Deformations of Q-systems, character formulas and the completeness problem

Rinat Kedem

University of Illinois

Cargèse summer school Exact methods in low dimensional statistical physics 2017

Outline

- 1 Counting graded dimensions of Heisenberg spin chains
- The Q-system and its q-deformation
- 3 Discrete quantum integrability and exchange relations
- Generalized Macdonald operators and quantum toroidal algebras

The Hilbert space of the XXX model

The algebra is $Y(\mathfrak{sl}_2)$, $V(\zeta_i) \simeq \mathbb{C}^2$ are representations of the Yangina and the Hilbert space is

$$\mathfrak{H}_{\mathit{M}} \simeq V^{\otimes \mathit{M}} \simeq \mathop{\oplus}\limits_{\lambda} \mathfrak{H}_{\lambda} \otimes V(\lambda); \quad V(\lambda) = \mathsf{irreducible} \; \mathfrak{sl}_2\mathsf{-mod}$$

with dimension $\mathcal{H}_M = 2^M$.

Generalized inhomogeneous Heisenberg spin chain

The representations $V_i(\zeta_i)$ are arbitrary representations of $Y(\mathfrak{sl}_2)$, and the Hilbert space

$$\mathfrak{H}_{\mathsf{n}} \simeq V_1 \otimes \cdots \otimes V_M = \underset{k \geq 1}{\otimes} V(k\omega_1)^{\otimes n_k} \simeq \underset{\lambda}{\oplus} \mathfrak{H}_{\lambda,\mathsf{n}} \otimes V(\lambda)$$

where $V(k\omega_1) \simeq \mathbb{C}^{k+1}$ in the tensor product.

$$\dim \mathcal{H}_{\mathbf{n}} = \dim \prod_{i=1}^k V(i\omega_1)^{\otimes n_i} = \prod_{i=1}^k (i+1)^{n_i}.$$

Completeness problem

• The hamiltonian conserves spin: it acts on the multiplicity space

$$\mathcal{H}_{\lambda,n} := \operatorname{Hom}_{\mathfrak{sl}_2} (\mathcal{H}_n, V(\lambda)).$$

- Spectrum of the hamiltonian in the subspaces is parameterized by solutions to the Bethe ansatz equations.
- The "completeness conjecture" is that the dimension of $\mathcal{H}_{\lambda,n}$ is bijection with the combinatorial data associated with the BAE.

Combinatorial content of BAE for \mathfrak{sl}_2

• Fix a partition μ of $S = \frac{1}{2}(\sum_i in_i - \ell)$, and the integers m_i are defined by

$$\mu = (1^{m_1}, 2^{m_2}, \cdots)$$

We have

$$\mathcal{H}_{\lambda,\mathbf{n}} = \underset{\mu}{\oplus} \mathcal{H}_{\lambda,\mathbf{n}}(\mu)$$

- The basis of $\mathcal{H}_{\lambda,n}(\mu)$ is parameterized by "riggings" of μ : m_i Distinct integers $I_j^{(i)} \in [1, p_i + m_i]$ for each row of length i. (Distinct partitions of length m_i and width at most $p_i + m_i$.)
- Grading: We weigh each rigging with a weight q^d where d is proportional to the sum of the integers.

Counting bosons vs. fermions

A bosonic Fock space has a basis parameterized by partitions:

$$a_{-\lambda_1}a_{-\lambda_2}\cdots a_{-\lambda_m}|0\rangle$$

with $\lambda_i > \lambda_{i+1}$.

Define the set of partitions P(p|m) to be all sets of the form

$$\lambda = (p \ge \lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_m \ge 0)$$

Then

$$\sum_{\lambda \in P(p|m)} q^{|\lambda|} = \begin{bmatrix} p+m \\ m \end{bmatrix}_q,$$

where the Gaussian polynomial is

$$\begin{bmatrix} p+m \\ m \end{bmatrix}_q = \prod_{j=1}^m \frac{1-q^{p+j}}{1-q^j}.$$

Fermions

A fermionic Fock space is parameterized by distinct partitions:

$$\psi_{-\lambda_1}\cdots\psi_{-\lambda_m}|0\rangle$$

where $\lambda_i > \lambda_{i+1}$.

If $P_d(p+m|m)$ is the set of distinct partitions

$$\lambda = (p + m \ge \lambda_1 > \lambda_2 > \cdots > \lambda_m > 0)$$

then the partition $\widetilde{\lambda} = (\lambda_1 - m, \lambda_2 - m + 1, ..., \lambda_m - 1) \in P(p|m)$. The generating function

$$\sum_{\lambda \in P_d(p+m|m)} q^{|\lambda|} = \sum_{\widetilde{\lambda} \in P(p|m)} q^{|\widetilde{\lambda}| + \frac{1}{2}m(m+1)} = \begin{bmatrix} p+m \\ m \end{bmatrix}_q q^{\frac{1}{2}m(m+1)}.$$

Completeness of Bethe solutions

We are counting "fermions" with a difference:

ullet The "vacancy numbers" ${f p}=(p_1,p_2,...)$ depend on ${f m}$, the number of "quasi-particles":

$$\mathbf{p} = A\mathbf{n} - 2A\mathbf{m}, \quad [A]_{i,j} = \min(i,j).$$

If Bethe integers parameterize spectrum of $\mathcal{H}_{\lambda,n}$ then

$$\dim \mathcal{H}_{\lambda,\mathbf{n}} = \sum_{\substack{\mathbf{m} \\ |\mathbf{m}| = rac{1}{2}|\mathbf{n}| - (\lambda_1 - \lambda_2)}} egin{pmatrix} p_i + m_i \\ m_i \end{pmatrix}.$$

