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• landau level geometry

• laughlin state, unsolved problems

• why is QHE (gapped 2+1) well represented 
by 2d cft?

• status of projector models with conformal 
block ground states

Thursday, August 3, 17



• The quantum Hall fluid in a Landau level on 
the flat plane

H =
X

i

"(pi) +
X

i<j

V (xi � xj)

• Put it on the flat Euclidean plane 
representing a lattice plane in a crystal 

x = x

1
e1 + x

2
e2 ⌘ x

a
ea

using covariant/contravariant spatial 
indices with summation convention 
to make any metrics explicit

pa ⌘ ea · p = �i~ @

@x

a
� eAa(x)

ea · eb = �ab

Euclidean metric of the plane

ea ⇥ eb = ✏abn̂

e1
e2

n̂

antisymmetric 2d Levi-Civita symbol

• time-reversal symmetry is broken by a 
uniform magnetic flux density through plane: 

✏ab@aAb(x) = B

• Define orientation of plane so eB > 0 
(so 𝜖ab is odd under time-reversal)
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• symmetries:  spatial translation symmetry

• spatial inversion symmetry plays a fundamental 
role in the QHE: we will impose 

H =
X

i

"(pi) +
X

i<j

V (xi � xj)

Kronecker symbol
(not metric)

[xa
, x

b] = 0 [xa
, pb] = i~�ab [pa, pb] = i~eB✏ab

"(p) = "(�p)

• full O(2) rotational symmetry defined by a metric is not a 
fundamental symmetry of the QHE, and will not be required.
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• spatial translation and 
inversion symmetries

H =
X

i

"(pi) +
X

i<j

V (xi � xj) "(p) = "(�p)

[xa
, x

b] = 0 [xa
, pb] = i~�ab [pa, pb] = i~eB✏ab

xi 7! ±xi + c

pi 7! ±pi

• decomposition of the 2D Heisenberg algebra

R̄a = (eB)�1✏abpb

Landau orbit radius vector

Landau orbit guiding center

R

a = x

a � R̄

a

[R̄a, R̄b] = i✏ab`2B
[Ra, Rb] = �i✏ab`2B
[Ra, R̄b] = 0

2⇡`2B        is the 
area per 
quantum of 
magnetic flux 
�0 = h/e
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• will also specify that  𝜀(p) = 𝜀(p1,p2) is an entire 
function of each component of p (e.g. a polynomial) 
and

•  has a unique minimum at p = 0 with no other 
stationary points (this ensures a simple Landau-level 
structure)

H =
X

i

"(pi) +
X

i<j

V (xi � xj) "(p) = "(�p)

[R̄a, R̄b] = i✏ab`2B
[Ra, Rb] = �i✏ab`2B
[Ra, R̄b] = 0

x

a
i = R

a
i + R̄

a
i

pai = �(eB)✏abR̄
b
i
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• semiclassical Landau quantization

• like phase space
[p

x

, p
y

] = i~eB

p
x

py

contours of constant "(p)
that enclose momentum-space area 2⇡~eB(n+

1
2 )

semiclassical Landau levels are localised on

There is no reason that 
Landau orbits with different 
index n should be congruent 
(have the same shape)

(analog of Bohr-Sommerfeld quantization)
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• Quantum treatment:

usual model h =
1

2m

�
(p

x

)2 + (p
y

)2
�

[p
x

, p
y

] = i~eB

(harmonic oscillator, separable)

generic model h = "(p
x

, p
y

)
(bivariate non-separable function 
of non-commuting coordinates)

• To be well-defined,   𝜀(p) must have an absolutely convergent expansion in p - 
p0 for all (c-number) p0 ,  so must be an entire function of both px and py,  e.g. a 
polynomial,
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• macroscopic degeneracy of Landau levels

"(p)| n↵i = En| n↵i

[Ra, "(p)] = 0

basis within degenerate Landau level

• one independent state for each quantum of 
magnetic flux through the plane
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• Coherent states of a Landau orbit are 
defined by a guiding-center metric

• The coherent state centered at the origin is 
defined by

"(p)| n(0, g̃)i = En| n(0, g̃)i
g̃abR

aRb| n(0, g̃)i =
p
(det g̃)(`B)

2| n(0, g̃)i

• we can always choose the metric to be 
unimodular  (determinant = 1), as it just 
defines a complex structure z(x,y)

coherent states minimize the 
uncertainty of the guiding center
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• factorization of a metric to define a 
complex structure

1
2 (g̃ab + i✏ab) = e⇤aeb det g̃ = 1

a complex vector

g̃ab = �ab
e = 1p

2 (1, i)

example

(Euclidean metric)

a unimodular metric defines a 
(dimensionless) complex structure

(up to a U(1) ambiguity)
z 7! ei�z

zg̃(x, y) = eax
a
/`B
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• The Schrödinger wavefunction of a Landau 
level coherent state defined by a metric has 
the form

 n(x, y) = fn(z
⇤; g̃)e�

1
2 z

⇤z

a holomorphic function of z* that depends 
of the choice of guiding-center metric to 

define the coherent state

• so far, we have complete freedom of choice 
to choose this metric:   is there a “natural 
choice”?
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• Yes, the natural choice of metric is provided 
by the “Hall viscosity tensor” of the Landau 
orbit:

h n↵| 12{pa, pb}| n↵i = 2⇡~⌘(n)ab

• viscosity is the linear relation between stress and 
flow-velocity gradient.   Stress is a mixed-index 
tensor (momentum current density) which is 
traceless in gapped incompressible quantum fluids

�a
b = ⌘acbd@cv

d

Traceless conditionstress velocity gradient

rank-4 tensor
odd  under time-

reversal

rank-2 symmetric Hall-
viscosity tensor

even under time-reversal
odd  under time-

reversal

⌘acbd = �⌘cadb
dissipationless

⌘acbd = ✏ae✏bf⌘H{be}{df}

⌘H{ab}{cd} = 1
2 (⌘ac✏bd + ⌘ad✏bc + ⌘bc✏ad + ⌘bd✏ac)
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• every Landau level has a “natural metric” 
proportional to its Hall viscosity tensor, 
which  characterises its shape

