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The Hilbert space of the XXX model

V

ζ1
V

ζ2 · · ·
V

ζM

The algebra is Y (sl2), V (ζi) ≃ C
2 are representations of the Yangina and the Hilbert

space is
HM ≃ V

⊗M ≃ ⊕
λ
Hλ ⊗ V (λ); V (λ) = irreducible sl2-mod

with dimension HM = 2M .
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Generalized inhomogeneous Heisenberg spin chain

V1

ζ1
V2

ζ2 · · ·
VM

ζM

The representations Vi (ζi) are arbitrary representations of Y (sl2), and the Hilbert space

Hn ≃ V1 ⊗ · · · ⊗ VM = ⊗
k≥1

V (kω1)
⊗nk ≃ ⊕

λ
Hλ,n ⊗ V (λ)

where V (kω1) ≃ C
k+1 in the tensor product.

dimHn = dim
k∏

i=1

V (iω1)
⊗ni =

k∏

i=1

(i + 1)ni .
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Completeness problem

The hamiltonian conserves spin: it acts on the multiplicity space

Hλ,n := Homsl2 (Hn,V (λ)) .

Spectrum of the hamiltonian in the subspaces is parameterized by solutions to the
Bethe ansatz equations.

The “completeness conjecture” is that the dimension of Hλ,n is bijection with the
combinatorial data associated with the BAE.
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Combinatorial content of BAE for sl2

Fix a partition µ of S = 1
2
(
∑

i
ini − ℓ), and the integers mi are defined by

µ = (1m1 , 2m2 , · · · )

We have
Hλ,n = ⊕

µ
Hλ,n(µ)

The basis of Hλ,n(µ) is parameterized by “riggings” of µ: mi Distinct integers

I
(i)
j ∈ [1, pi +mi ] for each row of length i . (Distinct partitions of length mi and
width at most pi +mi .)

Grading: We weigh each rigging with a weight qd where d is proportional to the
sum of the integers.
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Counting bosons vs. fermions

A bosonic Fock space has a basis parameterized by partitions:

a−λ1a−λ2 · · · a−λm |0〉

with λi ≥ λi+1.

Define the set of partitions P(p|m) to be all sets of the form

λ = (p ≥ λ1 ≥ λ2 ≥ · · · ≥ λm ≥ 0)

Then ∑

λ∈P(p|m)

q
|λ| =

[
p +m

m

]

q

,

where the Gaussian polynomial is

[
p +m

m

]

q

=
m∏

j=1

1− qp+j

1− qj
.
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Fermions

A fermionic Fock space is parameterized by distinct partitions:

ψ−λ1 · · ·ψ−λm |0〉

where λi > λi+1.

If Pd (p +m|m) is the set of distinct partitions

λ = (p +m ≥ λ1 > λ2 > · · · > λm > 0)

then the partition λ̃ = (λ1 −m, λ2 −m + 1, ..., λm − 1) ∈ P(p|m). The generating
function ∑

λ∈Pd (p+m|m)

q
|λ| =

∑

λ̃∈P(p|m)

q
|λ̃|+ 1

2
m(m+1) =

[
p +m

m

]

q

q
1
2
m(m+1).
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Completeness of Bethe solutions

We are counting “fermions” with a difference:

The “vacancy numbers” p = (p1, p2, ...) depend on m, the number of
“quasi-particles”:

p = An− 2Am, [A]i,j = min(i , j).

If Bethe integers parameterize spectrum of Hλ,n then

dimHλ,n =
∑

m
|m|= 1

2
|n|−(λ1−λ2)

(
pi +mi

mi

)
.

We have the refined (graded) dimension formula:

Zλ,n(q) =
∑

m

q
mtAm

[
pi +mi

mi

]

q

We call the refined counting Zλ,n the conformal partition function.
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Physical origin of grading

In conformal limit, the partition function Z is dominated by order 1/M excitations:
Massless quasi-particles, with linearized energy function, E(Pi ) ≃ v |(Pi − P0)|.
(P=momentum and v=Fermi velocity).

E(p)

−p0 00 p p

Periodic system: Momenta Pi are quantized in units of 2π
N
: =⇒ Dominant

contribution to the chiral partition function is a series in q = exp(−2πv
kNT

). Conformal
limit means N → ∞,T → 0,NT fixed.