We have the refined (graded) dimension formula:

$$Z_{\lambda,\mathbf{n}}(q) = \sum_{\mathbf{m}} q^{\mathbf{m}^t A \mathbf{m}} \begin{bmatrix} p_i + m_i \\ m_i \end{bmatrix}_q$$

We call the refined counting $Z_{\lambda,n}$ the **conformal partition function.**

Physical origin of grading

• In conformal limit, the partition function Z is dominated by order 1/M excitations: Massless quasi-particles, with linearized energy function, $E(P_i) \simeq v |(P_i - P_0)|$. (P=momentum and v=Fermi velocity).

- Periodic system: Momenta P_i are **quantized** in units of $\frac{2\pi}{N}$: \Longrightarrow Dominant contribution to the chiral partition function is a series in $q = \exp(\frac{-2\pi\nu}{kNT})$. Conformal limit means $N \to \infty$, $T \to 0$, NT fixed.
- The momenta are proportional to (shifted) Bethe integers in this limit.

Infinite size limit (motivation for the term "conformal")

In the XXX model or its higher rank generalizations to \mathfrak{sl}_N ,

$$\mathcal{H} \simeq V(\omega_1)^{\otimes M}$$
.

Define the generating function

$$Z_M(\mathsf{x};q) = \sum_{\lambda:|\lambda|=M} Z_{\lambda,M}(q) \mathsf{s}_{\lambda}(\mathsf{x})$$

where the Schur functions $s_{\lambda}(\mathbf{x})$ are the characters of the irreducible representation $V(\lambda)$ of \mathfrak{gl}_N .

Theorem: [K 2004]

$$\lim_{M\to\infty} Z_{(1)^M}(\mathbf{x},q^{-1}) \propto \operatorname{char} L(\Lambda_i), \quad i=M \mod N.$$

- The module $L(\Lambda_i)$ is the level-1 highest weight module of the affine algebra $\widehat{\mathfrak{sl}}_N$ with highest weight Λ_i .
- The character is a chiral partition function of the effective conformal field theory which describes the (critical) XXX model in the thermodynamic limit (WZW, k = 1).

Higher rank generalizations

The representations $V_i(\zeta_i)$ of $Y(\mathfrak{sl}_N)$ are special: **KR-modules** $V_i(\zeta_i) \simeq V(\ell_i \omega_{\alpha_i})$ as \mathfrak{sl}_N -modules:

$$\ell\omega_{\alpha} \sim \alpha$$

$$\mathfrak{H}_{\mathbf{n}} = \underset{a=1}{\overset{N-1}{\otimes}} \underset{k>1}{\overset{\otimes}{\otimes}} V(k\omega_{a})^{\otimes n_{a,k}} \simeq \underset{\lambda}{\oplus} \mathfrak{H}_{\lambda,\mathbf{n}} V(\lambda).$$

Bethe ansatz combinatorics for \mathfrak{sl}_N

Combinatorial data:

1 multi-partitions $\vec{\mu} = (\mu^{(1)}, ..., \mu^{(N-1)})$, where

$$\sum_{\beta} C_{\alpha,\beta} |\mu^{(\beta)}| = \sum_{j} n^{(\alpha)} - \lambda_{\alpha}, \quad \lambda = \sum_{\alpha} \lambda_{\alpha} \omega_{\alpha}.$$

- **2** Each $\mu^{(\alpha)}$ has a **rigging** as in the \mathfrak{sl}_2 case, with vacancy numbers $p_i^{(\alpha)}$ for the part of length i of partition $\mu^{(\alpha)}$.
- We give each configuration a weight proportional to the sum of the riggings.

The result of counting such solutions is...

Explicit combinatorial formula for $Z_n(\mathbf{x};q)$

$$Z_{\mathbf{n}}(\mathbf{x};q) = \sum_{ec{\mu}} q^{rac{1}{2}F(ec{\mu})} \prod_{lpha,i} egin{bmatrix} p_i^{(lpha)} + m_i^{(lpha)} \ m_i^{(lpha)} \end{bmatrix}_q s_{\lambda(\mathbf{n}) - C\mu}(\mathbf{x})$$

- The multi-partition $\lambda = (\lambda^{(1)}, ..., \lambda^{(N-1)})$ is determined by $\mathbf{n} : n_{\alpha,j}$ is the number of parts of $\lambda^{(\alpha)}$ of length j.
- The sum is over multi-partitions $\vec{\mu} = (\mu^{(1)},...,\mu^{(r)});$
- $F(\vec{\mu}) = \sum \mu_i^{(\alpha)} C_{\alpha,\beta} \mu_i^{(\beta)}$, C = Cartan matrix;
- $\mathbf{m} = \{m_i^{(\alpha)}\}$ with $m_i^{(\alpha)}$ the number of columns of $\mu^{(\alpha)}$ of length *i*.
- The integers $p_i^{(\alpha)}$: Sum over the first i columns of the composition $\lambda^{(\alpha)} (C\vec{\mu})^{(\alpha)}$.