• It also has a natural effective mass tensor 
defined by its reponse to polarization:

L(v) = v · p� "(p)

L(v)| n↵(v)i = Ln(v)| n↵(v)i

Ln(v) = �En + 1
2m

(n)
ab vavb +O(v4)

Lagrangian operator

• finally, it also has a topological spin
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• special case, rotationally invariant Landau 
levels:

["(p), g̃abpapb] = 0

 n(x, y) / (z⇤)ne�
1
2 z

⇤z

 0(x, y) / e

� 1
2 z

⇤z

general n, coherent state
n=0, coherent state

 (x, y) = f(z)e�
1
2 z

⇤z n=0, general state

This structure is non-generic, only applies to 
case where  𝜀(p) has rotational symmetry.
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• Filled LLL (rotational symmetry)

 =
Y

i<j

(zi � zj)
Y

i

e�
1
2 z

⇤
i zi

inspiration for Laughlin 

 (m)
L =

Y

i<j

(zi � zj)
m
Y

i

e�
1
2 z

⇤
i zi

conformal block
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• quartic polynomial case

Figure 2.7: Contour plots in the momentum space of a typical member in each class
of the quartic term. The quartic terms are I) {5p21 + p22, p

2
1 + 5p22}, II) {p21, p21 + p22},

III) {p21, p22} and IV) p41. Notice that only the contours for class I are closed.

33
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Figure 3.5: Contour plots of ln | 10(z, z⇤)|2 where  10(z, z⇤) is the coherent state in
the 10th Landau level for class I quartic term (2.45) with c � 1 = 4 > 2 (top) and
c � 1 = 1 < 2 (bottom). Both plots show piece-wise contours with the four spikes
and the line charges as branch cuts. Another common feature is the existence of four
maxima along the directions of the central cross and four saddle points along those
of the spikes. Despite the similarities, the two plots also show qualitatively di↵erent
shapes of the semiclassical orbits. We see that c � 1 > 2 corresponds to concave
shapes while c� 1 < 2 to convex ones.

44
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Figure 3.6: A “ridge” (dashed) defined as the boundary between two regions where
the gradient field flows to the origin (inside) or infinity (outside). The roots are those
of the coherent state in the 10th Landau level for class I quartic term with c� 1 = 2.
Contours are also shown. Notice that the local maxima and the saddle points are all
right on the ridge. The area enclosed by the ridge is ⇡n, corresponding to an area
of 2⇡~eB on the momentum plane, which is consistent with (shifted) semiclassical
quantization.

turbation that breaks rotational invariance, the new zeros will only appear where the

original wavefunction has a small amplitude, namely, around the origin or along the

Gaussian tail separated by the peak in between which contains most of the weight of

the wave function. In Fig.(3.7) we show that the peak region can encompass as much

as 90 percent of the total weight.

The existence of a clean separation between the central zeros and the rest of the

pattern by an annulus-like region, or more rigorously a region with Euler characteristic

� = 0, defined by | n| � V, V 2 R+, is critical for our definition of a topological spin,

45
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• The effective continuum Hamiltonian is

H =
X

i

"(pi) +
X

i<j

V (xi � xj)

• The model has 2D inversion symmetry if

"(p) = "(�p)

• The only role played by the Euclidean metric of the inertial 
background frame is the non-relativistic criterion

�abv
avb ⌧ c2 va(p) =

@"

@pa
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Generic model with translation and inversion 
symmetry only, no rotational symmetry

"(p) = "(�p)H =
X

i

"(pi) +
X

i<j

V (xi � xj)

• two distinct unrelated  sources of geometry

x
e�

e�

equipotentials around point charge
(from 3D dielectric tensor)

shape of Landau orbit around 
guiding center

affected by elastic 
degrees of freedom
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• The “holomorphic lowest Landau level 
wavefunction”  is a property of a SO(2) 
rotationally-invariant system:

x = R+ R̃ [Ra, Rb] = �i`2B✏
ab

[R̃a, R̃b] = i`2B✏
ab

[Ra, R̃b] = 0x
e�

O

x

R

R̃

L =
~

2`2B
�ab(R

aRb � R̃aR̃b)

angular momentum

guiding center Landau level

= 1
2~

�
a†a� b†b

�

Two sets of ladder operators:
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• Now write the Laughlin state as a 
Heisenberg state, not a Schrödinger 
wavefunction:

| Li /
Y

i<j

(a†i � a†j)
m|0i ai|0i = 0 a† =

Rx + iRy

p
2`

B

bi|0i = 0 lowest Landau level condition

In the Heisenberg form, we see that the LLL 
condition is quite incidental to the Laughlin 
state, which involves guiding-center correlations
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• The fundamental form of the Laughlin state 
does not reference the details of the 
Landau level in any way:

ai|0i = 0 a† =
!aRa

p
2`B

!⇤
a!b =

1
2 (g̃ab + i✏ab)

| L(g̃)i /
Y

i<j

(a†i � a†j)
m|0i

a unimodular Euclidean-signature metric that 
parameterizes the Laughlin state

det g̃ = 1

• The historical identification of this metric 
with the Euclidean metric is unnecessary 
unless there is SO(2) symmetry.
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• Topological states of matter have been a 
major theme in the recent developments in 
understanding novel quantum effects.

• key questions are:  why do they occur,what 
features of materials favor such states, and 
how can we understand the energetics that 
drives their emergence.  

• I will principally discuss the fractional 
quantum Hall effect, but this is a general 
question
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• thirty years after its experimental discovery and 
theoretical description in terms of the Laughlin 
state, the fractional quantum Hall effect remains a 
rich source of new ideas in condensed matter 
physics.

