ to be all sets of the form

$$
\lambda=\left(p \geq \lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{m} \geq 0\right)
$$

Then

$$
\sum_{\lambda \in P(p \mid m)} q^{|\lambda|}=\left[\begin{array}{c}
p+m \\
m
\end{array}\right]_{q}
$$

where the Gaussian polynomial is

$$
\left[\begin{array}{c}
p+m \\
m
\end{array}\right]_{q}=\prod_{j=1}^{m} \frac{1-q^{p+j}}{1-q^{j}}
$$

Fermions

A fermionic Fock space is parameterized by distinct partitions:

$$
\psi_{-\lambda_{1}} \cdots \psi_{-\lambda_{m}}|0\rangle
$$

where $\lambda_{i}>\lambda_{i+1}$.
If $P_{d}(p+m \mid m)$ is the set of distinct partitions

$$
\lambda=\left(p+m \geq \lambda_{1}>\lambda_{2}>\cdots>\lambda_{m}>0\right)
$$

then the partition $\tilde{\lambda}=\left(\lambda_{1}-m, \lambda_{2}-m+1, \ldots, \lambda_{m}-1\right) \in P(p \mid m)$. The generating function

$$
\sum_{\lambda \in P_{d}(p+m \mid m)} q^{|\lambda|}=\sum_{\widetilde{\lambda} \in P(p \mid m)} q^{|\widetilde{\lambda}|+\frac{1}{2} m(m+1)}=\left[\begin{array}{c}
p+m \\
m
\end{array}\right]_{q} q^{\frac{1}{2} m(m+1)}
$$

Completeness of Bethe solutions

We are counting "fermions" with a difference:

- The "vacancy numbers" $\mathbf{p}=\left(p_{1}, p_{2}, \ldots\right)$ depend on \mathbf{m}, the number of "quasi-particles":

$$
\mathbf{p}=A \mathbf{n}-2 A \mathbf{m}, \quad[A]_{i, j}=\min (i, j)
$$

- If Bethe integers parameterize spectrum of $\mathcal{H}_{\lambda, \mathbf{n}}$ then

$$
\operatorname{dim} \mathcal{H}_{\lambda, \mathbf{n}}=\sum_{\substack{\mathbf{m} \\|\mathbf{m}|=\frac{1}{2}|\mathbf{n}|-\left(\lambda_{1}-\lambda_{2}\right)}}\binom{p_{i}+m_{i}}{m_{i}}
$$

- We have the refined (graded) dimension formula:

$$
Z_{\lambda, \mathbf{n}}(q)=\sum_{\mathbf{m}} q^{\mathbf{m}^{t} A \mathbf{m}}\left[\begin{array}{c}
p_{i}+m_{i} \\
m_{i}
\end{array}\right]_{q}
$$

We call the refined counting $Z_{\lambda, \mathrm{n}}$ the conformal partition function.

Physical origin of grading

- In conformal limit, the partition function Z is dominated by order $1 / M$ excitations:

Massless quasi-particles, with linearized energy function, $E\left(P_{i}\right) \simeq v\left|\left(P_{i}-P_{0}\right)\right|$.
($P=$ momentum and $v=$ Fermi velocity).

- Periodic system: Momenta P_{i} are quantized in units of $\frac{2 \pi}{N}: \Longrightarrow$ Dominant contribution to the chiral partition function is a series in $q=\exp \left(\frac{-2 \pi v}{k N T}\right)$. Conformal limit means $N \rightarrow \infty, T \rightarrow 0, N T$ fixed.
- The momenta are proportional to (shifted) Bethe integers in this limit.

Infinite size limit (motivation for the term "conformal")
In the XXX model or its higher rank generalizations to $\mathfrak{s l}_{N}$,

$$
\mathcal{H} \simeq V\left(\omega_{1}\right)^{\otimes M}
$$

Define the generating function

$$
Z_{M}(\mathbf{x} ; q)=\sum_{\lambda:|\lambda|=M} Z_{\lambda, M}(q) s_{\lambda}(\mathbf{x})
$$

where the Schur functions $s_{\lambda}(\mathbf{x})$ are the characters of the irreducible representation $V(\lambda)$ of $\mathfrak{g l}_{N}$.

- Theorem: [K 2004]

$$
\lim _{M \rightarrow \infty} Z_{(1)^{M}}\left(\mathbf{x}, q^{-1}\right) \propto \operatorname{char} L\left(\Lambda_{i}\right), \quad i=M \quad \bmod N
$$

- The module $L\left(\Lambda_{i}\right)$ is the level- 1 highest weight module of the affine algebra $\widehat{\mathfrak{s l}}_{N}$ with highest weight Λ_{i}.
- The character is a chiral partition function of the effective conformal field theory which describes the (critical) XXX model in the thermodynamic limit (WZW, $k=1$).

