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Outline

@ Counting graded dimensions of Heisenberg spin chains
@ The Q-system and its g-deformation
@ Discrete quantum integrability and exchange relations

@ Generalized Macdonald operators and quantum toroidal algebras

Rinat Kedem (University of lllinois) Cargese

2/ 49



The Hilbert space of the XXX model

The algebra is Y (sl2), V(i) ~ C? are representations of the Yangina and the Hilbert
space is
Hy ~ VM ~ @ Hy @ V(A);  V(A) = irreducible sl-mod
A

with dimension H, = 2M.
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Generalized inhomogeneous Heisenberg spin chain

The representations V(i) are arbitrary representations of Y(sl2), and the Hilbert space

HaxVi®-- @ V= k@gIV(kwl)@"k =@ Han® V(X))

where V/(kwi) =~ C**! in the tensor product.

k k
dim Ho = dim [ [V (jw1)®" = [J(F + 1)

i=1 i=1
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Completeness problem

@ The hamiltonian conserves spin: it acts on the multiplicity space
Han = Homgy, (FHn, V(X)) .

o Spectrum of the hamiltonian in the subspaces is parameterized by solutions to the
Bethe ansatz equations.

9 The “completeness conjecture” is that the dimension of Jy , is bijection with the
combinatorial data associated with the BAE.
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Combinatorial content of BAE for sl

o Fix a partition p of S = (3, ini — £), and the integers m; are defined by
B = (1""172"727”.)
We have
j'C/\,n = @}C/\,n(/l)
N

@ The basis of Hx o(ut) is parameterized by “riggings” of u: m; Distinct integers
lj(') € [1, pi + m;] for each row of length i. (Distinct partitions of length m; and
width at most p; + m;.)

o Grading: We weigh each rigging with a weight q¢ where d is proportional to the
sum of the integers.
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Counting bosons vs. fermions

A bosonic Fock space has a basis parameterized by partitions:
-3 3-x,ra-x,|0)
with Ai > Aij1.
Define the set of partitions P(p|m) to be all sets of the form
A=pPp>A>>-->Ap>0)

Then

> g = {p;m]q,

AeP(p|m)

where the Gaussian polynomial is

p+m :ﬁl_qpﬂ'
m ], 1—¢g

Jj=1
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Fermions

A fermionic Fock space is parameterized by distinct partitions:
L (1))
where \; > \jj1.
If P4(p+ m|m) is the set of distinct partitions
A=(p+m>A>X > > An>0)

then the partition A = (M —mA—m+1,...,\n — 1) € P(p|m). The generating

function

Al X+imm+1) [P+ m Lm(m+1)

S gt 3 g o PR gl
XEPy(p+m|m) XeP(p|m) 9
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Completeness of Bethe solutions

We are counting “fermions” with a difference:

@ The ‘“vacancy numbers” p = (p1, p2, ...) depend on m, the number of
“quasi-particles”:
p=An—2Am, [A]i; = min(i,j).

o If Bethe integers parameterize spectrum of I » then
. pi + m;
dimHy, = .
. Z < mi )
m
Iml=3In|—(A1—X2)

@ We have the refined (graded) dimension formula:

mtAm | Pi + m;
Zow(@) = 3 " [” ]
q

m;j
m

We call the refined counting Z) » the conformal partition function.

Rinat Kedem (University of lllinois) Cargese 9/49



Physical origin of grading

@ In conformal limit, the partition function Z is dominated by order 1/M excitations:
Massless quasi-particles, with linearized energy function, E(P;) ~ v|(P; — Po)|.
(P=momentum and v=Fermi velocity).

s+ E(p)

>

—‘po“””‘OHHH‘p‘Op

o Periodic system: Momenta P; are quantized in units of QW“: —> Dominant
contribution to the chiral partition function is a series in g = exp( ;lszv)' Conformal
limit means N — oo, T — 0, NT fixed.

@ The momenta are proportional to (shifted) Bethe integers in this limit.
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Infinite size limit (motivation for the term “conformal”)

In the XXX model or its higher rank generalizations to sly,
H o~ V(w)®M.
Define the generating function
Zu(xiq)= Y Znm(@)si(x)
| A[=m

where the Schur functions sy (x) are the characters of the irreducible representation V/(\)
of gly.

9 Theorem: [K 2004]

lim Zym(x,q~") oc charL(A;), i=M mod N.