Special case: "Level 1"

Choose all representations to be fundamental representations with highest weight ω_{α} for various α .

$$\mathcal{H} \simeq \underset{\alpha=1}{\overset{N-1}{\otimes}} V(\omega_{\alpha})^{\otimes n_{\alpha,1}}.$$

- The functions $Z_n(\mathbf{x}; q)$ are polynomial versions of q-Whittaker functions (eigenfunctions of q-Toda).
- In terms of the modified Macdonald polynomials,

$$Z_{\mathbf{n}}(\mathbf{x};q) = H_{\lambda}(\mathbf{x};q,0) = P_{\lambda}(\mathbf{x};q,0).$$

where λ is the partition with $n_{\alpha,1}$ columns of length α .

Special case: Symmetric power representations

Take all representations V_i to be symmetric power representations

$$\mathcal{H} \simeq \underset{\ell=1}{\overset{k}{\otimes}} V(\ell\omega_1)^{\otimes n_{1,\ell}}.$$

- The functions $Z_n(\mathbf{x};q)$ are modified Hall-Littlewood symmetric functions.
- A specialization of the modified Macdonald polynomial

Status of proofs of completeness and $Z_n(\mathbf{x};q)$

- **1** The refined counting function $Z_n(\mathbf{x};q)$ has a representation-theoretical definition in terms of the crystal bases for $U_q(\widehat{\mathfrak{g}})$ (for some \mathfrak{g}) or the representation theory of $\mathfrak{g}[t]$ (all simple g). [Feigin Loktev 99].
- ② Dimension formula proved for all g [DFK08] and formula for $Z_n(x,q)$ proved for simply-laced g [DFK11] and all g [K. Lin 17].

The formulas can be rewritten as a constant term formula in the variables $\{Q_{a,k}: a \in [1, \text{rank }\mathfrak{g}], k \in \mathbb{Z}\}$ and are equivalent to the fact that they satisfy the Q-system:

$$Q_{a,k+1}Q_{a,k-1}=Q_{a,k}^2-\prod_{b\in\mathcal{A}}Q_{b,k},\quad \mathfrak{g} ext{ simply-laced}.$$

A discrete, integrable evolution with a canonical quantization.

From combinatorics to algebra

Switch point of view: Look for the algebra of "raising operators".

Define $Q_{a,k} = \operatorname{ch} V(k\omega_a)$:

$$Z_{\mathsf{n}}(\mathsf{x};1) = \prod Q_{\mathsf{a},j}^{n_{\mathsf{a},j}} = \sum_{\lambda} Z_{\lambda,\mathsf{n}}(1) s_{\lambda}(\mathsf{x}).$$

So that adding one more site to the spin chain means multiplying by $Q_{a,k}$:

$$Z_{\mathsf{n}+\epsilon_{\alpha,k}}(\mathsf{x};1) = Q_{\mathsf{a},k}Z_{\mathsf{n}}(\mathsf{x};1).$$

Is there *q*-deformed version of this multiplication which produces the polynomials $Z_n(\mathbf{x};q)$?

Outline of the answer:

Theorem: The characters of KR-modules $\{Q_{a,k}\}$ satisfy recursion equations called Q-systems. These are:

- ① Cluster algebra mutations.
- 2 Discrete integrable equations.

Since we have a cluster algebra, we have a canonical quantization.

Theorem: [Di Francesco, K.]

- ① The quantum Q-system is the correct q-deformation to generate $Z_n(\mathbf{x};q)$.
- 2 Integrability survives quantization.
- **3** The integrals of motion give q-difference equations for the functions $Z_n(\mathbf{x}; q)$. Special cases: Toda q-difference equations.

The Q-system: The classical case

Theorem: The characters of KR-modules (in the case of \mathfrak{sl}_N , $Q_{a,k}=s_{(k^a)}(\mathbf{x})$) satisfy the the Q-system

$$Q_{a,k+1}Q_{a,k-1} = Q_{a,k}^2 - Q_{a+1,k}Q_{a-1,k}, \quad Q_{0,k} = Q_{N,k} = 1$$

together with the initial data

$$Q_{i,0} = 1 \quad (i = 1, ..., N-1).$$

Definition: The algebra R_N is the commutative, associative algebra generated by $\{Q_{a,k}^{\pm 1}\}$ with relations given by the Q-system.

Example of Q-system for \mathfrak{sl}_2

For $\mathfrak{g} = \mathfrak{sl}_2$, there is only one simple root, $Q_k := Q_{1,k}$:

$$Q_{k+1}Q_{k-1} = Q_k^2 - 1.$$

Given initial data (Q_0, Q_1) ,

$$\begin{array}{rcl} Q_2 & = & \dfrac{Q_1^2-1}{Q_0} & \underset{Q_0=1}{\longrightarrow} & Q_1^2-1, \\ \\ Q_3 & = & \dfrac{(Q_1^2-1)^2-Q_0}{Q_0^2\,Q_1} & \underset{Q_0=1}{\longrightarrow} & Q_1^3-2Q_1, \\ \\ Q_4 & = & \dfrac{(Q_1^3-Q_1^2-Q_1-Q_0^2+1)(Q_1^3+Q_1^2-Q_1+Q_0^2-1)}{Q_0^3\,Q_1^2} & \underset{Q_0=1}{\longrightarrow} & Q_1^4-3Q_1^2+1. \end{array}$$

- ① All Q_k are Laurent polynomials in (Q_0, Q_1) .
- ② When $Q_0 = 1$, all Q_k are polynomials in Q_1 . (Chebyshev polynomials of second kind in x if $Q_1 = 2x$).