Higher rank generalizations

The representations $V_{i}\left(\zeta_{i}\right)$ of $Y\left(\mathfrak{s l}_{N}\right)$ are special: KR-modules $V_{i}\left(\zeta_{i}\right) \simeq V\left(\ell_{i} \omega_{\alpha_{i}}\right)$ as $\mathfrak{s l}_{N}$-modules:

$$
\ell \omega_{\alpha} \sim \alpha \downarrow
$$

$$
\mathcal{H}_{\mathbf{n}}=\bigotimes_{a=1}^{N-1} \underset{k \geq 1}{\otimes} V\left(k \omega_{a}\right)^{\otimes n_{a, k}} \simeq \underset{\lambda}{\oplus} \mathcal{H}_{\lambda, \mathbf{n}} V(\lambda)
$$

Bethe ansatz combinatorics for $\mathfrak{s l}_{N}$

Combinatorial data:
(1) multi-partitions $\vec{\mu}=\left(\mu^{(1)}, \ldots, \mu^{(N-1)}\right)$, where

$$
\sum_{\beta} C_{\alpha, \beta}\left|\mu^{(\beta)}\right|=\sum_{j} n^{(\alpha)}-\lambda_{\alpha}, \quad \lambda=\sum_{\alpha} \lambda_{\alpha} \omega_{\alpha} .
$$

(2) Each $\mu^{(\alpha)}$ has a rigging as in the $\mathfrak{s l}_{2}$ case, with vacancy numbers $p_{i}^{(\alpha)}$ for the part of length i of partition $\mu^{(\alpha)}$.
(3) We give each configuration a weight proportional to the sum of the riggings. The result of counting such solutions is...

Explicit combinatorial formula for $Z_{\mathbf{n}}(\mathbf{x} ; q)$

$$
Z_{\mathbf{n}}(\mathbf{x} ; q)=\sum_{\vec{\mu}} q^{\frac{1}{2} F(\vec{\mu})} \prod_{\alpha, i}\left[\begin{array}{c}
p_{i}^{(\alpha)}+m_{i}^{(\alpha)} \\
m_{i}^{(\alpha)}
\end{array}\right]_{q} s_{\lambda(\mathbf{n})-c_{\mu}}(\mathbf{x})
$$

- The multi-partition $\lambda=\left(\lambda^{(1)}, \ldots, \lambda^{(N-1)}\right)$ is determined by $\mathbf{n}: n_{\alpha, j}$ is the number of parts of $\lambda^{(\alpha)}$ of length j.
- The sum is over multi-partitions $\vec{\mu}=\left(\mu^{(1)}, \ldots, \mu^{(r)}\right)$;
- $F(\vec{\mu})=\sum \mu_{i}^{(\alpha)} C_{\alpha, \beta} \mu_{i}^{(\beta)}, C=$ Cartan matrix;
- $\mathbf{m}=\left\{m_{i}^{(\alpha)}\right\}$ with $m_{i}^{(\alpha)}$ the number of columns of $\mu^{(\alpha)}$ of length i.
- The integers $p_{i}^{(\alpha)}$: Sum over the first i columns of the composition $\lambda^{(\alpha)}-(C \vec{\mu})^{(\alpha)}$.

Special case: "Level 1"

Choose all representations to be fundamental representations with highest weight ω_{α} for various α.

$$
\mathcal{H} \simeq{ }_{\alpha=1}^{N-1} V\left(\omega_{\alpha}\right)^{\otimes n_{\alpha, 1}} .
$$

- The functions $Z_{\mathbf{n}}(\mathbf{x} ; q)$ are polynomial versions of q-Whittaker functions (eigenfunctions of q-Toda).
- In terms of the modified Macdonald polynomials,

$$
Z_{\mathbf{n}}(\mathbf{x} ; q)=H_{\lambda}(\mathbf{x} ; q, 0)=P_{\lambda}(\mathbf{x} ; q, 0)
$$

where λ is the partition with $n_{\alpha, 1}$ columns of length α.

Macdonald symmetric functions

Special case: Symmetric power representations

Take all representations V_{i} to be symmetric power representations

$$
\mathcal{H} \simeq \bigotimes_{\ell=1}^{k} V\left(\ell \omega_{1}\right)^{\otimes n_{1, \ell}}
$$

- The functions $Z_{\mathbf{n}}(\mathbf{x} ; q)$ are modified Hall-Littlewood symmetric functions.
- A specialization of the modified Macdonald polynomial

$$
Z_{\mathbf{n}}(\mathbf{x} ; q)=\widetilde{H}_{\lambda}(\mathbf{x} ; q, 0)
$$

Status of proofs of completeness and $Z_{\mathbf{n}}(\mathbf{x} ; q)$

(1) The refined counting function $Z_{\mathbf{n}}(\mathbf{x} ; q)$ has a representation-theoretical definition in terms of the crystal bases for $U_{q}(\widehat{\mathfrak{g}})$ (for some \mathfrak{g}) or the representation theory of $\mathfrak{g}[t]$ (all simple \mathfrak{g}). [Feigin Loktev 99].
(2) Dimension formula proved for all \mathfrak{g} [DFK08] and formula for $Z_{\mathbf{n}}(\mathbf{x}, q)$ proved for simply-laced \mathfrak{g} [DFK11] and all \mathfrak{g} [K. Lin 17].

The formulas can be rewritten as a constant term formula in the variables $\left\{Q_{a, k}: a \in[1, \operatorname{rank} \mathfrak{g}], k \in \mathbb{Z}\right\}$ and are equivalent to the fact that they satisfy the Q-system:

$$
Q_{a, k+1} Q_{a, k-1}=Q_{a, k}^{2}-\prod_{b \sim a} Q_{b, k}, \quad \mathfrak{g} \text { simply-laced. }
$$

A discrete, integrable evolution with a canonical quantization.