M— oo
o The module L(A;) is the level-1 highest weight module of the affine algebra sly with
highest weight A;.

9@ The character is a chiral partition function of the effective conformal field theory
which describes the (critical) XXX model in the thermodynamic limit (WZW,
k=1).
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Higher rank generalizations

Vi Vs, Vm

S O N O S N A
O
N ///

The representations V;({i) of Y(sly) are special: KR-modules V;(¢;) ~ V(4iws;) as
sly-modules:

4

N—-1
Ho= ® @ V(kw.)®"* ~@HraV(N).
1 A

a=1 k>
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Bethe ansatz combinatorics for sl

Combinatorial data:

@ multi-partitions 7 = (uY, ..., u™ ), where

D CasltPI =370 =X, A= Nawa.
B8 j a

@ Each u(") has a rigging as in the sl case, with vacancy numbers pfa) for the part of
length i of partition (%),

@ We give each configuration a weight proportional to the sum of the riggings.

The result of counting such solutions is...
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Explicit combinatorial formula for Z,(x; q)

pl(oz) + ml(a)
o)

m;

Sx(m)—cu(X)

Zuxg)=> ¢ "]
7

a,i

q

The multi-partition A = (A, ..., \(N=1)) is determined by n : n, ; is the number of
parts of A\(%) of length ;.

¢

¢

The sum is over multi-partitions 7 = (u®, ..., u);
F(ii) = Z’u,l(.a)ca,ﬁp,ﬁﬁ), C = Cartan matrix;

¢

m = {m\®} with m®) the number of columns of u(*) of length i.

¢

The integers pfa): Sum over the first i columns of the composition A(%) — (Cji)().

(<]
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Special case: “Level 1"

Choose all representations to be fundamental representations with highest weight we for

various «.
N—1 @ 1
Hee @ V(wa)? ™.

a=1

@ The functions Za(x; g) are polynomial versions of g-Whittaker functions
(eigenfunctions of g-Toda).

9 In terms of the modified Macdonald polynomials,
Za(x; q) = Hx(x; q,0) = Px(x; q,0).

where A is the partition with n. 1 columns of length a.

Vi Va Vv

R R
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Macdonald symmetric functions
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Special case: Symmetric power representations
Take all representations V; to be symmetric power representations

k
He ® V(lw)®me.
=1

o The functions Z,(x; g) are modified Hall-Littlewood symmetric functions.

o A specialization of the modified Macdonald polynomial

Za(x; q) = Hx(x; g,0).

Vi

Vo

DHH&%E

W
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Status of proofs of completeness and Z,(x; q)

@ The refined counting function Z,(x; g) has a representation-theoretical definition in
terms of the crystal bases for Ugy(g) (for some g) or the representation theory of g[t]
(all simple g). [Feigin Loktev 99].

@ Dimension formula proved for all g [DFK08] and formula for Zy(x, q) proved for
simply-laced g [DFK11] and all g [K. Lin 17].
The formulas can be rewritten as a constant term formula in the
variables{ Q. x : a € [1,rank g], kK € Z} and are equivalent to the fact that they satisfy
the Q-system:

Qa1 Qapo1 = Q2p — H Qbk, @ simply-laced.

b~a

A discrete, integrable evolution with a canonical quantization.
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From combinatorics to algebra

Switch point of view: Look for the algebra of “raising operators”.

Define Qax = chV/(kw,):
Za(x;1) = H ng’ = Z Zy n(1)sr(x).
A
So that adding one more site to the spin chain means multiplying by Q. x:

Znteq (% 1) = QakZa(x; 1).

Is there g-deformed version of this multiplication which produces the polynomials
Za(x; q)?
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Outline of the answer:

Theorem: The characters of KR-modules {Q,,«} satisfy recursion equations called
Q-systems. These are:

@ Cluster algebra mutations.

@ Discrete integrable equations.

Since we have a cluster algebra, we have a canonical quantization.

Theorem: [Di Francesco, K.]
@ The quantum Q-system is the correct g-deformation to generate Zy(x; q).
@ Integrability survives quantization.