Denanot-Jacobi and discrete integrability I

The Q-system for \mathfrak{sl}_N is a discrete integrable system in the time variable k:

$$Q_{i+1,k}Q_{i-1,k} = Q_{i,k}^2 - Q_{i,k+1}Q_{i,k-1}, \quad Q_{0,k} = 1, Q_{N,k} = 1$$

is satisfied by the minors of the discrete Wronskian matrix $(Q_k := Q_{1,k})$:

$$W_{i+1,k} = \left(egin{array}{cccc} Q_k & Q_{k+1} & & \cdots & & Q_{k+i} \ Q_{k-1} & Q_k & & \cdots & & Q_{k+i-1} \ dots & dots & \ddots & & dots \ Q_{k-i} & Q_{k-i+1} & & \cdots & & Q_k \end{array}
ight)$$

The Q-system is the Denanot-Jacobi relation for the determinant of the $n \times n$ matrix M:

$$|M||M_{1,n}^{1,n}| = |M_1^1||M_n^n| - |M_1^n||M_n^1|$$

under the identification $Q_{i,k} = |W_{i,k}|$.

Conserved quantities

• The relation $|W_{N,k}| = 1$ for all k implies $|W_{N+1,k}| = 0$, a linear recursion relation:

$$\sum_{j=0}^{N} (-1)^{j} C_{k,j} Q_{k+N-j}.$$

• The relation $|W_{N,k+1}| - |W_{N,k}| = 1 - 1 = 0$ implies the coefficients in the linear recursion are independent of k.

Example: N=2

$$0 = 1 - 1 = |W_{2,k+1}| - |W_{2,k}| = \begin{vmatrix} Q_{k+1} & Q_{k+2} \\ Q_k & Q_{k+1} \end{vmatrix} - \begin{vmatrix} Q_k & Q_{k+1} \\ Q_{k-1} & Q_k \end{vmatrix}$$
$$= \begin{vmatrix} Q_{k+1} & Q_k + Q_{k+2} \\ Q_k & Q_{k-1} + Q_{k+1} \end{vmatrix}$$

so the first column is proportional to the second:

$$c_k Q_{k+1} = Q_k + Q_{k+2}$$
 and $c_k Q_k = Q_{k-1} + Q_{k+1}$

therefore c_k is independent of k:

$$c = \frac{Q_{k-1} + Q_{k+1}}{Q_k}$$
 is a conserved quantity.

The cluster algebra structure

Theorem: [K 2009] Each of the relations in R_N

$$Q_{i,k+1}Q_{i,k-1} = Q_{i,k}^2 - Q_{i+1,k}Q_{i-1,k}, \quad k \in \mathbb{Z}, i \in 1,...,N-1,$$

with $Q_{0,k}=Q_{N,k}=1$, is a mutation relation in the cluster algebra with the exchange matrix

$$B = \begin{pmatrix} 0 & -C \\ C & 0 \end{pmatrix}, \qquad C = \text{the } \mathfrak{sl}_N \text{ Cartan matrix}.$$

Aside on cluster algebras

Aside on cluster algebras

Fix an integer n (the rank) and let T be the complete n-tree with each vertex $t \in T$ having incident edges labeled 1, ..., n.

Definition: A cluster algebra is an associative commutative algebra generated by *bluster* variables $\{x_i(t), i \in [1, n], t \in T\}$, with relations between them, defined as follows:

To each vertex t of the tree T we associate the cluster $(\mathbf{x}(t), \Gamma(t))$ where $\Gamma(t)$ is a quiver with no 1- or 2-cycles.

Clusters in vertices connected by an edge are related by an involution called a mutation.

Mutations

If two vertices of the tree are connected by an edge k:

then $(\mathbf{x}, \Gamma)(t') = \mu_k((\mathbf{x}, \Gamma)(t))$, where μ_k is defined as follows:

- Quiver mutation:
 - ① For each subquiver $k \longrightarrow i \longrightarrow j$ in Γ , add an arrow $k \longrightarrow j$.
 - Reverse all arrows incident to vertex i.
 - Erase all 2-cvcles.
- Cluster mutations: x(t') is obtained from x(t) as follows:

$$x_j(t') = \begin{cases} x_j(t), & j \neq i; \\ \frac{\prod_{j \to i} x_j + \prod_{i \to j} x_j}{x_i(t)}, & i = j. \end{cases}$$

Rinat Kedem (University of Illinois)

Insight from cluster algebras

The cluster algebra structure gives us some information:

- ① (Laurent phenomenon) All cluster variables in a cluster algebra are **Laurent** polynomials in any cluster variable x(t). [Fomin-Zelevinsky].
- **Theorem:** [DFK] The evaluation $Q_{i,0} = 1$ (i.e. $Q_{i,-1} = 0$) for all i reduces each of the Laurent polynomials $Q_{i,k}$ to a **polynomial** in $\{Q_{i,1} : i \in [1, N-1]\}$. (Laurent property applied to this particular algebra).
- 3 If the exchange matrix of the cluster algebra is non-degenerate, there is a canonical quantization of the cluster algebra.