From combinatorics to algebra

Switch point of view: Look for the algebra of "raising operators".
Define $Q_{a, k}=\operatorname{ch} V\left(k \omega_{a}\right)$:

$$
Z_{\mathbf{n}}(\mathbf{x} ; 1)=\prod Q_{\mathrm{a}, j}^{n_{\mathrm{a}, j}}=\sum_{\lambda} Z_{\lambda, \mathbf{n}}(1) s_{\lambda}(\mathbf{x})
$$

So that adding one more site to the spin chain means multiplying by $Q_{a, k}$:

$$
Z_{\mathbf{n}+\epsilon_{\alpha, k}}(\mathbf{x} ; 1)=Q_{a, k} Z_{\mathbf{n}}(\mathbf{x} ; 1)
$$

Is there q-deformed version of this multiplication which produces the polynomials $Z_{\mathrm{n}}(\mathrm{x} ; q)$?

Outline of the answer:

Theorem: The characters of KR -modules $\left\{Q_{a, k}\right\}$ satisfy recursion equations called Q-systems. These are:
(1) Cluster algebra mutations.
(2) Discrete integrable equations.

Since we have a cluster algebra, we have a canonical quantization.
Theorem: [Di Francesco, K.]
(1) The quantum Q-system is the correct q-deformation to generate $Z_{\mathbf{n}}(\mathbf{x} ; q)$.
(2) Integrability survives quantization.
(3) The integrals of motion give q-difference equations for the functions $Z_{\mathbf{n}}(\mathbf{x} ; q)$. Special cases: Toda q-difference equations.

The Q-system: The classical case

Theorem: The characters of KR-modules (in the case of $\mathfrak{s l}_{N}, Q_{a, k}=s_{\left(k^{a}\right)}(\mathbf{x})$) satisfy the the Q-system

$$
Q_{a, k+1} Q_{a, k-1}=Q_{a, k}^{2}-Q_{a+1, k} Q_{a-1, k}, \quad Q_{0, k}=Q_{N, k}=1
$$

together with the initial data

$$
Q_{i, 0}=1 \quad(i=1, \ldots, N-1) .
$$

Definition: The algebra R_{N} is the commutative, associative algebra generated by $\left\{Q_{a, k}^{ \pm 1}\right\}$ with relations given by the Q -system.

Example of Q-system for $\mathfrak{s l}_{2}$

For $\mathfrak{g}=\mathfrak{s l}_{2}$, there is only one simple root, $Q_{k}:=Q_{1, k}$:

$$
Q_{k+1} Q_{k-1}=Q_{k}^{2}-1 .
$$

Given initial data $\left(Q_{0}, Q_{1}\right)$,

$$
\begin{aligned}
& Q_{2}=\frac{Q_{1}^{2}-1}{Q_{0}} \overrightarrow{Q_{0}=1} Q_{1}^{2}-1, \\
& Q_{3}=\frac{\left(Q_{1}^{2}-1\right)^{2}-Q_{0}}{Q_{0}^{2} Q_{1}} \overrightarrow{Q_{0}=1} Q_{1}^{3}-2 Q_{1}, \\
& Q_{4}=\frac{\left(Q_{1}^{3}-Q_{1}^{2}-Q_{1}-Q_{0}^{2}+1\right)\left(Q_{1}^{3}+Q_{1}^{2}-Q_{1}+Q_{0}^{2}-1\right)}{Q_{0}^{3} Q_{1}^{2}} \underset{Q_{0}=1}{\longrightarrow} Q_{1}^{4}-3 Q_{1}^{2}+1 .
\end{aligned}
$$

(1) All Q_{k} are Laurent polynomials in $\left(Q_{0}, Q_{1}\right)$.
(2) When $Q_{0}=1$, all Q_{k} are polynomials in Q_{1}. (Chebyshev polynomials of second kind in x if $Q_{1}=2 x$).

Denanot-Jacobi and discrete integrability I

The Q-system for $\mathfrak{s l}_{N}$ is a discrete integrable system in the time variable k :

$$
Q_{i+1, k} Q_{i-1, k}=Q_{i, k}^{2}-Q_{i, k+1} Q_{i, k-1}, \quad Q_{0, k}=1, Q_{N, k}=1
$$

is satisfied by the minors of the discrete Wronskian matrix $\left(Q_{k}:=Q_{1, k}\right)$:

$$
W_{i+1, k}=\left(\begin{array}{ccccc}
Q_{k} & Q_{k+1} & & \cdots & Q_{k+i} \\
Q_{k-1} & Q_{k} & & \cdots & Q_{k+i-1} \\
\vdots & \vdots & \ddots & & \vdots \\
Q_{k-i} & Q_{k-i+1} & & \cdots & \\
Q_{k}
\end{array}\right)
$$

The Q-system is the Denanot-Jacobi relation for the determinant of the $n \times n$ matrix M :

$$
|M|\left|M_{1, n}^{1, n}\right|=\left|M_{1}^{1}\right|\left|M_{n}^{n}\right|-\left|M_{1}^{n}\right|\left|M_{n}^{1}\right|
$$

under the identification $Q_{i, k}=\left|W_{i, k}\right|$.