@ The integrals of motion give g-difference equations for the functions Za(x; q).
Special cases: Toda g-difference equations.
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The Q-system: The classical case

Theorem: The characters of KR-modules (in the case of sly, Q. x = s(ks)(x)) satisfy the
the Q-system

2
Qak+1Qak—1 = Qik — Qar1,kQa1.ks, Qok = Quk =1

together with the initial data

Qo=1 (i=1,...N-1).

Definition: The algebra Ry is the commutative, associative algebra generated by {Q;‘k1
with relations given by the Q-system.
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Example of Q-system for sl
For g = sly, there is only one simple root, Qx := Q1 «:

Qui1Qu-1= QF — 1.
Given initial data (Qo, @1),

_ Q-1 2
= T e 97
2_12_
R = W QO:>1QE’72Q1,
(@ -@-Q- R+ )(@R R -+ B 1) ‘302
@ - Q7 g G 3@

@ All Qx are Laurent polynomials in (Qo, Q1).

@ When @Q =1, all Q« are polynomials in Q1. (Chebyshev polynomials of second kind
in x if Q1 = 2x).
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Denanot-Jacobi and discrete integrability |

The Q-system for sly is a discrete integrable system in the time variable k:
2
Qir1kQi—1x = Qik — Qikr1Qik—1, Qok=1,Qux =1

is satisfied by the minors of the discrete Wronskian matrix (Qx := Q1,):

Q« Qu41 e Qr+i
Q-1 Q« e Quti—1
Witre = : : . :
Qu—i  Qr—it1 e Q«

The Q-system is the Denanot-Jacobi relation for the determinant of the n x n matrix M:
IMI|My7| = [ML]|M7| — | MMy

under the identification Q;x = |W; «/.
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Conserved quantities

9 The relation |Wy «| =1 for all k implies |Wp.41,4| = 0, a linear recursion relation:

N .
D (1Y Gy Quin—j-

j=0
@ The relation |Wh «+1| — [Wn,k| =1 — 1 = 0 implies the coefficients in the linear
recursion are independent of k.
Example: N =2
Qu+1 Quy2 Qe Qkn1
0=1-1=|W, — | W =
‘ 2,k+1‘ | 2,k| Qk Qk+1 Qk—l Qk

_| Q1 Qx + Q2
Qe Qu—1+ Qi

so the first column is proportional to the second:
Qi1 = Qi + Quy2 and ¢ Q = Qu—1 + Qi1
therefore ¢ is independent of k:

c_ Qr—1 + Qky1
Qx

is a conserved quantity.
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The cluster algebra structure

Theorem: [K 2009] Each of the relations in Ry
Qihr1Qik—1= Q'x — Q1 xQi—1k, kE€Z,i€l .. ,N—1,

with Qox = Qn,x = 1, is a mutation relation in the cluster algebra with the exchange
matrix
0 -C
B = (C 0 ) , C = the sl Cartan matrix.

Aside on cluster algebras
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Aside on cluster algebras

Fix an integer n (the rank) and let T be the complete n-tree
with each vertex t € T having incident edges labeled 1, ..., n.

Definition: A cluster algebra is an associative commutative algebra generated by gluster
variables {x;(t),i € [1,n], t € T}, with relations between them, defined as follows:

To each vertex t of the tree T we associate the cluster (x(t), [(t)) where ['(t) is a quiver
with no 1- or 2-cycles.

Clusters in vertices connected by an edge are related by an involution called a mutation.
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Mutations

If two vertices of the tree are connected by an edge k:

?k—?
then (x, M) (t") = pe((x,7)(t)), where u is defined as follows:

o Quiver mutation:

@ For each subquiver k — i — j in I, add an arrow k — j.
@ Reverse all arrows incident to vertex i.
@ Erase all 2-cycles.

o Cluster mutations: x(t’) is obtained from x(t) as follows:
x(t), J# i

. t/ —
%(t) Hj—n'Xj + Hi—>jxj P
Xi(t) I _J
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Insight from cluster algebras

The cluster algebra structure gives us some information:
@ (Laurent phenomenon) All cluster variables in a cluster algebra are Laurent
polynomials in any cluster variable x(t). [Fomin-Zelevinsky].
@ Theorem: [DFK] The evaluation Qio =1 (i.e. Qi,—1 =0) for all i reduces each of
the Laurent polynomials Q; «x to a polynomial in {Q; 1 :7 € [1, N — 1]}. (Laurent
property applied to this particular algebra).