Quantization of the Q-system

Classical:

$$Q_{i,k+1}Q_{i,k-1} = Q_{i,k}^2 - Q_{i+1,k}Q_{i-1,k}, \quad Q_{0,k} = Q_{N,k} = 1.$$

Definition: The quantized algebra \mathcal{R}_N is the algebra generated by the (invertible) elements $\{Q_{i,k}, 1 \leq i \leq N, k \in \mathbb{Z}\}$ modulo the relations (1), (2), (3) below:

The quantized variables commute as

$$Q_{i,k}Q_{j,k+m} = \mathbf{q}^{\min(i,j)m}Q_{j,k+m}Q_{i,k}, \quad |m| \le |i-j| + 1. \quad (1)$$

• The quantum mutation relation (Quantum Q-system):

$$\mathbf{q}^{i}Q_{i,k+1}Q_{i,k-1} = Q_{i,k}^{2} - Q_{i+1,k}Q_{i-1,k},$$
 (2)

Boundary conditions:

$$Q_{0,k} = 1, \quad Q_{N+1,k} = 0.$$
 (3)

Conformal partition function from Q-system

Classical case:

$$Z_{\mathsf{n}}(\mathsf{x};1) = \left.\prod_{i,k>0} \left(Q_{i,k}
ight)^{n_{i,k}}
ight|_{Q_{i,1}=e_i(\mathsf{x}),Q_{i,0}=1}$$

Theorem [Di Francesco, K 2014] There is a linear functional

$$\Pi: \ U(\{Q_{i,k}, k \geq 0\}) \to \mathbb{Z}[q, q^{-1}][x_1, ..., x_N]^{S_N}$$

which maps the product of solutions to the quantum Q-system to the conformal partition function:

$$\Pi: \prod_{i=k}^1 \prod_i \mathfrak{Q}_{i,j}^{n_{i,j}} \mapsto Z_{\mathbf{n}}(\mathbf{x}; q^{-1}).$$

Note: The functional uses (Laurent, polynomiality theorems) structure of quantum cluster algebra to impose the analogue of $Q_{i,0} = 1$ and to extract the coefficients of $s_{\lambda}(\mathbf{x})$.

The quantum determinant

Theorem:[Di Francesco, RK] The quantum *Q*-system

$$q^{i}Q_{i,k+1}Q_{i,k-1} = Q_{i,k}^{2} - Q_{i+1,k}Q_{i-1,k}$$

is a quantum Desnanot-Jacobi relation: The elements $Q_{i,k}$ are **quantum determinants** of $\{Q_{1,j}\}$ s:

In terms of generating currents

$$Q(z) := \sum_{n \in \mathbb{Z}} z^n Q_{1,n},$$

$$= CT \qquad \prod_{n \in \mathbb{Z}} z^{-n} \qquad \prod_{n \in \mathbb{Z}} (1 - a^{\frac{Z_j}{2}}) Q(z_1) \cdots Q(z_n)$$

$$Q_{a,n} = CT_{z_1,\ldots,z_a} \prod_{i=1}^a z_i^{-n} \prod_{1 \leq i \leq a} (1 - q \frac{z_j}{z_i}) Q(z_1) \cdots Q(z_a).$$

Corollary: \Re_N is generated as a polynomial algebra by the elements $\{Q_{1,k}\}_{k\in\mathbb{Z}}$.

Discrete integrable system

The quantum Q-system is a discrete integrable system:

$$q^{i} \mathbf{Q}_{i,k+1} = \big(\mathbf{Q}_{i,k}^{2} - \mathbf{Q}_{i+1,k} \mathbf{Q}_{i-1,k} \big) \mathbf{Q}_{i,k-1}^{-1}, \quad i \in \{1,...,\textit{N}\}$$

with

$$Q_{0,k}=1,Q_{N+1,k}=0$$

is an evolution equation for the variables in the discrete time variable $k\in\mathbb{Z}.$ Time translation is

$$D:\;\left(\mathfrak{Q}_{1,k},...,\mathfrak{Q}_{N,k}\right)\mapsto\left(\mathfrak{Q}_{1,k+1},...,\mathfrak{Q}_{N,k+1}\right)$$

Theorem: The discrete quantum evolution above has N integrals of motion in involution.

Miura operator

For fixed k, define the N commuting elements in \mathcal{R}_N :

$$x_{i,k} = \mathfrak{Q}_{i,k+1} \mathfrak{Q}_{i,k}^{-1} \mathfrak{Q}_{i-1,k} \mathfrak{Q}_{i-1,k+1}^{-1}, \qquad i \in \{1,...,N\}.$$

Theorem: [Di Francesco, K 2016] The operator acting on \Re_N

$$\mu_k = (D - x_{N,k})(D - x_{N-1,k}) \cdots (D - x_{1,k})$$

is independent of k.