Conserved quantities

- The relation $\left|W_{N, k}\right|=1$ for all k implies $\left|W_{N+1, k}\right|=0$, a linear recursion relation:

$$
\sum_{j=0}^{N}(-1)^{j} C_{k, j} Q_{k+N-j} .
$$

- The relation $\left|W_{N, k+1}\right|-\left|W_{N, k}\right|=1-1=0$ implies the coefficients in the linear recursion are independent of k.
Example: $N=2$

$$
\begin{aligned}
0=1-1=\left|W_{2, k+1}\right| & -\left|W_{2, k}\right|=\left|\begin{array}{cc}
Q_{k+1} & Q_{k+2} \\
Q_{k} & Q_{k+1}
\end{array}\right|-\left|\begin{array}{cc}
Q_{k} & Q_{k+1} \\
Q_{k-1} & Q_{k}
\end{array}\right| \\
& =\left|\begin{array}{cc}
Q_{k+1} & Q_{k}+Q_{k+2} \\
Q_{k} & Q_{k-1}+Q_{k+1}
\end{array}\right|
\end{aligned}
$$

so the first column is proportional to the second:

$$
c_{k} Q_{k+1}=Q_{k}+Q_{k+2} \text { and } c_{k} Q_{k}=Q_{k-1}+Q_{k+1}
$$

therefore c_{k} is independent of k :

$$
c=\frac{Q_{k-1}+Q_{k+1}}{Q_{k}} \text { is a conserved quantity. }
$$

The cluster algebra structure

Theorem: [K 2009] Each of the relations in R_{N}

$$
Q_{i, k+1} Q_{i, k-1}=Q_{i, k}^{2}-Q_{i+1, k} Q_{i-1, k}, \quad k \in \mathbb{Z}, i \in 1, \ldots, N-1,
$$

with $Q_{0, k}=Q_{N, k}=1$, is a mutation relation in the cluster algebra with the exchange matrix

$$
B=\left(\begin{array}{cc}
0 & -C \\
C & 0
\end{array}\right), \quad C=\text { the } \mathfrak{s l}_{N} \text { Cartan matrix. }
$$

Aside on cluster algebras

Aside on cluster algebras

Fix an integer n (the rank) and let T be the complete n-tree with each vertex $t \in T$ having incident edges labeled $1, \ldots, n$.

Definition: A cluster algebra is an associative commutative algebra generated by cluster variables $\left\{x_{i}(t), i \in[1, n], t \in T\right\}$, with relations between them, defined as follows:

To each vertex t of the tree T we associate the cluster $(\mathbf{x}(t), \Gamma(t))$ where $\Gamma(t)$ is a quiver with no 1- or 2-cycles.

Clusters in vertices connected by an edge are related by an involution called a mutation.

Mutations

If two vertices of the tree are connected by an edge k :

then $(\mathbf{x}, \Gamma)\left(t^{\prime}\right)=\mu_{k}((\mathbf{x}, \Gamma)(t))$, where μ_{k} is defined as follows:

- Quiver mutation:
(1) For each subquiver $k \longrightarrow i \longrightarrow j$ in Γ, add an arrow $k \longrightarrow j$.
(2) Reverse all arrows incident to vertex i.
(3) Erase all 2-cycles.
- Cluster mutations: $x\left(t^{\prime}\right)$ is obtained from $x(t)$ as follows:

$$
x_{j}\left(t^{\prime}\right)= \begin{cases}x_{j}(t), & j \neq i \\ \frac{\prod_{j \rightarrow i} x_{j}+\prod_{i \rightarrow j} x_{j}}{x_{i}(t)}, & i=j\end{cases}
$$

Insight from cluster algebras

The cluster algebra structure gives us some information:
(1) (Laurent phenomenon) All cluster variables in a cluster algebra are Laurent polynomials in any cluster variable $\mathbf{x}(t)$. [Fomin-Zelevinsky].
(2) Theorem: [DFK] The evaluation $Q_{i, 0}=1$ (i.e. $Q_{i,-1}=0$) for all i reduces each of the Laurent polynomials $Q_{i, k}$ to a polynomial in $\left\{Q_{i, 1}: i \in[1, N-1]\right\}$. (Laurent property applied to this particular algebra).
(3) If the exchange matrix of the cluster algebra is non-degenerate, there is a canonical quantization of the cluster algebra.

Quantization of the Q-system

Classical:

$$
Q_{i, k+1} Q_{i, k-1}=Q_{i, k}^{2}-Q_{i+1, k} Q_{i-1, k}, \quad Q_{0, k}=Q_{N, k}=1 .
$$

Definition: The quantized algebra \mathcal{R}_{N} is the algebra generated by the (invertible) elements $\left\{Q_{i, k}, 1 \leq i \leq N, k \in \mathbb{Z}\right\}$ modulo the relations (1), (2), (3) below:

- The quantized variables commute as

$$
\begin{equation*}
Q_{i, k} Q_{j, k+m}=q^{\min (i, j) m} Q_{j, k+m} Q_{i, k}, \quad|m| \leq|i-j|+1 . \tag{1}
\end{equation*}
$$

- The quantum mutation relation (Quantum Q-system):

$$
\begin{equation*}
q^{i} Q_{i, k+1} Q_{i, k-1}=Q_{i, k}^{2}-Q_{i+1, k} Q_{i-1, k}, \tag{2}
\end{equation*}
$$

- Boundary conditions:

$$
\begin{equation*}
Q_{0, k}=1, \quad Q_{N+1, k}=0 . \tag{3}
\end{equation*}
$$

Conformal partition function from Q-system

Classical case:

$$
Z_{\mathbf{n}}(\mathbf{x} ; 1)=\left.\prod_{i, k>0}\left(Q_{i, k}\right)^{n_{i, k}}\right|_{Q_{i, 1}=e_{i}(\mathrm{x}), Q_{i, 0}=1}
$$