@ If the exchange matrix of the cluster algebra is non-degenerate, there is a canonical
quantization of the cluster algebra.
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Quantization of the Q-system

Classical:

2
Qik+1Qik—1= Qi x — Qiy1,kQi—1,k, Qox = Quk = 1.

Definition: The quantized algebra Ry is the algebra generated by the (invertible)
elements {Qj«,1 < i < N, k € Z} modulo the relations (1), (2), (3) below:

9@ The quantized variables commute as
ik Qjrm = " ki mQi,  m < |i—jl+ 1. (1)
o The quantum mutation relation (Quantum Q-system):

G Qihr1Qik—1 =k — Qi1 kQim1ky (2)

o Boundary conditions:
Qk=1, Qi1xk=0. (3)
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Conformal partition function from Q-system

Classical case:

Za(x;1) = H (Qik)™*

i,k>0
Qi,1=¢i(x),Q;,0=1

Theorem [Di Francesco, K 2014] There is a linear functional
M: U({Q,‘,k, k > 0}) — Z[q, qil][Xh ...,XN]SN
which maps the product of solutions to the quantum Q-system to the conformal partition

function: .
Mn: HHQ?’/ = Zn(x; q_l).
j=k i

Note: The functional uses (Laurent, polynomiality theorems) structure of quantum
cluster algebra to impose the analogue of Q; o = 1 and to extract the coefficients of sy (x).
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The quantum determinant

Theorem:[Di Francesco, RK] The quantum Q-system
qui,k-HQi,k—l = Q,?,k — Qi1 kQi—1.k

is a quantum Desnanot-Jacobi relation: The elements Q; x are quantum determinants of
{QLJ‘}S:

In terms of generating currents

9(z) = Z z"Q1.p,

neZ

Qa,n = CTzl,. 2 Hz H 1 — q )Q(Zl) . Q(Za).

1<i<j<a

Corollary: Ry is generated as a polynomial algebra by the elements {Q1 «}kez.

Rinat Kedem (University of lllinois) Cargese 31/ 49



Discrete integrable system

The quantum Q-system is a discrete integrable system:
q' Qi1 = (B k — Q1 kQi-16)Q 41, i €{L, ..., N}

with
Qok =1,9v114k =0

is an evolution equation for the variables in the discrete time variable k € Z. Time
translation is

D : (Qlyk, ceny QNyk) — (Ql,k+1, ey QN7k+1)

Theorem: The discrete quantum evolution above has N integrals of motion in involution.
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Miura operator

For fixed k, define the N commuting elements in Ry:

—1 —1 .
Xik = Qi,k+lQi,kQifl,in—l,k-Hv I € {1, o N}.

Theorem: [Di Francesco, K 2016] The operator acting on Ry
pk = (D = xn i) (D — xn—1,6) - - (D — x1.4)
is independent of k.
Sketch of proof: Define §; \ = Qi:in_,k1+1 so that x; = ffftfifl,k- The relation

(D = xiz1,6)(D — f,‘Tklfi—l,k—l) =(D - f,‘jrll_’kéi,kfl)(D = Xj k—1)

is a consequence of two applications of the quantum Q-system. Together with the boundary
terms

11 p—le-1
EiCok—1 = €10k = XLk
and ) )
Ent1 k€N k=1 = &y k18N k=1 = XN k—1

this gives a “zipper proof’ that px = px_1.
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Conserved quantities

Corollary: The coefficients C; := G, in the “Miura operator”

N
p=qu= (D= xn)(D—xn-1x) (D =x6) =Y (1Y G D"
=0

are independent of k.
Example: For sl, (N = 2),
G=1 G= QQ’k_HQ;J{, G = (CQQL/( + Ql,k+2)Q;/1+1~

Lemma: The elements
Xp = lim Xan
n— oo

are well-defined and commute with each other.

So C;i = ei(x, ..., xn) are the elementary symmetric functions in these variables.
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Time evolution

Theorem: The elements {Qx := Q1 «} which generate Ry are in the kernel of the Miura
operator u:
nQr =0, neZ.