Sketch of proof: Define $\xi_{i,k} = Q_{i,k}Q_{i,k+1}^{-1}$ so that $x_{i,k} = \xi_{i,k}^{-1}\xi_{i-1,k}$. The relation

$$(D - x_{i+1,k})(D - \xi_{i,k}^{-1}\xi_{i-1,k-1}) = (D - \xi_{i+1,k}^{-1}\xi_{i,k-1})(D - x_{i,k-1})$$

is a consequence of two applications of the quantum Q-system. Together with the boundary terms

$$\xi_{1,k}^{-1}\xi_{0,k-1}^{-1} = \xi_{1,k}^{-1}\xi_{0,k}^{-1} = x_{1,k}$$

and

$$\xi_{N+1,k}^{-1}\xi_{N,k-1} = \xi_{N+1,k-1}^{-1}\xi_{N,k-1} = x_{N,k-1}$$

this gives a "zipper proof" that $\mu_k = \mu_{k-1}$.

Conserved quantities

Corollary: The coefficients $C_j := C_{j,n}$ in the "Miura operator"

$$\mu = \mu_k = (D - x_{N,k})(D - x_{N-1,k}) \cdots (D - x_{1,k}) = \sum_{j=0}^{N} (-1)^j C_{j,k} D^{N-j}$$

are independent of k.

Example: For \mathfrak{sl}_2 (N=2),

$$C_0 = 1$$
, $C_2 = \Omega_{2,k+1}\Omega_{2,k}^{-1}$, $C_1 = (C_2\Omega_{1,k} + \Omega_{1,k+2})\Omega_{1,k+1}^{-1}$.

Lemma: The elements

$$x_a := \lim_{n \to \infty} x_{a,n}$$

are well-defined and commute with each other.

So $C_i = e_i(x_1, ..., x_N)$ are the elementary symmetric functions in these variables.

Time evolution

Theorem: The elements $\{Q_k := Q_{1,k}\}$ which generate \mathcal{R}_N are in the kernel of the Miura operator μ :

$$\mu \Omega_k = 0, \qquad n \in \mathbb{Z}.$$

Proof: Since $\mu = \mu_k$ for all k,

$$\mu_k Q_k = \cdots (D - x_{1,k}) Q_k = \cdots (D - Q_{k+1} Q_k^{-1}) Q_k = \cdots (DQ_k - Q_{k+1}) = 0.$$

Theorem: the coefficients C_i act as Hamiltonians:

$$[C_1, Q_k] = (1-q)Q_{k+1},$$

and in general

$$(1-q)^{-1}[C_j, Q_k] = \sum_{s=1}^{j} (-1)^s C_{j-s} Q_{k+s}.$$

Rinat Kedem (University of Illinois)

Generating functions

Define

$$Q(z) := \sum_{k \in \mathbb{Z}} Q_k z^k, \quad C(z) = \sum_{j=0}^N (-z)^j C_j = \prod_{i=1}^N (1 - z x_i).$$

then

$$C(z) = \exp\left(-\sum_{j\geq 1} \frac{z^j}{j} P_j\right),$$

where P_i are the power-sum symmetric functions, and

$$[P_j, Q_k] = (1 - q^k)Q_{k+j}, \quad j \in \mathbb{N}.$$

Application of integrability: Exchange relations

Theorem [DFK16]: The generating functions Q(z) satisfy the quadratic relations

$$(z-qw)\Omega(z)\Omega(w)+(w-qz)\Omega(w)\Omega(z)=0.$$

Proof: The exchange relation is equivalent to $\phi_{k,\ell} = [\Omega_k, \Omega_{k+\ell}]_q + [\Omega_{k+\ell-1}, \Omega_{k+1}]_q = 0$,

$$\ell = 1$$
: $\phi_{k,1} = 2(Q_k Q_{k+1} - q Q_{k+1} Q_k) = 0.$

$$\ell = 2$$
: $\phi_{k,2} = \Omega_k^2 - q\Omega_{k+1}\Omega_{k-1} - (q\Omega_k^2 - \Omega_{k-1}\Omega_{k+1}) = \Omega_{2,k} - \Omega_{2,k} = 0$,

which follows from the quantum Q-system and its counterpart

$$Q_{k-1}Q_{k+1} = qQ_k^2 - Q_{2,k}.$$

By induction,

$$[H_1, [Q_k, Q_{k+\ell}]_q] = ([Q_{k+1}, Q_{k+\ell}]_q + [Q_k, Q_{k+\ell+1}]_q)$$

to $\phi_{k,\ell}$:

$$\phi_{k,\ell+1} = [H_1, \phi_{k,\ell}] - \phi_{k+1,\ell-1}$$

with $\phi_{k,1} = \phi_{k,2} = 0$, this vanishes by induction for all $\ell > 0$.

Quantum determinant relation

The relation

$$(z-qw)Q(z)Q(w)+(w-qz)Q(w)Q(z)=0.$$

is the defining relation in $U_{\sqrt{q}}(\mathfrak{n}[u,u^{-1}])\subset U_{\sqrt{q}}(\widehat{sI}_2).$

Here, we have one more relation in \Re_N : A degree N+1 polynomial relation coming from the (N+1)st quantum determinant:

$$Q_{N+1,k}=0, \quad k\in\mathbb{Z}.$$

Theorem: The algebra \Re_N is isomorphic to a quotient of $U_{\sqrt{q}}(\mathfrak{n}[t,t^{-1}])$ by the rank-dependent quantum determinant relations.