The momenta are proportional to (shifted) Bethe integers in this limit.
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Infinite size limit (motivation for the term “conformal”)

In the XXX model or its higher rank generalizations to slN ,

H ≃ V (ω1)
⊗M .

Define the generating function

ZM(x; q) =
∑

λ:|λ|=M

Zλ,M(q)sλ(x)

where the Schur functions sλ(x) are the characters of the irreducible representation V (λ)
of glN .

Theorem: [K 2004]

lim
M→∞

Z(1)M (x, q
−1) ∝ charL(Λi ), i = M mod N.

The module L(Λi ) is the level-1 highest weight module of the affine algebra ŝlN with
highest weight Λi .

The character is a chiral partition function of the effective conformal field theory
which describes the (critical) XXX model in the thermodynamic limit (WZW,
k = 1).
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Higher rank generalizations

V1

ζ1
V2

ζ2 · · ·

VM

ζM

The representations Vi (ζi) of Y (slN) are special: KR-modules Vi (ζi) ≃ V (ℓiωαi ) as
slN-modules:

ℓωα ∼ α

ℓ

Hn =
N−1
⊗
a=1

⊗
k≥1

V (kωa)
⊗na,k ≃ ⊕

λ
Hλ,nV (λ).
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Bethe ansatz combinatorics for slN

Combinatorial data:

1 multi-partitions ~µ = (µ(1), ..., µ(N−1)), where

∑

β

Cα,β |µ(β)| =
∑

j

n
(α) − λα, λ =

∑

α

λαωα.

2 Each µ(α) has a rigging as in the sl2 case, with vacancy numbers p
(α)
i for the part of

length i of partition µ(α).

3 We give each configuration a weight proportional to the sum of the riggings.

The result of counting such solutions is...
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Explicit combinatorial formula for Zn(x; q)

Zn(x; q) =
∑

~µ

q
1
2
F (~µ)

∏

α,i

[
p
(α)
i +m

(α)
i

m
(α)
i

]

q

sλ(n)−Cµ(x)

The multi-partition λ = (λ(1), ..., λ(N−1)) is determined by n : nα,j is the number of
parts of λ(α) of length j .

The sum is over multi-partitions ~µ = (µ(1), ..., µ(r));

F (~µ) =
∑
µ
(α)
i Cα,βµ

(β)
i , C = Cartan matrix;

m = {m(α)
i } with m

(α)
i the number of columns of µ(α) of length i .

The integers p
(α)
i : Sum over the first i columns of the composition λ(α) − (C~µ)(α).
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Special case: “Level 1”

Choose all representations to be fundamental representations with highest weight ωα for
various α.

H ≃
N−1
⊗
α=1

V (ωα)
⊗nα,1 .

The functions Zn(x; q) are polynomial versions of q-Whittaker functions
(eigenfunctions of q-Toda).

In terms of the modified Macdonald polynomials,

Zn(x; q) = Hλ(x; q, 0) = Pλ(x; q, 0).

where λ is the partition with nα,1 columns of length α.

V1 V2 VN

λ
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Special case: Symmetric power representations

Take all representations Vi to be symmetric power representations

H ≃
k

⊗
ℓ=1

V (ℓω1)
⊗n1,ℓ .

The functions Zn(x; q) are modified Hall-Littlewood symmetric functions.

A specialization of the modified Macdonald polynomial

Zn(x; q) = H̃λ(x; q, 0).

λ

V1

V2

VN
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Status of proofs of completeness and Zn(x; q)

1 The refined counting function Zn(x; q) has a representation-theoretical definition in
terms of the crystal bases for Uq(ĝ) (for some g) or the representation theory of g[t]
(all simple g). [Feigin Loktev 99].

2 Dimension formula proved for all g [DFK08] and formula for Zn(x, q) proved for
simply-laced g [DFK11] and all g [K. Lin 17].

The formulas can be rewritten as a constant term formula in the
variables{Qa,k : a ∈ [1, rank g], k ∈ Z} and are equivalent to the fact that they satisfy
the Q-system:

Qa,k+1Qa,k−1 = Q
2
a,k −

∏

b∼a

Qb,k , g simply-laced.

A discrete, integrable evolution with a canonical quantization.
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From combinatorics to algebra

Switch point of view: Look for the algebra of “raising operators”.