Proof: Since p = py for all k,

1 Qk = (D — xi,6)Q = -+ (D — %19 )%k = - - (D — Q1) = 0.

Theorem: the coefficients C; act as Hamiltonians:

(G, Q] = (1 = q)Qx+1,

and in general
J
(1-9)7G, % =D (1) G-

a=1
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Generating functions

Define N N
z) =) %z, C(z)=) (-2/G=]]1-20).
keZ j=0 i=1
then
Z
C(z) =exp Z =
= J

where P; are the power-sum symmetric functions, and

[P, Q] = (1 —q")Qj, JjeN.
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Application of integrability: Exchange relations

Theorem [DFK16]: The generating functions Q(z) satisfy the quadratic relations

(z = gqw)Q(2)Q(w) + (w — qz)Q(w)Q(z) = 0.

Proof: The exchange relation is equivalent to ¢y ¢ = [Qu, Quyelg + [Ute—1, Ut1]lg =0, £>0.

é =1: ¢k,1 = 2(Qka+1 — qQk+1Qk) =0.

€=2: o =9% —q%p1%-1 — (49% — U-1%41) = Lok — Dk =0,
which follows from the quantum Q-system and its counterpart

Q1911 = 92 — Dk
By induction,
[H1, [9% Qktelal = ([Qu+15 Qkelq + [Ques Ueretalq)
to (f)k’gi
Sk o1 = [H1, dre]l — dran,e—1

with ¢y 1 = ¢k 2 = 0, this vanishes by induction for all £ > 0.
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Quantum determinant relation

The relation
(z — qw)Q(2)Q(w) + (w — gz)Q(w)Q(z) = 0.

is the defining relation in U_ g(n[u,u™"]) C U\/ﬁ(;\lQ).

Here, we have one more relation in Ry: A degree N + 1 polynomial relation coming from
the (N + 1)st quantum determinant:

QN+1’k = 0, k € 7.

Theorem: The algebra Ry is isomorphic to a quotient of U 4(n[t, t71]) by the
rank-dependent quantum determinant relations.
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Action on characters

Recall: There is a linear functional from the quantum Grothendieck ring to the ring of
symmetric polynomials, such that

1 N-1
nij -1
n: H H QY = Za(xiq ).
j=k i=1
The elements Q; , act as maps between graded characters of.

Qik : Zn(x; qfl) — Zy (x; qfl)

where n’ differs from n only by nj , = n;x + 1. (Corresponding to adding one
representation V/(kw;).)
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Difference operator Solutions of quantum Q-system

How does Q; x act on symmetric functions?

For any k € Z and i € [1, N], Define the g-difference operators on the space of functions
in Xy, ..., Xy :

D, = Z Hx,-k H < )j % H i, where ix; = q5”>grf.

IciLn \iel  jgl iel
|l=a

For example Do,k = 1, DN,k = (X1 . ~XN)k|—1 e FN, DN+17/< =0 and D17k is a linear
combination of x with non-commuting right coefficients.

Theorem: The elements D; , form a representation 7 of Ry where

W(Qa,k) = Da,k~

To prove this one must show that D,k satisfy the quantum Q-system (hard) and the
quantum determinant conditions (automatic).
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Graded characters from difference operators

Theorem: [Di Francesco, K 2015] The graded characters of H, is be generated by the
action of difference operators on the trivial polynomial, as follows:

N—-1
Z"(X;q 1 = q 2 p(n) H "lk... H(Di,l)nf"l 1.
i=1

where

p(n) = Z na,i min(i, j) min(a, b)nyj — Zlana by

irj,a,b

with n, ; being the number of modules in the tensor product with highest weight iw,.

So we have the raising operators for the family of symmetric functions Z,(x; q) as
g-difference operators.
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Difference (Toda-like) equations for Z,(x; q)
The existence of Hamiltonians C; implies g-difference equations:

Example: Let g = sl5.

o The quantum Q-system is an equation for Q := Q1 x and Qo x = AXA where
AQ, k=g Q kA

QQki1 = g% 1%,  qu1Qk 1 = Q% — Qo k.
@ The hamiltonian
Cr= (-1 + Q1) ' = UQity + Q1 Ot — AQ L Q!
acts with eigenvalue ei1(x1, x2) on the eigenfunction Z,(x; q). If
3= V((k — D)w1)®" @ V(kw1)®", and Zma(x;q 1) = g~ 27™7Q7Q7 | .1,

Clzm,n = mel,n+1 + Zm+1,n71 - qk(linim)im+lszl,n71 = el(x)Zm,n-

o When k =1, Zn,» = Z,(x; q) satisfies

e1Zy=Zn1+ (1 —q ")Zs—1, ‘“g-difference quantum Toda.”