Action on characters

Recall: There is a linear functional from the quantum Grothendieck ring to the ring of symmetric polynomials, such that

$$\Pi: \prod_{i=k}^1 \prod_{i=1}^{N-1} \mathfrak{Q}_{i,j}^{n_{i,j}} \mapsto Z_{\mathbf{n}}(\mathbf{x}; q^{-1}).$$

The elements $Q_{i,k}$ act as maps between graded characters of:

$$Q_{i,k}: Z_{\mathbf{n}}(\mathbf{x}; q^{-1}) \to Z_{\mathbf{n}'}(\mathbf{x}; q^{-1})$$

where \mathbf{n}' differs from \mathbf{n} only by $n'_{i,k} = n_{i,k} + 1$. (Corresponding to adding one representation $V(k\omega_i)$.)

Difference operator Solutions of quantum Q-system

How does $Q_{i,k}$ act on symmetric functions?

For any $k \in \mathbb{Z}$ and $i \in [1, N]$, Define the q-difference operators on the space of functions in $x_1, ..., x_N$:

$$D_{a,k} = \sum_{\substack{I \subset [1,N]\\|I|=a}} \left(\prod_{i \in I} x_i^k \prod_{j \notin I} \frac{x_i}{x_i - x_j} \right) \prod_{i \in I} \Gamma_i, \qquad \text{where } \Gamma_i x_j = q^{\delta_{ij}} x_j \Gamma_i.$$

For example $D_{0,k}=1$, $D_{N,k}=(x_1\cdots x_N)^k\Gamma_1\cdots\Gamma_N$, $D_{N+1,k}=0$ and $D_{1,k}$ is a linear combination of x_i^k with non-commuting right coefficients.

Theorem: The elements $D_{i,k}$ form a representation π of \Re_N where

$$\pi(Q_{a,k}) = D_{a,k}$$
.

To prove this one must show that $D_{a,k}$ satisfy the quantum Q-system (hard) and the quantum determinant conditions (automatic).

Graded characters from difference operators

Theorem: [Di Francesco, K 2015] The graded characters of \mathcal{H}_n is be generated by the action of difference operators on the trivial polynomial, as follows:

$$Z_{n}(\mathbf{x};q^{-1}) = q^{-\frac{1}{2}\rho(n)} \prod_{i=1}^{N-1} (D_{i,k})^{n_{i,k}} \cdots \prod_{i=1}^{N-1} (D_{i,1})^{n_{i,1}} 1.$$

where

$$p(\mathbf{n}) = \sum_{i,j,a,b} n_{a,i} \min(i,j) \min(a,b) n_{b,j} - \sum_{i,a} ian_{a,b},$$

with $n_{a,i}$ being the number of modules in the tensor product with highest weight $i\omega_a$.

So we have the raising operators for the family of symmetric functions $Z_n(\mathbf{x};q)$ as q-difference operators.

Difference (Toda-like) equations for $Z_n(\mathbf{x}; q)$

The existence of Hamiltonians C_i implies q-difference equations:

Example: Let $\mathfrak{g} = \mathfrak{sl}_2$.

• The quantum Q-system is an equation for $Q_k := Q_{1,k}$ and $Q_{2,k} = A^k \Delta$ where $\Delta Q_{a,k} = q^{ak} Q_{a,k} \Delta$.

$$Q_k Q_{k+1} = q Q_{k+1} Q_k, \quad q Q_{k+1} Q_{k-1} = Q_k^2 - Q_{2,k}.$$

The hamiltonian

$$C_1 = (Q_{k-1} + Q_{k+1})Q_k^{-1} = Q_kQ_{k+1}^{-1} + Q_{k+1}Q_k^{-1} - \Delta Q_{k+1}^{-1}Q_k^{-1}$$

acts with eigenvalue $e_1(x_1, x_2)$ on the eigenfunction $Z_n(\mathbf{x}; q)$. If

$$\mathcal{H} = V((k-1)\omega_1)^{\otimes m} \otimes V(k\omega_1)^{\otimes n}, \text{ and } Z_{m,n}(\mathbf{x};q^{-1}) = q^{-\frac{1}{2}p(m,n)} \mathfrak{Q}_k^n \mathfrak{Q}_{k-1}^m \cdot 1,$$

$$C_1 Z_{m,n} = Z_{m-1,n+1} + Z_{m+1,n-1} - q^{k(1-n-m)-m+1} Z_{m-1,n-1} = e_1(x) Z_{m,n}.$$

• When k = 1, $Z_{m,n} = Z_n(\mathbf{x}; q)$ satisfies

$$e_1Z_n = Z_{n+1} + (1 - q^{-n})Z_{n-1}$$
, "q-difference quantum Toda."

t-deformation: DIM, sDAHA, elliptic Hall algebra...

The operators $D_{a,n}$ are the $t \to \infty$ limit of "generalized Macdonald operators:" [c.f. Miki in the context of q,t W-algebras]

$$\mathcal{D}_{a,k} = \prod_{\substack{I \subset [1,N]\\|I|=a}} \prod_{i \in I} x_i^k \prod_{j \notin I} \frac{tx_i - x_j}{x_i - x_j} \prod_{i \in I} \Gamma_i.$$

- The Macdonald operators are $\{\mathcal{D}_{a,0}\}_a$ and they form a commuting family.
- For fixed k, the difference operators $\mathcal{D}_{1,k},...,\mathcal{D}_{N,k}$ also form a commuting family.
- ullet The operators ${\mathbb D}_{{\sf a},k}$ are "raising operators" (in the elliptic Hall algebra).