• The key concept is “flux attachment” that 
forms “composite particles” and leads to 
topological order.

• Recently, it has been realized that flux attachment 
also has interesting geometric properties
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• I will talk about what has been interesting me 
for the last few years:

• What is an “incompressible quantum fluid” 
such as the one described by Laughlins 
wavefunction.

• What “fluid dynamics” describes it?
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• After projection into (any) single Landau level

H =
X

i<j

Vn(Ri �Rj)

• Landau level form-factor

fn(q) = h n↵|eiq·(x�R)| n↵i
This is a rapidly-decreasing  

(Gaussian) function of q

Vn(x) =

Z
d2q`B
2⇡

Ṽ (q)|fn(q)|2

H =
X

i

"(pi) +

Z
d2q

2⇡
Ṽ (q)

X

i<j

eiq·(xi�xj)

Fourier transform of bare 
(e.g. Coulomb) interaction

a very smooth function:
in fact it is an entire function
of both x1 and x2

x

1

VnV

The “entire” property is needed 
because              and              do not 
commute

(R1
i �R1

j ) (R2
i �R2

j )
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• Girvin-Macdonald-Platzman Lie algebra

⇢(q) =
NX

i=1

eiq·Ri

[⇢(q), ⇢(q0)] = 2i sin( 12q ⇥ q0`2B)⇢(q + q0)

• q = 0 generator = N,  is in kernel.

H =

Z
d2q`2

2⇡
Ṽn(q)(

1
2⇢(q)⇢(�q))

rapidly-decreasing (Gaussian) function at large q
(Fourier transform of an entire function)
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• “compactification” on the torus
L 2 {mL1 + nL2}

Bravais Lattice of periodic translations 

eiq·L = 1
• reciprocal lattice (discrete set of allowed wavevectors)

L = Laea
ea · eb = �ab

Euclidean metric

L1 ⇥L2 = 2⇡N�`
2
B

qa`B 2
⇢
✏abLb

N�`B

�
⇣
eiq⇥q0`2B

⌘N�

= 1

• reciprocal vectors q1 and q2 are equivalent if
q1 � q2 = N�q

• There are          distinct reciprocal 
vectors in a “Brillouin zone” 

(N�)
2

q = 0

• a reciprocal vector q is even if      is 
also an allowed reciprocal vector

          distinct reciprocal vectors in a 

1
2q
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• why is there a Brillouin zone?

• The pbc means the allowed translations 
compatible with the pbc are L/N�

• In fact, we can with full generality work only on 
this lattice.

h 1| 2i =
R

dz^dz⇤

2⇡i (f1(z))⇤f2(z)e�z⇤z

=
1

N�

X

x

0
(f1(z))

⇤f2(z)e
�z⇤z

sum over x = L/N� in the unit cell

naive formula based in the 
idea that these are 
Schrödinger wavefunctions

• the inversion-symmetric pbc is�
eiq·Ri

�N� | i = ⌘(q)N� | i

⌘(q) = 1 if q is even, �1 if not.
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• for           N = pN̄ , N� = qN̄
 

NY

i=1

eiq·Ri

!q

| ↵i = (⌘(q))pq
⇣
eiQ⇥q`2B

⌘q
| ↵i

gcd(p, q) = 1

many-body translation quantum  Q number takes          distinct values(N̄)2

↵ is a q-fold exact topological degeneracy

If      is even (odd), one (four) of these have inversion symmetryN̄
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• quantum Hall states always have inversion-
symmetric Q.

• If they occur only at Q =0, the elementary 
droplet has p particles with flux attachment q

• If they occur on the zone boundary,  p and q 
must be doubled  and     halved (e. g., Moore-
Read state)    

many-body Q lives in a “Brillouin zone” of

¯N = gcd(N,N�) points

N̄ even
¯N odd

N̄

p/q = 1/2 ! 2/4
The physical FQH (as opposed to algebraic) p, q obey 

gcd(p, q)  2
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 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0  0.5  1  1.5  2  2.5  3  3.5

laughlin 10/30

E

Collective mode with short-range V1 
pseudopotential, 1/3 filling (Laughlin state is 
exact ground state in that case)

“roton”

(2 quasiparticle 
+ 2 quasiholes)

goes into
continuum

gap incompressibility
0 1 20

0.5

klB

Moore-Read ⌫ = 2
4

“kF ”

fermionic
“roton”

bosonic “roton”

Collective mode with short-range three-body 
pseudopotential, 1/2 filling (Moore-Read state is 
exact ground state in that case)

• momentum ħk of a quasiparticle-quasihole pair is 
proportional to its electric dipole moment pe ~ka = �abBpbe

k�B

gap for electric dipole excitations is a MUCH stronger 
condition than charge gap: doesn’t transmit pressure!

(origin of Virasoro algebra  in FQHE ?)
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• Guiding-center structure function (2-point 
function)

�Pq1,q2
=

1

(N�)2

X

q

0
eiq⇥(q1�q2)

expectation with a 
translationally- invariant 
inversion-symmetric density 
matrix

= 1 is q1 and q2 are equivalent,
= 0 if not

�⇢(q) = ⇢(q)�N⌘(q)N��Pq,0

h⇢(q)i = N⌘(q)N��Pq,0

h�⇢(q)�⇢(�q)i = N�Sgc(q)

= ⌫N�⌘(q)
N��Pq,0

S1 = ⌫(1 + ⇠⌫)

±1 for fermions/bosons

• for an uncorrelated state 
Sgc(q)� S1 = 0 (�Pq,0 = 0)
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• for an completely uncorrelated (mixed) state 
Sgc(q)� S1 = 0 (�Pq,0 = 0)

• for a correlated pure state                      is a 
rapidly-decreasing function away from the center of 
the (geometric) Brillouin zone (defined by a metric)