Theorem [Di Francesco, K 2014] There is a linear functional

$$
\Pi: U\left(\left\{Q_{i, k}, k \geq 0\right\}\right) \rightarrow \mathbb{Z}\left[q, q^{-1}\right]\left[x_{1}, \ldots, x_{N}\right]^{\delta_{N}}
$$

which maps the product of solutions to the quantum Q-system to the conformal partition function:

$$
\Pi: \prod_{j=k}^{1} \prod_{i} Q_{i, j}^{n_{i, j}} \mapsto Z_{\mathbf{n}}\left(\mathbf{x} ; q^{-1}\right)
$$

Note: The functional uses (Laurent, polynomiality theorems) structure of quantum cluster algebra to impose the analogue of $Q_{i, 0}=1$ and to extract the coefficients of $s_{\lambda}(\mathbf{x})$.

The quantum determinant

Theorem:[Di Francesco, RK] The quantum Q-system

$$
q^{i} Q_{i, k+1} Q_{i, k-1}=Q_{i, k}^{2}-Q_{i+1, k} Q_{i-1, k}
$$

is a quantum Desnanot-Jacobi relation: The elements $Q_{i, k}$ are quantum determinants of $\left\{\Omega_{1, j}\right\} s:$

In terms of generating currents

$$
\begin{gathered}
Q(z):=\sum_{n \in \mathbb{Z}} z^{n} Q_{1, n}, \\
Q_{a, n}=C T_{z_{1}, \ldots, z_{a}} \prod_{i=1}^{a} z_{i}^{-n} \prod_{1 \leq i<j \leq a}\left(1-q \frac{z_{j}}{z_{i}}\right) Q\left(z_{1}\right) \cdots Q\left(z_{a}\right) .
\end{gathered}
$$

Corollary: \mathcal{R}_{N} is generated as a polynomial algebra by the elements $\left\{\Omega_{1, k}\right\}_{k \in \mathbb{Z}}$.

Discrete integrable system

The quantum Q -system is a discrete integrable system:

$$
q^{i} Q_{i, k+1}=\left(Q_{i, k}^{2}-Q_{i+1, k} Q_{i-1, k}\right) Q_{i, k-1}^{-1}, \quad i \in\{1, \ldots, N\}
$$

with

$$
Q_{0, k}=1, Q_{N+1, k}=0
$$

is an evolution equation for the variables in the discrete time variable $k \in \mathbb{Z}$. Time translation is

$$
D:\left(Q_{1, k}, \ldots, Q_{N, k}\right) \mapsto\left(Q_{1, k+1}, \ldots, Q_{N, k+1}\right)
$$

Theorem: The discrete quantum evolution above has N integrals of motion in involution.

Miura operator

For fixed k, define the N commuting elements in \mathcal{R}_{N} :

$$
x_{i, k}=Q_{i, k+1} Q_{i, k}^{-1} Q_{i-1, k} Q_{i-1, k+1}^{-1}, \quad i \in\{1, \ldots, N\}
$$

Theorem: [Di Francesco, K 2016] The operator acting on \mathcal{R}_{N}

$$
\mu_{k}=\left(D-x_{N, k}\right)\left(D-x_{N-1, k}\right) \cdots\left(D-x_{1, k}\right)
$$

is independent of k.
Sketch of proof: Define $\xi_{i, k}=Q_{i, k} Q_{i, k+1}^{-1}$ so that $x_{i, k}=\xi_{i, k}^{-1} \xi_{i-1, k}$. The relation

$$
\left(D-x_{i+1, k}\right)\left(D-\xi_{i, k}^{-1} \xi_{i-1, k-1}\right)=\left(D-\xi_{i+1, k}^{-1} \xi_{i, k-1}\right)\left(D-x_{i, k-1}\right)
$$

is a consequence of two applications of the quantum Q -system. Together with the boundary terms

$$
\xi_{1, k}^{-1} \xi_{0, k-1}^{-1}=\xi_{1, k}^{-1} \xi_{0, k}^{-1}=x_{1, k}
$$

and

$$
\xi_{N+1, k}^{-1} \xi_{N, k-1}=\xi_{N+1, k-1}^{-1} \xi_{N, k-1}=x_{N, k-1}
$$

this gives a "zipper proof" that $\mu_{k}=\mu_{k-1}$.

Conserved quantities

Corollary: The coefficients $C_{j}:=C_{j, n}$ in the "Miura operator"

$$
\mu=\mu_{k}=\left(D-x_{N, k}\right)\left(D-x_{N-1, k}\right) \cdots\left(D-x_{1, k}\right)=\sum_{j=0}^{N}(-1)^{j} C_{j, k} D^{N-j}
$$

are independent of k.
Example: For $\mathfrak{s l}_{2}(N=2)$,

$$
C_{0}=1, \quad C_{2}=Q_{2, k+1} Q_{2, k}^{-1}, \quad C_{1}=\left(C_{2} Q_{1, k}+Q_{1, k+2}\right) Q_{1, k+1}^{-1} .
$$

Lemma: The elements

$$
x_{a}:=\lim _{n \rightarrow \infty} x_{a, n}
$$

are well-defined and commute with each other.
So $C_{i}=e_{i}\left(x_{1}, \ldots, x_{N}\right)$ are the elementary symmetric functions in these variables.