Define Qa,k = chV (kωa):

Zn(x; 1) =
∏

Q
na,j
a,j =

∑

λ

Zλ,n(1)sλ(x).

So that adding one more site to the spin chain means multiplying by Qa,k :

Zn+ǫα,k
(x; 1) = Qa,kZn(x; 1).

Is there q-deformed version of this multiplication which produces the polynomials
Zn(x; q)?
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Outline of the answer:

Theorem: The characters of KR-modules {Qa,k} satisfy recursion equations called
Q-systems. These are:

1 Cluster algebra mutations.

2 Discrete integrable equations.

Since we have a cluster algebra, we have a canonical quantization.

Theorem: [Di Francesco, K.]

1 The quantum Q-system is the correct q-deformation to generate Zn(x; q).

2 Integrability survives quantization.

3 The integrals of motion give q-difference equations for the functions Zn(x; q).
Special cases: Toda q-difference equations.
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The Q-system: The classical case

Theorem: The characters of KR-modules (in the case of slN , Qa,k = s(ka)(x)) satisfy the
the Q-system

Qa,k+1Qa,k−1 = Q
2
a,k − Qa+1,kQa−1,k , Q0,k = QN,k = 1

together with the initial data

Qi,0 = 1 (i = 1, ...,N − 1).

Definition: The algebra RN is the commutative, associative algebra generated by {Q±1
a,k }

with relations given by the Q-system.
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Example of Q-system for sl2

For g = sl2, there is only one simple root, Qk := Q1,k :

Qk+1Qk−1 = Q
2
k − 1.

Given initial data (Q0,Q1),

Q2 =
Q2

1 − 1

Q0
−→
Q0=1

Q2
1 − 1,

Q3 =
(Q2

1 − 1)2 −Q0

Q2
0Q1

−→
Q0=1

Q3
1 − 2Q1,

Q4 =
(Q3

1 − Q2
1 − Q1 − Q2

0 + 1)(Q3
1 + Q2

1 − Q1 + Q2
0 − 1)

Q3
0Q

2
1

−→
Q0=1

Q4
1 − 3Q2

1 + 1.

1 All Qk are Laurent polynomials in (Q0,Q1).

2 When Q0 = 1, all Qk are polynomials in Q1. (Chebyshev polynomials of second kind
in x if Q1 = 2x).
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Denanot-Jacobi and discrete integrability I

The Q-system for slN is a discrete integrable system in the time variable k :

Qi+1,kQi−1,k = Q
2
i,k − Qi,k+1Qi,k−1, Q0,k = 1,QN,k = 1

is satisfied by the minors of the discrete Wronskian matrix (Qk := Q1,k):

Wi+1,k =




Qk Qk+1 · · · Qk+i

Qk−1 Qk · · · Qk+i−1

...
...

. . .
...

Qk−i Qk−i+1 · · · Qk




The Q-system is the Denanot-Jacobi relation for the determinant of the n × n matrix M:

|M||M1,n
1,n | = |M1

1 ||Mn
n | − |Mn

1 ||M1
n |

under the identification Qi,k = |Wi,k |.
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Conserved quantities

The relation |WN,k | = 1 for all k implies |WN+1,k | = 0, a linear recursion relation:

N∑

j=0

(−1)jCk,jQk+N−j .

The relation |WN,k+1| − |WN,k | = 1− 1 = 0 implies the coefficients in the linear
recursion are independent of k .

Example: N = 2

0 = 1− 1 = |W2,k+1| − |W2,k | =

∣

∣

∣

∣

Qk+1 Qk+2

Qk Qk+1

∣

∣

∣

∣

−

∣

∣

∣

∣

Qk Qk+1

Qk−1 Qk

∣

∣

∣

∣

=

∣

∣

∣

∣

Qk+1 Qk + Qk+2

Qk Qk−1 + Qk+1

∣

∣

∣

∣

so the first column is proportional to the second:

ckQk+1 = Qk + Qk+2 and ckQk = Qk−1 +Qk+1

therefore ck is independent of k:

c =
Qk−1 +Qk+1

Qk

is a conserved quantity.
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The cluster algebra structure

Theorem: [K 2009] Each of the relations in RN

Qi,k+1Qi,k−1 = Q
2
i,k − Qi+1,kQi−1,k , k ∈ Z, i ∈ 1, ...,N − 1,

with Q0,k = QN,k = 1, is a mutation relation in the cluster algebra with the exchange
matrix

B =

(
0 −C

C 0

)
, C = the slN Cartan matrix.