Sgc(q)� S1

lim�!0 Sgc(�q) = 0

• for gapped FQH state (topologically degenerate 
multiplet)

lim�!0 Sgc(�q) ! �4�{{ab},{cd}}qaqbqcqd`2B

First discovered by GMP

�

{{ab},{cd}}
is positive,

satisfies a bound involving the Hall viscosity tensor �[{ab},{cd}]
H

This bound seems to be saturated in conformal-block models
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• For a (commutative) 2D liquid with density n0

S(q) =
1

N

X

i 6=j

heiq·(ri�rj)

g(r)� 1 =
1

2⇡n0

Z
d2q

2⇡
eiq·r(S(q)� 1)

pair correlation
function

standard structure 
factor

• For the guiding-center liquid, there is a self-duality

±1 (fermion/boson)

Pij =
1

N�

X

q

0
eiq·(Ri�Rj)

Sgc(q)� S1 = ⇠

Z
d2q0`2B
2⇡

eiq⇥q0`2B (Sgc(q
0)� S1)
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• rotationally-invariant states have a global 
metric, are eigenstates of

L =
1

2`2B
g̃ab

X

i

Ra
iR

b
i

• Sgc(q) is a function of q2 = g̃abqaqb

analytic on real-q2 axis

• conjecture: for conformal block states Sgc(q) is 
an entire  function of q2
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|q|

S1

Sgc(q)

O(|q|4)

Thursday, August 3, 17



• Laughlin state and 2D OCP (log plasma)

Boltzmann factor of  Plasma has no branch 
cuts when     is an even integer�

H = 1
2�

0

@
X

i<j

2 ln(
1

|zi � zj
|+

X

i

1
2 |zi|

2

1

A

| |2 /

0

@
Y

i<j

|zi � zj |2
Y

i

e�
1
2 |zi|

2

1

A

1
2�

S(q) =
q2

2⇡�n0 + (1� 1
4�)q

2 + 1
48q

4/n0 +O(q6)

S(q) = 1� e�
1
2 |q|

2`2
�
1� ⌫�1SL

gc(q)
� � = 2m

⌫ = 1
mentire

Debye-Huckel pole near q2 = � 2⇡�n0

1� 1
4�

(small    )�
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• conjecture:   The OCP at even integer     has 
a pair correlation function that decays more 
rapidly that any exponential, (e..g as a 
Gaussian) and hence hs a structure factor 
that is and entire function of |q|2.

• This implies that the guiding-center structure 
factor of the Laughlin states are also entire 
functions of |q|2.

• In turn, this suggests that the guiding-center 
structure factors of all conformal-block 
model FQH states are entire functions of |q|2.

However, “generic” rotationally-invariant FQH states  
may be expected to have singularities in the structure 
factor off the real -positive |q|2 axis
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• electron in 2D Landau orbit 
(bound to 2D surface)

x

e-

guiding center 
R

magnetic flux
density B normal
 to 2D surface x=

Becomes a
“fuzzy object”
after kinetic

energy is quantized

`B =

✓
~

|eB|

◆ 1
2

[Rx, Ry] = �i`2
B

non-commutative geometry

cyclotron 
orbit
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• elegant wavefunction, describes topologically-
ordered fluid with fractional charge fractional 
statistics excitations

 =
Y

i<j

(zi � zj)
3
Y

i

e�
1
2 z

⇤
i zi

• exact ground state of modified model keeping 
only short range part of coulomb repulsion

• Validity confirmed by numerical exact diagonalization

Laughlin 1983

30 years later:
unanswered question:
we know it works, but why?

my answer:
hidden geometry
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• “it describes particles in the 
lowest Landau level”

• “It is a Schrödinger 
wavefunction”

• “Its shape is determined by 
the shape of the Landau 
orbit”

• “It has no continuously-
tunable variational 
parameter”

some widespread misconceptions about the Laughlin state

No Landau level was specified: all 
specifics of the Landau level are 
hidden in the form of U(r12)

Non-commutative geometry has no 
Schrödinger representation (this 
requires classical locality); it only has 
a Heisenberg representation.

The interaction potential U(r12) 
determines its geometry (shape)

Its geometry is a continuously-
variable variational parameter
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Fundamental symmetries of the 
incompressible quantum fluid

• Particle-number conservation

• translations 

• spatial inversion

• Nothing else! (no rotation or Galilean symmetry)

H =
X

i<j

U(Ri �Rj) [Ra
i , R

b
i ] = i✏ab`2B

R ! R+ a

R ! �R

gab = 1
2 h |{(R

a
i �Ra

j ), (R
b
i �Rb

j)}| i
inverse
metric
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•Anatomy of Laughlin state

e-

e-

fractionally-charged
e/3 quasiholes obeying 

(Abelian) fractional 
statistics

electron with “flux 
attachment”
to form a “composite 
boson”

Chiral edge mode with chiral anomaly
and Virasoro anomaly

geometric
edge dipole moment
determined by Hall 

viscosity

Topological and geometric bulk properties 
revealed by entanglement spectrum of cut 

Text
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• the essential unit of the 1/3 Laughlin state is  the 
electron bound to a correlation hole corresponding 
to  “units of flux”, or three of the available single-
particle states which are exclusively occupied by the 
particle to which they are “attached”

• In general, the elementary unit of the FQHE fluid is 
a “composite boson” of p particles with q “attached 
flux quanta”

• This is the analog of a unit cell in a solid....
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• The Laughlin state is parametrized by a unimodular metric: 
what is its  physical meaning?

• In the  ν  = 1/3 Laughlin state, each electron sits in a 
correlation hole with an area containing 3 flux quanta.  
The metric controls the shape of the correlation hole.