Time evolution

Theorem: The elements $\left\{Q_{k}:=Q_{1, k}\right\}$ which generate \mathcal{R}_{N} are in the kernel of the Miura operator μ :

$$
\mu Q_{k}=0, \quad n \in \mathbb{Z}
$$

Proof: Since $\mu=\mu_{k}$ for all k,

$$
\mu_{k} Q_{k}=\cdots\left(D-x_{1, k}\right) Q_{k}=\cdots\left(D-Q_{k+1} Q_{k}^{-1}\right) Q_{k}=\cdots\left(D Q_{k}-Q_{k+1}\right)=0
$$

Theorem: the coefficients C_{j} act as Hamiltonians:

$$
\left[C_{1}, Q_{k}\right]=(1-q) Q_{k+1}
$$

and in general

$$
(1-q)^{-1}\left[C_{j}, Q_{k}\right]=\sum_{a=1}^{j}(-1)^{a} C_{j-a} Q_{k+a}
$$

Generating functions

Define

$$
Q(z):=\sum_{k \in \mathbb{Z}} Q_{k} z^{k}, \quad C(z)=\sum_{j=0}^{N}(-z)^{j} C_{j}=\prod_{i=1}^{N}\left(1-z x_{i}\right) .
$$

then

$$
C(z)=\exp \left(-\sum_{j \geq 1} \frac{z^{j}}{j} P_{j}\right)
$$

where P_{j} are the power-sum symmetric functions, and

$$
\left[P_{j}, Q_{k}\right]=\left(1-q^{k}\right) Q_{k+j}, \quad j \in \mathbb{N}
$$

Application of integrability: Exchange relations

Theorem [DFK16]: The generating functions $Q(z)$ satisfy the quadratic relations

$$
(z-q w) \mathcal{Q}(z) \mathcal{Q}(w)+(w-q z) \mathcal{Q}(w) \mathcal{Q}(z)=0
$$

Proof: The exchange relation is equivalent to $\phi_{k, \ell}=\left[{ }_{2}, Q_{k+\ell}\right]_{q}+\left[Q_{k+\ell-1}, Q_{k+1}\right]_{q}=0, \quad \ell>0$.

$$
\begin{array}{ll}
\ell=1: & \phi_{k, 1}=2\left(Q_{k} Q_{k+1}-q Q_{k+1} Q_{k}\right)=0 . \\
\ell=2: & \phi_{k, 2}=Q_{k}^{2}-q Q_{k+1} Q_{k-1}-\left(q Q_{k}^{2}-Q_{k-1} Q_{k+1}\right)=Q_{2, k}-Q_{2, k}=0,
\end{array}
$$

which follows from the quantum Q-system and its counterpart

$$
Q_{k-1} Q_{k+1}=q Q_{k}^{2}-Q_{2, k} .
$$

By induction,

$$
\left[H_{1},\left[Q_{k}, Q_{k+\ell}\right]_{q}\right]=\left(\left[Q_{k+1}, Q_{k+\ell}\right]_{q}+\left[Q_{k}, Q_{k+\ell+1}\right]_{q}\right)
$$

to $\phi_{k, \ell}$:

$$
\phi_{k, \ell+1}=\left[H_{1}, \phi_{k, \ell}\right]-\phi_{k+1, \ell-1}
$$

with $\phi_{k, 1}=\phi_{k, 2}=0$, this vanishes by induction for all $\ell>0$.

Quantum determinant relation

The relation

$$
(z-q w) Q(z) Q(w)+(w-q z) Q(w) Q(z)=0 .
$$

is the defining relation in $U_{\sqrt{9}}\left(\mathfrak{n}\left[u, u^{-1}\right]\right) \subset U_{\sqrt{9}}\left(\widehat{s} l_{2}\right)$.
Here, we have one more relation in \mathcal{R}_{N} : A degree $N+1$ polynomial relation coming from the $(N+1)$ st quantum determinant:

$$
Q_{N+1, k}=0, \quad k \in \mathbb{Z} .
$$

Theorem: The algebra \mathcal{R}_{N} is isomorphic to a quotient of $U_{\sqrt{9}}\left(\mathfrak{n}\left[t, t^{-1}\right]\right)$ by the rank-dependent quantum determinant relations.

Action on characters

Recall: There is a linear functional from the quantum Grothendieck ring to the ring of symmetric polynomials, such that

$$
\Pi: \prod_{j=k}^{1} \prod_{i=1}^{N-1} Q_{i, j}^{n_{i, j}} \mapsto Z_{\mathbf{n}}\left(\mathbf{x} ; q^{-1}\right)
$$

The elements $Q_{i, k}$ act as maps between graded characters of:

$$
Q_{i, k}: Z_{\mathbf{n}}\left(\mathbf{x} ; q^{-1}\right) \rightarrow Z_{\mathbf{n}^{\prime}}\left(\mathbf{x} ; q^{-1}\right)
$$

where \mathbf{n}^{\prime} differs from \mathbf{n} only by $n_{i, k}^{\prime}=n_{i, k}+1$. (Corresponding to adding one representation $V\left(k \omega_{i}\right)$.)