Rinat Kedem (University of lllinois) Cargese 42 / 49



t-deformation: DIM, sDAHA, elliptic Hall algebra...

The operators D, , are the t — oo limit of “generalized Macdonald operators:” [c.f. Miki
in the context of q,t W-algebras]

tX;
o= 1 IIX I = 1T
IC[1,N] iel j¢l! iel
[l]=a

o The Macdonald operators are {D, o}, and they form a commuting family.
o For fixed k, the difference operators D g, ..., Dy« also form a commuting family.

@ The operators D, x are “raising operators” (in the elliptic Hall algebra).
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The algebra of generalized Macdonald operators

The algebra Ry whose generators are representated by the generalized Macdonald
operators is a quotient of the DIM algebra at trivial central charge.

Theorem: [Di Francesco, K 2017] Let x*(z) = Ekez(q%z)k‘Dl,k. Then
g(z, w)x" (2)x" (w) + g(w, 2)x" (w)x"(2) = 0,

where
glz,w) = (z— qw)(z — t 'w)(z — g "tw).

¢

The currents x*(z) also satisfy a cubic relation (Serre-type relation).

¢

If we stop here, this is a subalgebra of the quantum toroidal algebra or DIM when
N — .

o For N finite, there is a set of relations Dyy1,x = 0 for all k, c.f. spherical DAHA at
finite N.

Add generators x™ (z) = D(2)|(q,6)—(1/4,1/¢) to get full algebra at trivial central
charge.

(<]

o The algebra Ry is recovered in the limit t — oo of Ry.
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The DIM algebra

The quantum toroidal algebra of gl, [see Miki; Awata, Feigin, Shiraishi,...] is the algebra
generated by currents x*(z), ¥ (z) with non-trivial relations (Drinfeld-type)

Gw/y2)p"(2)y ™ (w) = Glyw/2)y™ (w)v'(2)
P (W) = Gy w/2) T (w)y(2)
glz/w)FxF(2)xT(w) = g(w/z)"xF (w)x*(2)
1-gq/t - _ -
W[X+(Z):X (w)] = (5(7W/Z)¢+(Z/ﬁ)—5(72/w)w (ﬁz))

wE = 5t
T =
and Serre-type relations
SyMey 2.5 (22/ 2367 (22), [T (22), X (23)]]) =
The generators v, are central elements and

_ g(1,x)
G(X) - g(X, 1)7

g(z,w) = (z = qw)(z — w/q)(z — tw/q).
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From commuting hamiltonians to bosonization

We can compute explicitly from the difference operators:
[Pk, 'Dl,n] = (1 — qk)Dl,n+k~

which leads to the equation for

k/2 _ _—k/2
X @od = (pX + S ) (2)

o If F[X] is a symmetric function, this action of x™(z) is written in plethystic notation
as

X (2)FIX] = FIX + 1= (2).

=
=

9 In the limit N — oo, an infinite number of variables, Px are algebraically

independent, and
k/2 —k/2
q/°—q d
xH(2) xep(3 T—T— %)
k40 k

when acting on the space of symmetric functions.
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Limit N — oco: Non-trivial central charge

If we let x™(z) act on the space of symmetric polynomials, and consider its action on 1,

xT(z) = L) exp (Z akz—kk> exp (Z aZz_k>

(1-g)(1-1/t k>0 k>0

we can write

with a, = ¢*/*(1 — t7*)Pu[X] and a; = (¢"/% — q7/*) 5.

o See [Feigin, Jimbo, Miwa+,09].
s The currents x ™ (z) are obtained from x™(z) with (g, t) — (g7, t71).
o These currents generate the DIM algebra with non-trivial central charge v = /t/q

("horizontal representation”) which is a fock space.
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Summary

9 The linearized-spectrum partition functions of the generalized Heisenberg spin chains
can be generated by the action of g-difference operators acting on 1.

9 These g-difference operators satisfy the quantum cluster algebra called the quantum
Q-system.

o This algebra is isomorphic to a rank-dependent quotient of a quantum affine algebra.

@ The t-deformation of these operators satisfies relations in the quantum toroidal
algebra of gl;.

@ In the infinite-rank limit, they are the level (1,0) representation of this algebra.
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Thank you!
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