• In the ν  = 1 filled LL Slater-determinant state, there is no 
correlation hole (just an exchange hole), and this state 
does not depend on a metric

correlation holes
in two states with 
different metrics
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• quantum solid

• repulsion of other particles make an attractive

potential well strong enough to bind particle

• unit cell is 
correlation hole

• defines geometry

solid melts if well is not strong enough to contain 
zero-point motion  (Helium liquids)
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• similar story in FQHE:

• “flux attachment” creates 
correlation hole

• potential well must be 
strong enough to bind 
electron 

• defines an emergent 
geometry

• new physics:  Hall viscosity,  
geometry............

e-

• continuum model, but 
similar physics to Hubbard 
model

but no broken symmetry
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• composite boson: if the central 
orbital of a basis of eigenstates of 
L(g) is filled, the next two are empty

e-

e-

L(g)| mi = (m+ 1
2 )| mi

| 3
Li =

Y

i<j

⇣
a†i � a†j

⌘3
|0i

• this correlation hole is equivalent to 
“attachment of three flux quanta” or 
vortices that travel with the particle, 
generating  a Berry phase that cancels 
the Bohm-Aharonov phase and 
transmutes Fermi to Bose exchange 
statistics.

• this shape of the corelation hole - and 
hence its correlation energy - varies 
with the metric gab

different
metrics
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• Origin of FQHE incompressibility is analogous to origin 
of Mott-Hubbard gap in lattice systems.

• There is an energy gap for putting an extra particle 
in a quantized region that is already occupied

• On the lattice the “quantized 
region” is an atomic orbital with a 
fixed shape

• In the FQHE only the area of 
the “quantized region” is fixed.  
The shape  must adjust to 
minimize the correlation energy.

e-

energy gap prevents 
additional electrons 
from entering the 

region covered by the 
composite boson
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e

the electron  excludes other particles from a 
region containing  3 flux quanta, creating a 
potential well in which it is bound

1/3  Laughlin state If the central orbital is filled, 
the next two are empty

The composite boson
has inversion symmetry

about its center

It has a “spin”
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1 0 0
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2/5   state

e e
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2
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L = 2

L = 5

s = �3

L =
gab
2`2B

X

i

Ra
iR

b
i

Qab =

Z
d2r rarb�⇢(r) = s`2Bg

ab

second moment of neutral 
composite boson

charge distribution
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2/5

2/5

2/5

1/3

1/3

hopping of a “composite fermion” (electron + 2 flux quanta)

e e eee e

Jain’s “pseudo Landau levels”
2/5 boson is quasiparticle of 1/3 state 1/3 boson is quasihole of 2/5 state
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• The composite boson behaves as a neutral 
particle because the Berry phase  (from the 
disturbance of the the other particles as its 
“exclusion zone” moves with it) cancels the 
Bohm-Aharonov phase

• It behaves as a boson provided its statistical spin 
cancels the particle exchange factor when two 
composite bosons are exchanged

(�1)pq = (�1)p

(�1)pq = 1

fermions
bosons

p particles
q orbitals
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• The metric (shape of the composite boson) has a 
preferred shape that minimizes the correlation energy, 
but fluctuates around that shape

• The zero-point fluctuations of the metric are seen as 
the O(q4) behavior of the “guiding-center structure 
factor” (Girvin et al, (GMP), 1985)

• long-wavelength limit of GMP collective mode is 
fluctuations of (spatial) metric (analog of “graviton”) 

�E / (distortion)

2

FDMH, Phys. Rev. Lett. 107, 116801 (2011)
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• An “intrinsic metric” measures lengths in 
dimensionless units, like unit cells in a solid

• to describe the “intrinsic metric tensor” we 
need a coordinate system

• It could be the Euclidean Laboratory frame, 
but doesn’t have to be!
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• It has a striking holomorphic form that is generally attributed 
to “Lowest Landau Level physics”

• It has a natural interpretation in terms of “flux attachment”

• It involves a “complex structure” z = x+iy that defines a 
unimodular metric on a Riemann surface

• It has the rotational symmetry of this metric, and has been 
recognized to be mathematically equivalent  to a “conformal 
block” of a 2D conformal field theory

Laughlin’s model wavefunction has provided the inspiration for the 
modern understanding of the fractional quantum Hall effect

 /
Y

i<j

(zi � zj)
m
Y

i

e�
1
4 z

⇤
i zi/`

2
B

Thursday, August 3, 17



• Despite what Laughlin told us, its holomorphic 
structure has nothing to do with the electrons 
being in the “Lowest Landau Level”

• It should not be regarded as a “wavefunction”, 
but as a Heisenberg state of guiding centers, 
which obey a “quantum geometry”

• It was proposed as a “trial wavefunction” with 
no apparent variational parameter:  it does in 
fact have such a parameter: its metric.

I will give a somewhat heretical reinterpretation of the Laughlin state
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• Perhaps one of the most surprising (and very 
fruitful) aspects of the Laughlin state is its 
connection to conformal field theory.

• Its “conformal block” property  was noticed as 
an empirical  observation, but has never really 
been explained.

• Incompressible (bulk) FQHE states are 
essentially unlike gapless cft’s (the 
conformal group here is the “(2+0)d” 
conformal orthogonal group, not the “(1+1)d” 
Lorentz variant)
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• The conformal orthogonal group CO(2) is a profound local 
extension of the global SO(2) rotation group (that can be 
regarded as “the rotation group on steroids” !)