Aside on cluster algebras
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Aside on cluster algebras

Fix an integer n (the rank) and let T be the complete n-tree
with each vertex t ∈ T having incident edges labeled 1, ..., n.

1

2
3

2

1

2

31

1 3

Definition: A cluster algebra is an associative commutative algebra generated by cluster

variables {xi (t), i ∈ [1, n], t ∈ T}, with relations between them, defined as follows:

To each vertex t of the tree T we associate the cluster (x(t), Γ(t)) where Γ(t) is a quiver
with no 1- or 2-cycles.

Clusters in vertices connected by an edge are related by an involution called a mutation.
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Mutations

If two vertices of the tree are connected by an edge k :

b bk
t′ t

then (x, Γ)(t′) = µk ((x, Γ)(t)), where µk is defined as follows:

Quiver mutation:
1 For each subquiver k −→ i −→ j in Γ, add an arrow k −→ j .
2 Reverse all arrows incident to vertex i .
3 Erase all 2-cycles.

Cluster mutations: x(t′) is obtained from x(t) as follows:

xj (t
′) =





xj (t), j 6= i ;

∏
j→i

xj +
∏

i→j
xj

xi (t)
, i = j .
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Insight from cluster algebras

The cluster algebra structure gives us some information:

1 (Laurent phenomenon) All cluster variables in a cluster algebra are Laurent
polynomials in any cluster variable x(t). [Fomin-Zelevinsky].

2 Theorem: [DFK] The evaluation Qi,0 = 1 (i.e. Qi,−1 = 0) for all i reduces each of
the Laurent polynomials Qi,k to a polynomial in {Qi,1 : i ∈ [1,N − 1]}. (Laurent
property applied to this particular algebra).

3 If the exchange matrix of the cluster algebra is non-degenerate, there is a canonical
quantization of the cluster algebra.
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Quantization of the Q-system

Classical:
Qi,k+1Qi,k−1 = Q

2
i,k − Qi+1,kQi−1,k , Q0,k = QN,k = 1.

Definition: The quantized algebra RN is the algebra generated by the (invertible)
elements {Qi,k , 1 ≤ i ≤ N, k ∈ Z} modulo the relations (1), (2), (3) below:

The quantized variables commute as

Qi,kQj,k+m = q
min(i,j)m

Qj,k+mQi,k , |m| ≤ |i − j |+ 1. (1)

The quantum mutation relation (Quantum Q-system):

q
i
Qi,k+1Qi,k−1 = Q

2
i,k − Qi+1,kQi−1,k , (2)

Boundary conditions:
Q0,k = 1, QN+1,k = 0. (3)
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Conformal partition function from Q-system

Classical case:

Zn(x; 1) =
∏

i,k>0

(Qi,k)
ni,k

∣∣∣∣∣∣
Qi,1=ei (x),Qi,0=1

Theorem [Di Francesco, K 2014] There is a linear functional

Π : U({Qi,k , k ≥ 0}) → Z[q, q−1][x1, ..., xN ]
SN

which maps the product of solutions to the quantum Q-system to the conformal partition
function:

Π :
1∏

j=k

∏

i

Q
ni,j
i,j 7→ Zn(x; q

−1).

Note: The functional uses (Laurent, polynomiality theorems) structure of quantum
cluster algebra to impose the analogue of Qi,0 = 1 and to extract the coefficients of sλ(x).
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The quantum determinant

Theorem:[Di Francesco, RK] The quantum Q-system

q
i
Qi,k+1Qi,k−1 = Q

2
i,k − Qi+1,kQi−1,k

is a quantum Desnanot-Jacobi relation: The elements Qi,k are quantum determinants of
{Q1,j}s:

In terms of generating currents

Q(z) :=
∑

n∈Z

z
n
Q1,n,

Qa,n = CTz1,...,za

a∏

i=1

z
−n
i

∏

1≤i<j≤a

(1− q
zj

zi
)Q(z1) · · ·Q(za).