The algebra of generalized Macdonald operators

The algebra \mathfrak{R}_N whose generators are representated by the generalized Macdonald operators is a quotient of the DIM algebra at trivial central charge.

Theorem: [Di Francesco, K 2017] Let $x^+(z) = \sum_{k \in \mathbb{Z}} (q^{\frac{1}{2}}z)^k \mathfrak{D}_{1,k}$. Then

$$g(z, w)x^{+}(z)x^{+}(w) + g(w, z)x^{+}(w)x^{+}(z) = 0,$$

where

$$g(z, w) = (z - qw)(z - t^{-1}w)(z - q^{-1}tw).$$

- The currents $x^+(z)$ also satisfy a cubic relation (Serre-type relation).
- If we stop here, this is a subalgebra of the quantum toroidal algebra or DIM when $N \to \infty$.
- For N finite, there is a set of relations $\mathfrak{D}_{N+1,k}=0$ for all k, c.f. spherical DAHA at finite N.
- Add generators $x^-(z) = \mathcal{D}(z)|_{(q,t)\mapsto (1/q,1/t)}$ to get full algebra at trivial central charge.
- The algebra \mathcal{R}_N is recovered in the limit $t \to \infty$ of \mathfrak{R}_N .

The DIM algebra

The quantum toroidal algebra of \mathfrak{gl}_1 [see Miki; Awata, Feigin, Shiraishi,...] is the algebra generated by currents $x^{\pm}(z), \psi^{\pm}(z)$ with non-trivial relations (Drinfeld-type)

$$\begin{array}{rcl} G(w/\gamma z)\psi^{+}(z)\psi^{-}(w) & = & G(\gamma w/z)\psi^{-}(w)\psi^{+}(z) \\ \psi^{\epsilon}(z)x^{\pm}(w) & = & G(\gamma^{\mp\epsilon}w/z)^{\mp1}x^{\pm}(w)\psi^{\epsilon}(z) \\ g(z/w)^{\pm1}x^{\pm}(z)x^{\pm}(w) & = & g(w/z)^{\pm1}x^{\pm}(w)x^{\pm}(z) \\ \frac{1-q/t}{(1-q)(1-t^{-1})}[x^{+}(z),x^{-}(w)] & = & \left(\delta(\gamma w/z)\psi^{+}(z/\sqrt{\gamma})-\delta(\gamma z/w)\psi^{-}(\sqrt{\gamma}z)\right) \\ \psi^{\pm}_{0} & = & \delta^{\pm1} \end{array}$$

and Serre-type relations

$$Sym_{z_1,z_2,z_3}(z_2/z_3[x^{\pm}(z_1),[x^{\pm}(z_2),x^{\pm}(z_3)]])=0.$$

The generators γ, δ are central elements and

$$G(x) = \frac{g(1,x)}{g(x,1)}, \quad g(z,w) = (z-qw)(z-w/q)(z-tw/q).$$

From commuting hamiltonians to bosonization

We can compute explicitly from the difference operators:

$$[P_k, \mathcal{D}_{1,n}] = (1-q^k)\mathcal{D}_{1,n+k}.$$

which leads to the equation for

$$x^{+}(z)p_{k}[X] = \left(p_{k}[X] + \frac{q^{k/2} - q^{-k/2}}{z^{k}}\right)x^{+}(z).$$

• If F[X] is a symmetric function, this action of $x^+(z)$ is written in plethystic notation as

$$x^{+}(z)F[X] = F[X + \frac{q^{\frac{1}{2}} - q^{-\frac{1}{2}}}{z^{k}}]x^{+}(z).$$

• In the limit $N \to \infty$, an infinite number of variables, P_k are algebraically independent, and

$$x^+(z) \propto \exp(\sum_{k \to 0} \frac{q^{k/2} - q^{-k/2}}{z^k} \frac{d}{dP_k})$$

when acting on the space of symmetric functions.

Limit $N \to \infty$: Non-trivial central charge

If we let $x^+(z)$ act on the space of symmetric polynomials, and consider its action on 1, we can write

$$x^{+}(z) = \frac{q^{\frac{1}{2}}}{(1-q)(1-1/t)} \exp\left(\sum_{k>0} a_k \frac{z^k}{k}\right) \exp\left(\sum_{k>0} a_k^* z^{-k}\right)$$

with $a_k = q^{k/2}(1-t^{-k})P_k[X]$ and $a_k^* = (q^{k/2}-q^{-k/2})\frac{d}{dP_k}$.

- See [Feigin, Jimbo, Miwa+,09].
- The currents $x^-(z)$ are obtained from $x^+(z)$ with $(q,t) \mapsto (q^{-1},t^{-1})$.
- These currents generate the DIM algebra with non-trivial central charge $\gamma=\sqrt{t/q}$ ("horizontal representation") which is a fock space.

Summary

- The linearized-spectrum partition functions of the generalized Heisenberg spin chains can be generated by the action of q-difference operators acting on 1.
- These q-difference operators satisfy the quantum cluster algebra called the quantum Q-system.
- This algebra is isomorphic to a rank-dependent quotient of a quantum affine algebra.
- The t-deformation of these operators satisfies relations in the quantum toroidal algebra of \mathfrak{gl}_1 .
- In the infinite-rank limit, they are the level (1,0) representation of this algebra.

Thank you!