• non-generic “Toy models” with CFT properties are 
particularly simple to treat, because the CFT makes their 
generic topological properties easy to expose, but the 
topological properties do not require conformal invariance

• I will argue that SO(2) rotational invariance is a “toy 
model” feature that should not be part of a fundamental 
theory of the FQHE, just as the SO(3) and Galilean 
invariance of the free electron gas should not be part of 
the theory of metals. 
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• The “standard model” for the QHE is 
usually taken to be the  Galileian-invariant 
Newtonian-dynamics model

d(x1,x2)
2 = �ab(x

a
1 � x

a
2)(x

b
1 � x

b
2)

Euclidean metric of 2D plane
(derived from the spatial metric of an inertial frame in which the 
plane on which the electrons move non-relativistically is embedded)

pa = �i~ @

@x

a
� eAa(x)

H =
X

i

1

2m
�abpiapib +

X

i<j

e2

4⇡✏0✏

1

d(xi,xj)

Cartesian coordinates
x = x

a
ea ea · eb = �ab
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• However, the continuous translational symmetry 
“plane” on which the electrons move  is an 
emergent symmetry of a low-density of electrons 
moving on a crystal  lattice plane, and generically 
does NOT have the rotational invariance of 
Newtonian dynamics

• The only generic point symmetry of a crystal 
plane is 2D inversion (180o rotation in plane)

2D plane of epitaxial quantum well
embedded in 3D crystal
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• The effective continuum Hamiltonian is

H =
X

i

"(pi) +
X

i<j

V (xi � xj)

• The model has 2D inversion symmetry if

"(p) = "(�p)

• The only role played by the Euclidean metric of the inertial 
background frame is the non-relativistic criterion

�abv
avb ⌧ c2 va(p) =

@"

@pa
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Generic model with translation and inversion 
symmetry only, no rotational symmetry

"(p) = "(�p)H =
X

i

"(pi) +
X

i<j

V (xi � xj)

• two distinct unrelated  sources of geometry

x
e�

e�

equipotentials around point charge
(from 3D dielectric tensor)

shape of Landau orbit around 
guiding center

affected by elastic 
degrees of freedom
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• The “holomorphic lowest Landau level 
wavefunction”  is a property of a SO(2) 
rotationally-invariant system:

x = R+ R̃ [Ra, Rb] = �i`2B✏
ab

[R̃a, R̃b] = i`2B✏
ab

[Ra, R̃b] = 0x
e�

O

x

R

R̃

L =
~

2`2B
�ab(R

aRb � R̃aR̃b)

angular momentum

guiding center Landau level

= 1
2~

�
a†a� b†b

�

Two sets of ladder operators:

Thursday, August 3, 17



• Now write the Laughlin state as a 
Heisenberg state, not a Schrödinger 
wavefunction:

| Li /
Y

i<j

(a†i � a†j)
m|0i ai|0i = 0 a† =

Rx + iRy

p
2`

B

bi|0i = 0 lowest Landau level condition

In the Heisenberg form, we see that the LLL 
condition is quite incidental to the Laughlin 
state, which involves guiding-center correlations
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• The fundamental form of the Laughlin state 
does not reference the details of the 
Landau level in any way:

ai|0i = 0 a† =
!aRa

p
2`B

!⇤
a!b =

1
2 (g̃ab + i✏ab)

| L(g̃)i /
Y

i<j

(a†i � a†j)
m|0i

a unimodular Euclidean-signature metric that 
parameterizes the Laughlin state

det g̃ = 1

• The historical identification of this metric 
with the Euclidean metric is unnecessary 
unless there is SO(2) symmetry.
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• The original form of the Laughlin state is a finite-size droplet of N 
particles on the infinite plane.

• Somewhat confusingly, in this droplet state the metric parameter 
fixes both the shape of the droplet state and the shape of the 
correlation hole around each particle formed by “flux attachment”:

e
correlation 

hole

edge of droplet
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• to remove the edge, compactify on the 
torus with NΦ flux quanta:

• An unnormalized holomorphic single-
particle state has the form

| i =
N�Y

i=1

�(a† � wi)|0i,
N�X

i=1

wi = 0

Weierstrass sigma function

Filled Landau level

| filledLLi = �(
P

ia
†
i )
Y

i<j

�(a†i � a†j)|0i

independent of choice of metric, after normalization 

�(z) = z
Y

L 6=0

(1� z
L ) exp(

z
L +

1
2 (

z
L )

2
)

N = N�
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• Laughlin state on torus (⌫ = 1/m, m > 1)

mX

j=1

wj = 0

| m
L (g̃)i /

0

@
mY

j=1

�(
P

ia
†
i � wj)

1

A
Y

i<j

�(a†i � a†j)
m|0i

Topological degeneracy parametrized by wj 

• Unlike the filled LL state, the Laughlin state 
does depend on the metric, which characterizes 
the shape of the correlation hole (flux 
attachment).
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• The Laughlin state is indeed a variational 
trial state, we must choose its metric to 
minimize the correlation energy

H =
1

N�

X

q

 
Ṽ (q)|fn(q)|2

2⇡`2B

!
X

i<j

eiq·(Ri�Rj)

Fourier transform 
of interaction

Landau-level 
form-factor

• Note that the residual two-body interaction 
between guiding centers always has 2D 
inversion symmetry.

reciprocal vector
compatible with 

pbc
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• The Laughlin states are also the exact zero-
energy ground states of the metric-
dependent “pseudopotential” interaction

H(g̃) =
1

N�

X

q

 
X

m0<m

Vm0Lm0(q2`2B)e
� 1

2 q
2`2B

!
X

i<j

eiq·(Ri�Rj)

q2 ⌘ g̃abqaqb
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• Degenerate (flat) Landau levels

empty

filled

partially occupied

E

U(R1 �R2)

H =
X

i<j

U(Ri �Rj)

effective Coulomb 
repulsion is analytic at 

origin because of 
smoothing by Landau-

orbit form factor

[Rx, Ry] = �i`2
B

quantum dynamics comes
from non-commutativity
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This is the entire problem:
nothing other than this matters!

• generator of translations and 
electric dipole moment!