Corollary: RN is generated as a polynomial algebra by the elements {Q1,k}k∈Z.
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Discrete integrable system

The quantum Q-system is a discrete integrable system:

q
i
Qi,k+1 = (Q2

i,k − Qi+1,kQi−1,k)Q
−1
i,k−1, i ∈ {1, ...,N}

with
Q0,k = 1,QN+1,k = 0

is an evolution equation for the variables in the discrete time variable k ∈ Z. Time
translation is

D : (Q1,k , ...,QN,k) 7→ (Q1,k+1, ...,QN,k+1)

Theorem: The discrete quantum evolution above has N integrals of motion in involution.
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Miura operator

For fixed k , define the N commuting elements in RN :

xi,k = Qi,k+1Q
−1
i,k Qi−1,kQ

−1
i−1,k+1, i ∈ {1, ...,N}.

Theorem: [Di Francesco, K 2016] The operator acting on RN

µk = (D − xN,k )(D − xN−1,k ) · · · (D − x1,k)

is independent of k .

Sketch of proof: Define ξi,k = Qi,kQ
−1
i,k+1 so that xi,k = ξ−1

i,k ξi−1,k . The relation

(D − xi+1,k)(D − ξ−1
i,k ξi−1,k−1) = (D − ξ−1

i+1,kξi,k−1)(D − xi,k−1)

is a consequence of two applications of the quantum Q-system. Together with the boundary
terms

ξ−1
1,k ξ

−1
0,k−1 = ξ−1

1,k ξ
−1
0,k = x1,k

and
ξ−1
N+1,kξN,k−1 = ξ−1

N+1,k−1ξN,k−1 = xN,k−1

this gives a “zipper proof” that µk = µk−1.
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Conserved quantities

Corollary: The coefficients Cj := Cj,n in the “Miura operator”

µ = µk = (D − xN,k )(D − xN−1,k ) · · · (D − x1,k ) =

N∑

j=0

(−1)jCj,kD
N−j

are independent of k .

Example: For sl2 (N = 2),

C0 = 1, C2 = Q2,k+1Q
−1
2,k , C1 = (C2Q1,k + Q1,k+2)Q

−1
1,k+1.

Lemma: The elements
xa := lim

n→∞
xa,n

are well-defined and commute with each other.

So Ci = ei(x1, ..., xN) are the elementary symmetric functions in these variables.
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Time evolution

Theorem: The elements {Qk := Q1,k} which generate RN are in the kernel of the Miura
operator µ:

µQk = 0, n ∈ Z.

Proof: Since µ = µk for all k ,

µkQk = · · · (D − x1,k )Qk = · · · (D − Qk+1Q
−1
k )Qk = · · · (DQk − Qk+1) = 0.

Theorem: the coefficients Cj act as Hamiltonians:

[C1,Qk ] = (1− q)Qk+1,

and in general

(1− q)−1[Cj ,Qk ] =

j∑

a=1

(−1)aCj−aQk+a.
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Generating functions

Define

Q(z) :=
∑

k∈Z

Qkz
k , C(z) =

N∑

j=0

(−z)jCj =
N∏

i=1

(1− zxi ).

then

C(z) = exp



−
∑

j≥1

z j

j
Pj



 ,

where Pj are the power-sum symmetric functions, and

[Pj ,Qk ] = (1− q
k)Qk+j , j ∈ N.
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Application of integrability: Exchange relations

Theorem [DFK16]: The generating functions Q(z) satisfy the quadratic relations

(z − qw)Q(z)Q(w) + (w − qz)Q(w)Q(z) = 0.

Proof: The exchange relation is equivalent to φk,ℓ = [Qk ,Qk+ℓ]q + [Qk+ℓ−1,Qk+1]q = 0, ℓ > 0.

ℓ = 1 : φk,1 = 2(QkQk+1 − qQk+1Qk) = 0.

ℓ = 2 : φk,2 = Q
2
k − qQk+1Qk−1 − (qQ2

k − Qk−1Qk+1) = Q2,k − Q2,k = 0,

which follows from the quantum Q-system and its counterpart

Qk−1Qk+1 = qQ2
k − Q2,k .