Difference operator Solutions of quantum Q-system

How does $Q_{i, k}$ act on symmetric functions?
For any $k \in \mathbb{Z}$ and $i \in[1, N]$, Define the q-difference operators on the space of functions in x_{1}, \ldots, x_{N} :

$$
D_{a, k}=\sum_{\substack{I \subset[1, N] \\|I|=a}}\left(\prod_{i \in I} x_{i}^{k} \prod_{j \notin I} \frac{x_{i}}{x_{i}-x_{j}}\right) \prod_{i \in I} \Gamma_{i}, \quad \text { where } \Gamma_{i} x_{j}=q^{\delta_{i j}} x_{j} \Gamma_{i}
$$

For example $D_{0, k}=1, D_{N, k}=\left(x_{1} \cdots x_{N}\right)^{k} \Gamma_{1} \cdots \Gamma_{N}, D_{N+1, k}=0$ and $D_{1, k}$ is a linear combination of x_{i}^{k} with non-commuting right coefficients.

Theorem: The elements $D_{i, k}$ form a representation π of \mathcal{R}_{N} where

$$
\pi\left(Q_{a, k}\right)=D_{a, k}
$$

To prove this one must show that $D_{a, k}$ satisfy the quantum Q -system (hard) and the quantum determinant conditions (automatic).

Graded characters from difference operators

Theorem: [Di Francesco, K 2015] The graded characters of $\mathcal{H}_{\mathbf{n}}$ is be generated by the action of difference operators on the trivial polynomial, as follows:

$$
Z_{\mathbf{n}}\left(\mathbf{x} ; q^{-1}\right)=q^{-\frac{1}{2} p(\mathbf{n})} \prod_{i=1}^{N-1}\left(D_{i, k}\right)^{n_{i, k}} \ldots \prod_{i=1}^{N-1}\left(D_{i, 1}\right)^{n_{i, 1}} 1
$$

where

$$
p(\mathbf{n})=\sum_{i, j, a, b} n_{a, i} \min (i, j) \min (a, b) n_{b, j}-\sum_{i, a} i a n_{a, b}
$$

with $n_{a, i}$ being the number of modules in the tensor product with highest weight $i \omega_{a}$.
So we have the raising operators for the family of symmetric functions $Z_{\mathbf{n}}(\mathbf{x} ; q)$ as q-difference operators.

Difference (Toda-like) equations for $Z_{\mathbf{n}}(\mathbf{x} ; q)$

The existence of Hamiltonians C_{i} implies q -difference equations:
Example: Let $\mathfrak{g}=\mathfrak{s l}_{2}$.

- The quantum Q-system is an equation for $Q_{k}:=Q_{1, k}$ and $Q_{2, k}=A^{k} \Delta$ where $\Delta Q_{a, k}=q^{a k} Q_{a, k} \Delta$.

$$
Q_{k} Q_{k+1}=q Q_{k+1} Q_{k}, \quad q Q_{k+1} Q_{k-1}=Q_{k}^{2}-Q_{2, k} .
$$

- The hamiltonian

$$
C_{1}=\left(Q_{k-1}+Q_{k+1}\right) Q_{k}^{-1}=Q_{k} Q_{k+1}^{-1}+Q_{k+1} Q_{k}^{-1}-\Delta Q_{k+1}^{-1} Q_{k}^{-1}
$$

acts with eigenvalue $e_{1}\left(x_{1}, x_{2}\right)$ on the eigenfunction $Z_{\mathbf{n}}(\mathbf{x} ; q)$. If

$$
\begin{gathered}
\mathcal{H}=V\left((k-1) \omega_{1}\right)^{\otimes m} \otimes V\left(k \omega_{1}\right)^{\otimes n}, \text { and } Z_{m, n}\left(\mathbf{x} ; q^{-1}\right)=q^{-\frac{1}{2} p(m, n)} Q_{k}^{n} Q_{k-1}^{m} \cdot 1, \\
C_{1} Z_{m, n}=Z_{m-1, n+1}+Z_{m+1, n-1}-q^{k(1-n-m)-m+1} Z_{m-1, n-1}=e_{1}(\mathbf{x}) Z_{m, n} .
\end{gathered}
$$

- When $k=1, Z_{m, n}=Z_{n}(\mathbf{x} ; q)$ satisfies

$$
e_{1} Z_{n}=Z_{n+1}+\left(1-q^{-n}\right) Z_{n-1}, \quad " q \text {-difference quantum Toda." }
$$

The operators $D_{a, n}$ are the $t \rightarrow \infty$ limit of "generalized Macdonald operators:" [c.f. Miki in the context of $\mathrm{q}, \mathrm{t} \mathrm{W}$-algebras]

$$
\mathcal{D}_{a, k}=\prod_{\substack{I \subset[1, N]] \\|I|=a}} \prod_{i \in I} x_{i}^{k} \prod_{j \notin I} \frac{t x_{i}-x_{j}}{x_{i}-x_{j}} \prod_{i \in I} \Gamma_{i} .
$$

- The Macdonald operators are $\left\{\mathcal{D}_{a, 0}\right\}_{a}$ and they form a commuting family.
- For fixed k, the difference operators $\mathcal{D}_{1, k}, \ldots, \mathcal{D}_{N, k}$ also form a commuting family.
- The operators $\mathcal{D}_{a, k}$ are "raising operators" (in the elliptic Hall algebra).

The algebra of generalized Macdonald operators

The algebra \mathfrak{R}_{N} whose generators are representated by the generalized Macdonald operators is a quotient of the DIM algebra at trivial central charge.