H =
X

i<j

U(Ri �Rj)

[Rx, Ry] = �i`2
B

[(Rx

1 �Rx

2), (R
y

1 �Ry

2)] = �2i`2
B

• relative coordinate of a pair of 
particles behaves like a single 
particle

• H has translation and 
inversion symmetry

[(Rx

1 +Rx

2), (R
y

1 �Ry

2)] = 0

[H,
P

iRi] = 0

two-particle energy levels

like phase-space, 
has Heisenberg 
uncertainty principle

gap

want to avoid
this state
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• Laughlin state

U(r12) =
⇣
A+B

⇣
(r12)

2

`2B

⌘⌘
e
� (r12)2

2`2
B 0

E2 symmetric

antisymmetric

• Solvable model! (“short-range pseudopotential”) 1
2 (A+B)

1
2B

rest all 0

| m
L i =

Y

i<j

⇣
a†i � a†j

⌘m
|0i

ai|0i = 0 a†
i

=
Rx + iRy

p
2`

B

EL = 0

maximum density null state

• m=2: (bosons): all pairs 
avoid the symmetric state 
E2 =  ½(A+B)

• m=3: (fermions): all pairs 
avoid the antisymmetric 
state E2 =  ½B[ai, a

†
j ] = �ij
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• Furthermore, the local electric charge 
density of the fluid with   ν = p/q  is 
determined by a combination of the 
magnetic flux density and the Gaussian 
curvature of the metric

J0
e (x) =

e

2⇡q

✓
peB

~ � sKg(x)

◆

Gaussian curvature of the metricTopologically quantized “guiding center spin”
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• In fact, it is locally determined, if there is an 
inhomogeneous slowly-varying substrate 
potential

H =
X

i

vn(Ri) +
X

i<j

Vn(Ri �Rj)

vn(x)

deformation
near edgey

x
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• “skyrmion”-like  “cone”-like structure 
moves charge away from quasihole by 
introducing negative Gaussian curvature 

fluid density

distance
from center

in an effective theory, 
core of quasihole may collapse
into a cone singularity of the metric.
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One final result

• In the “trivial” non-topologically-ordered 
integer QHE (due to the Pauli principle) 

c̃ = ⌫ = Chern number

c̃� ⌫ = 0

• the (guiding-center) “orbital entanglement 
spectrum” of Li and Haldane is insensitive to 
filled (or empty) Landau levels or bands, and 
allows direct determination of non-zero c̃� ⌫

previous methods used the onerous calculation of 
the“real-space” entanglement spectrum to find c̃
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• Hall viscosity  gives “thermally excited” 
momentum density on  entanglement cut,  
relative to “vacuum”,  at von Neumann 
temperature T = 1 
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• In a 2D Landau level, we apparently start 
from a Schrödinger picture, but end with a 
“quantum geometry” which is no longer 
correctly described by Schrödinger 
wavefunctions in real space because of 
“quantum fuzziness” (non-locality)

• It remains correctly described by the 
Heisenberg formalism in Hilbert space.
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• the essential unit of the 1/3 Laughlin state is  the 
electron bound to a correlation hole corresponding 
to  “units of flux”, or three of the available single-
particle states which are exclusively occupied by the 
particle to which they are “attached”

• In general, the elementary unit of the FQHE fluid is 
a “composite boson” of p particles with q “attached 
flux quanta”

• This is the analog of a unit cell in a solid....
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• The Laughlin state is parametrized by a unimodular metric: 
what is its  physical meaning?

• In the  ν  = 1/3 Laughlin state, each electron sits in a 
correlation hole with an area containing 3 flux quanta.  
The metric controls the shape of the correlation hole.

• In the ν  = 1 filled LL Slater-determinant state, there is no 
correlation hole (just an exchange hole), and this state 
does not depend on a metric

correlation holes
in two states with 
different metrics
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• quantum solid

• repulsion of other particles make an attractive

potential well strong enough to bind particle

• unit cell is 
correlation hole

• defines geometry

solid melts if well is not strong enough to contain 
zero-point motion  (Helium liquids)
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• similar story in FQHE:

• “flux attachment” creates 
correlation hole

• potential well must be 
strong enough to bind 
electron 

• defines an emergent 
geometry

• new physics:  Hall viscosity,  
geometry............

e-

• continuum model, but 
similar physics to Hubbard 
model

but no broken symmetry
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• The composite boson fluid covers the plane, 
and provide an intrinsic dimensionless spatial 
distance measure on the plane, analogous to 
measuring distances in lattice units in the solid.

•   The effective field theory should only involve 
a connection compatible with the intrinsic 
spatial metric, not the connection compatible 
with the Euclidean metric.
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• space-time connection compatible with a time-
dependent intrinsic spatial metric gab(x, t)

rµfa = @µfa � �b
µafb

�a
µb =

1
2g

ac
�
@µgbc + �dµ (@bgcd � @cgbd)

�

• unusual feature,  connection 1-form carries only 
spatial indices �a

b = �a
µbdx

µ

�a
b ^ d�b

a +
2
3�

a
b ^ �b

c ^ �c
a

• Geometric Chern-Simons 3-form is analog of gravitational 
CS form, but trace is over spatial indices

= 2! ^ d!
spin connection
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• conserved Gaussian curvature current of 
intrinsic metric:

gab =
p
gg̃ab

unimodular part

Jµ
g = 1

2 (�
µ
a@t � �µ0 @a)

�
@bg̃

ab + g̃ab@b ln
p
g
�

+ 1
8✏

µ⌫�✏acg̃bd
�
@⌫ g̃

ab
� �

@�g̃
cd
�

(Brioschi formula)

@µJ
µ
g = 0

• any non-singular time-dependent symmetric spatial tensor field 
can define a conserved Gaussian curvature current
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• three dynamical ingredients gab, va,Pa:

• a “dynamic emergent 2D spatial metric”   
gab(x,t) with g ≡ det g, and Gaussian 
curvature current 

• a flow velocity field va(x,t)

• an electric  polarization field Pa(x,t)

• a composite boson current  

here a is a 2D spatial index, and  µ  is a (2+1D) space-time index.     The fluid 
motion is non-relativistic relative to the preferred inertial rest frame of the crystal 
background

Jµ
g = ✏µ⌫�@⌫!�(x, t)

Jµ
b =

p
g(x, t) (�µ0 + va(x, t)�µa )
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• effective bulk action:

S =

Z
d

2
xdtL0 �H

L0 =
~
4⇡

✏µ⌫� (Kbµ@⌫b� + �!µ@⌫!�)