By induction,
[H1, [Qk ,Qk+ℓ]q] = ([Qk+1,Qk+ℓ]q + [Qk ,Qk+ℓ+1]q)

to φk,ℓ:
φk,ℓ+1 = [H1, φk,ℓ]− φk+1,ℓ−1

with φk,1 = φk,2 = 0, this vanishes by induction for all ℓ > 0.
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Quantum determinant relation

The relation
(z − qw)Q(z)Q(w) + (w − qz)Q(w)Q(z) = 0.

is the defining relation in U√
q(n[u, u

−1]) ⊂ U√
q(ŝl2).

Here, we have one more relation in RN : A degree N + 1 polynomial relation coming from
the (N + 1)st quantum determinant:

QN+1,k = 0, k ∈ Z.

Theorem: The algebra RN is isomorphic to a quotient of U√
q(n[t, t

−1]) by the
rank-dependent quantum determinant relations.
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Action on characters

Recall: There is a linear functional from the quantum Grothendieck ring to the ring of
symmetric polynomials, such that

Π :
1∏

j=k

N−1∏

i=1

Q
ni,j
i,j 7→ Zn(x; q

−1).

The elements Qi,k act as maps between graded characters of:

Qi,k : Zn(x; q
−1) → Zn′(x; q

−1)

where n′ differs from n only by n′
i,k = ni,k + 1. (Corresponding to adding one

representation V (kωi ).)
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Difference operator Solutions of quantum Q-system

How does Qi,k act on symmetric functions?

For any k ∈ Z and i ∈ [1,N], Define the q-difference operators on the space of functions
in x1, ..., xN :

Da,k =
∑

I⊂[1,N]
|I |=a




∏

i∈I

x
k
i

∏

j /∈I

xi

xi − xj




∏

i∈I

Γi , where Γixj = q
δij xjΓi .

For example D0,k = 1, DN,k = (x1 · · · xN)kΓ1 · · · ΓN , DN+1,k = 0 and D1,k is a linear
combination of xk

i with non-commuting right coefficients.

Theorem: The elements Di,k form a representation π of RN where

π(Qa,k) = Da,k .

To prove this one must show that Da,k satisfy the quantum Q-system (hard) and the
quantum determinant conditions (automatic).
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Graded characters from difference operators

Theorem: [Di Francesco, K 2015] The graded characters of Hn is be generated by the
action of difference operators on the trivial polynomial, as follows:

Zn(x; q
−1) = q

− 1
2
p(n)

N−1∏

i=1

(Di,k)
ni,k · · ·

N−1∏

i=1

(Di,1)
ni,1 1.

where
p(n) =

∑

i,j,a,b

na,i min(i , j)min(a, b)nb,j −
∑

i,a

iana,b ,

with na,i being the number of modules in the tensor product with highest weight iωa.

So we have the raising operators for the family of symmetric functions Zn(x; q) as
q-difference operators.

Rinat Kedem (University of Illinois) Cargèse 41 / 49



Difference (Toda-like) equations for Zn(x; q)

The existence of Hamiltonians Ci implies q-difference equations:

Example: Let g = sl2.

The quantum Q-system is an equation for Qk := Q1,k and Q2,k = Ak∆ where
∆Qa,k = qak

Qa,k∆.

QkQk+1 = qQk+1Qk , qQk+1Qk−1 = Q
2
k − Q2,k .

The hamiltonian

C1 = (Qk−1 + Qk+1)Q
−1
k = QkQ

−1
k+1 + Qk+1Q

−1
k −∆Q

−1
k+1Q

−1
k

acts with eigenvalue e1(x1, x2) on the eigenfunction Zn(x; q). If

H = V ((k − 1)ω1)
⊗m ⊗ V (kω1)

⊗n, and Zm,n(x; q
−1) = q

− 1
2
p(m,n)

Q
n
kQ

m
k−1 · 1,

C1Zm,n = Zm−1,n+1 + Zm+1,n−1 − q
k(1−n−m)−m+1

Zm−1,n−1 = e1(x)Zm,n.

When k = 1, Zm,n = Zn(x; q) satisfies

e1Zn = Zn+1 + (1− q
−n)Zn−1, “q-difference quantum Toda.”
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t-deformation: DIM, sDAHA, elliptic Hall algebra...

The operators Da,n are the t → ∞ limit of “generalized Macdonald operators:” [c.f. Miki
in the context of q,t W-algebras]

Da,k =
∏

I⊂[1,N]
|I |=a

∏

i∈I

x
k
i

∏

j /∈I

txi − xj

xi − xj

∏

i∈I

Γi .