Theorem: [Di Francesco, K 2017] Let $x^{+}(z)=\sum_{k \in \mathbb{Z}}\left(q^{\frac{1}{2}} z\right)^{k} \mathcal{D}_{1, k}$. Then

$$
g(z, w) x^{+}(z) x^{+}(w)+g(w, z) x^{+}(w) x^{+}(z)=0
$$

where

$$
g(z, w)=(z-q w)\left(z-t^{-1} w\right)\left(z-q^{-1} t w\right)
$$

- The currents $x^{+}(z)$ also satisfy a cubic relation (Serre-type relation).
- If we stop here, this is a subalgebra of the quantum toroidal algebra or DIM when $N \rightarrow \infty$.
- For N finite, there is a set of relations $\mathcal{D}_{N+1, k}=0$ for all k, c.f. spherical DAHA at finite N.
- Add generators $x^{-}(z)=\left.\mathcal{D}(z)\right|_{(q, t) \mapsto(1 / q, 1 / t)}$ to get full algebra at trivial central charge.
- The algebra \mathcal{R}_{N} is recovered in the limit $t \rightarrow \infty$ of \mathfrak{R}_{N}.

The DIM algebra

The quantum toroidal algebra of $\mathfrak{g l}_{1}$ [see Miki; Awata, Feigin, Shiraishi,...] is the algebra generated by currents $x^{ \pm}(z), \psi^{ \pm}(z)$ with non-trivial relations (Drinfeld-type)

$$
\begin{aligned}
G(w / \gamma z) \psi^{+}(z) \psi^{-}(w) & =G(\gamma w / z) \psi^{-}(w) \psi^{+}(z) \\
\psi^{\epsilon}(z) x^{ \pm}(w) & =G\left(\gamma^{\mp \epsilon} w / z\right)^{\mp 1} x^{ \pm}(w) \psi^{\epsilon}(z) \\
g(z / w)^{ \pm 1} x^{ \pm}(z) x^{ \pm}(w) & =g(w / z)^{ \pm 1} x^{ \pm}(w) x^{ \pm}(z) \\
\frac{1-q / t}{(1-q)\left(1-t^{-1}\right)}\left[x^{+}(z), x^{-}(w)\right] & =\left(\delta(\gamma w / z) \psi^{+}(z / \sqrt{\gamma})-\delta(\gamma z / w) \psi^{-}(\sqrt{\gamma} z)\right) \\
\psi_{0}^{ \pm} & =\delta^{ \pm 1}
\end{aligned}
$$

and Serre-type relations

$$
\operatorname{Sym}_{z_{1}, z_{2}, z_{3}}\left(z_{2} / z_{3}\left[x^{ \pm}\left(z_{1}\right),\left[x^{ \pm}\left(z_{2}\right), x^{ \pm}\left(z_{3}\right)\right]\right]\right)=0
$$

The generators γ, δ are central elements and

$$
G(x)=\frac{g(1, x)}{g(x, 1)}, \quad g(z, w)=(z-q w)(z-w / q)(z-t w / q)
$$

From commuting hamiltonians to bosonization

We can compute explicitly from the difference operators:

$$
\left[P_{k}, \mathcal{D}_{1, n}\right]=\left(1-q^{k}\right) \mathcal{D}_{1, n+k} .
$$

which leads to the equation for

$$
x^{+}(z) p_{k}[X]=\left(p_{k}[X]+\frac{q^{k / 2}-q^{-k / 2}}{z^{k}}\right) x^{+}(z) .
$$

- If $F[X]$ is a symmetric function, this action of $x^{+}(z)$ is written in plethystic notation as

$$
x^{+}(z) F[X]=F\left[X+\frac{q^{\frac{1}{2}}-q^{-\frac{1}{2}}}{z^{k}}\right] x^{+}(z)
$$

- In the limit $N \rightarrow \infty$, an infinite number of variables, P_{k} are algebraically independent, and

$$
x^{+}(z) \propto \exp \left(\sum_{k \neq 0} \frac{q^{k / 2}-q^{-k / 2}}{z^{k}} \frac{d}{d P_{k}}\right)
$$

when acting on the space of symmetric functions.

Limit $N \rightarrow \infty$: Non-trivial central charge

If we let $x^{+}(z)$ act on the space of symmetric polynomials, and consider its action on 1 , we can write

$$
x^{+}(z)=\frac{q^{\frac{1}{2}}}{(1-q)(1-1 / t)} \exp \left(\sum_{k>0} a_{k} \frac{z^{k}}{k}\right) \exp \left(\sum_{k>0} a_{k}^{*} z^{-k}\right)
$$

with $a_{k}=q^{k / 2}\left(1-t^{-k}\right) P_{k}[X]$ and $a_{k}^{*}=\left(q^{k / 2}-q^{-k / 2}\right) \frac{d}{d P_{k}}$.

- See [Feigin, Jimbo, Miwa+,09].
- The currents $x^{-}(z)$ are obtained from $x^{+}(z)$ with $(q, t) \mapsto\left(q^{-1}, t^{-1}\right)$.
- These currents generate the DIM algebra with non-trivial central charge $\gamma=\sqrt{t / q}$ ("horizontal representation") which is a fock space.

Summary

- The linearized-spectrum partition functions of the generalized Heisenberg spin chains can be generated by the action of q-difference operators acting on 1 .
- These q-difference operators satisfy the quantum cluster algebra called the quantum Q-system.
- This algebra is isomorphic to a rank-dependent quotient of a quantum affine algebra.
- The t-deformation of these operators satisfies relations in the quantum toroidal algebra of $\mathfrak{g l}_{1}$.
- In the infinite-rank limit, they are the level $(1,0)$ representation of this algebra.

Thank you!