The Macdonald operators are {Da,0}a and they form a commuting family.

For fixed k , the difference operators D1,k , ...,DN,k also form a commuting family.

The operators Da,k are “raising operators” (in the elliptic Hall algebra).
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The algebra of generalized Macdonald operators

The algebra RN whose generators are representated by the generalized Macdonald
operators is a quotient of the DIM algebra at trivial central charge.

Theorem: [Di Francesco, K 2017] Let x+(z) =
∑

k∈Z
(q

1
2 z)kD1,k . Then

g(z ,w)x+(z)x+(w) + g(w , z)x+(w)x+(z) = 0,

where
g(z ,w) = (z − qw)(z − t

−1
w)(z − q

−1
tw).

The currents x+(z) also satisfy a cubic relation (Serre-type relation).

If we stop here, this is a subalgebra of the quantum toroidal algebra or DIM when
N → ∞.

For N finite, there is a set of relations DN+1,k = 0 for all k , c.f. spherical DAHA at
finite N.

Add generators x−(z) = D(z)|(q,t) 7→(1/q,1/t) to get full algebra at trivial central
charge.

The algebra RN is recovered in the limit t → ∞ of RN .
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The DIM algebra

The quantum toroidal algebra of gl1 [see Miki; Awata, Feigin, Shiraishi,...] is the algebra
generated by currents x±(z), ψ±(z) with non-trivial relations (Drinfeld-type)

G(w/γz)ψ+(z)ψ−(w) = G(γw/z)ψ−(w)ψ+(z)

ψǫ(z)x±(w) = G(γ∓ǫ
w/z)∓1

x
±(w)ψǫ(z)

g(z/w)±1
x
±(z)x±(w) = g(w/z)±1

x
±(w)x±(z)

1− q/t

(1− q)(1− t−1)
[x+(z), x−(w)] =

(
δ(γw/z)ψ+(z/

√
γ)− δ(γz/w)ψ−(

√
γz)
)

ψ±
0 = δ±1

and Serre-type relations

Symz1,z2,z3

(
z2/z3[x

±(z1), [x
±(z2), x

±(z3)]]
)
= 0.

The generators γ, δ are central elements and

G(x) =
g(1, x)

g(x , 1)
, g(z ,w) = (z − qw)(z − w/q)(z − tw/q).
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From commuting hamiltonians to bosonization

We can compute explicitly from the difference operators:

[Pk ,D1,n] = (1− q
k)D1,n+k .

which leads to the equation for

x
+(z)pk [X ] =

(
pk [X ] +

qk/2 − q−k/2

zk

)
x
+(z).

If F [X ] is a symmetric function, this action of x+(z) is written in plethystic notation
as

x
+(z)F [X ] = F [X +

q
1
2 − q− 1

2

zk
]x+(z).

In the limit N → ∞, an infinite number of variables, Pk are algebraically
independent, and

x
+(z) ∝ exp(

∑

k 6=0

qk/2 − q−k/2

zk
d

dPk

)

when acting on the space of symmetric functions.

Rinat Kedem (University of Illinois) Cargèse 46 / 49



Limit N → ∞: Non-trivial central charge

If we let x+(z) act on the space of symmetric polynomials, and consider its action on 1,
we can write

x
+(z) =

q
1
2

(1− q)(1− 1/t)
exp

(
∑

k>0

ak
zk

k

)
exp

(
∑

k>0

a
∗
k z

−k

)

with ak = qk/2(1− t−k )Pk [X ] and a∗k = (qk/2 − q−k/2) d
dPk

.

See [Feigin, Jimbo, Miwa+,09].

The currents x−(z) are obtained from x+(z) with (q, t) 7→ (q−1, t−1).

These currents generate the DIM algebra with non-trivial central charge γ =
√

t/q
(“horizontal representation”) which is a fock space.
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Summary

The linearized-spectrum partition functions of the generalized Heisenberg spin chains
can be generated by the action of q-difference operators acting on 1.

These q-difference operators satisfy the quantum cluster algebra called the quantum
Q-system.

This algebra is isomorphic to a rank-dependent quotient of a quantum affine algebra.

The t-deformation of these operators satisfies relations in the quantum toroidal
algebra of gl1.

In the infinite-rank limit, they are the level (1, 0) representation of this algebra.
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Thank you!
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