+Jµ
b (~(@µ'� bµ � S!µ) + peAµ)

kinetic energy
of flow

metric-dependent
correlation energy

U(1) Chern-Simons field

U(1) condensate field

“spin connection”
of the metric

�H =
(pe)2

2⇡~K

H =
p
g
�
"(v, B)� U(g,B, P )� (Ea + ✏abv

bB)P a
�

�1
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• shape of correlation hole (flux attachment) fluctuates, 
adapts to environment (electric field gradients)

e-
e-

• polarizable, B x electric dipole = momentum, 

e-
x

origin of  “inertial mass”

geometric distortion
(preserving inversion symmetry)

electric polarizability

creates “curvature”
of metric

shape=metric

new property:
“spin” couples
to curvature

S
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e

the electron  excludes other particles from a 
region containing  3 flux quanta, creating a 
potential well in which it is bound

1/3  Laughlin state If the central orbital is filled, 
the next two are empty

The composite boson
has inversion symmetry

about its center

It has a “spin”
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2/5   state
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second moment of neutral 
composite boson

charge distribution

Thursday, August 3, 17



• Furthermore, the local electric charge 
density of the fluid with   ν = p/q  is 
determined by a combination of the 
magnetic flux density and the Gaussian 
curvature of the metric

J0
e (x) =

e

2⇡q

✓
peB

~ � sKg(x)

◆

Gaussian curvature of the metricTopologically quantized “guiding center spin”
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• In fact, it is locally determined, if there is an 
inhomogeneous slowly-varying substrate 
potential

H =
X

i

vn(Ri) +
X

i<j

Vn(Ri �Rj)

vn(x)

deformation
near edgey

x

Thursday, August 3, 17



• “skyrmion”-like  “cone”-like structure 
moves charge away from quasihole by 
introducing negative Gaussian curvature 

fluid density

distance
from center

in an effective theory, 
core of quasihole may collapse
into a cone singularity of the metric.
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One final result

• In the “trivial” non-topologically-ordered 
integer QHE (due to the Pauli principle) 

c̃ = ⌫ = Chern number

c̃� ⌫ = 0

• the (guiding-center) “orbital entanglement 
spectrum” of Li and Haldane is insensitive to 
filled (or empty) Landau levels or bands, and 
allows direct determination of non-zero c̃� ⌫

previous methods used the onerous calculation of 
the“real-space” entanglement spectrum to find c̃
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• Hall viscosity  gives “thermally excited” 
momentum density on  entanglement cut,  
relative to “vacuum”,  at von Neumann 
temperature T = 1 
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• In a 2D Landau level, we apparently start 
from a Schrödinger picture, but end with a 
“quantum geometry” which is no longer 
correctly described by Schrödinger 
wavefunctions in real space because of 
“quantum fuzziness” (non-locality)

• It remains correctly described by the 
Heisenberg formalism in Hilbert space.
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• A very effective approach for understanding the essential 
physics is to remove all unnecessary non-generic ingredients 
from the description.

• Only translation and (possibly) inversion symmetries 
are generic in a continuum description of phenomena in 
homogeneous crystalline condensed matter on a larger-than-
atomic scale

quarks
leptons
Higgs

photons

crystalline (rigid) 
condensed matter

continuum description
on lengthscales
larger than atoms

atomic nuclei
electrons

Broken Lorentz, 
Galileian,and continuous 

rotational invariances
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• The essential property of the uniform 
incompressible FQHE fluids is unbroken 
spatial inversion symmetry and a gap for 
excitations that carry an electric dipole 
moment (= momentum)

• The momentum gap means that these fluids 
do not transmit forces through their bulk, 
unlike “classical incompressible fluids”
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• Top-level model (Schrödinger):

H =
X

i

"(pi) +
X

i<j

V0(ri � rj)
rr ⇥A(r) = B

pi = �i~rr � eA(r)

not necessarily quadratic
(no Galilean invariance 

should be assumed)

bare Coulomb interaction
controlled by (possibly anisotropic) 
dielectric tensor of  medium
(no rotational invariance should be 
assumed)

• model has inversion symmetry if                , 
but even this need not be assumed

"(p) = "(�p)
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• Two independent Heisenberg algebras:

ea · eb = �abr = raea pa = ea · p

displacement
(contravariant index)

orthonormal basis 
of tangent vectors 

of 2D plane: 
a = 1,2

Euclidean metric 
of 2D plane

dynamical momentum
(covariant index)

[pa, pb] = i~eB✏ab

[ra, pb] = i~�ab
[ra, rb] = 0

[R̄a, R̄b] = i`2B✏
ab

[Ra, Rb] = �i`2B✏
ab

[Ra, R̄b] = 0

R̄a = ~�1✏abpb`
2
B

Landau orbit 
radius vector

Landau orbit guiding-
center displacement

2⇡`2B = 2⇡~
eB > 0

quantum area
(per h/e flux quantum)

• Note: origin of guiding-center displacement has a 
gauge ambiguity under                       + constantA(r) 7! A(r)

Ra = ra � R̄a

antisymmetric (2D 
Levi-Civita) symbol

organize as
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• Landau quantization "(p)| ni = En| ni

discrete spectrum of macroscopically-
degenerate Landau levels

• Project residual interaction in a single partially 
occupied “active” Landau level, all other dynamics 
is frozen by Pauli principle when  gap between 
Landau levels dominates interaction potential

H =
X

i<j

Vn(Ri �Rj)

[Ra, Rb] = �i`2B✏
ab residual problem is non-

commutative quantum 
geometry!

Thursday, August 3, 17



• The potential Vn(x) is a very smooth (in fact entire) 
function that depends on the form- factor of the partially-
occupied Landau level

• The essential clean-limit symmetries are translation and 
inversion:

H =
X

i<j

Vn(Ri �Rj)

[Ra, Rb] = �i`2B✏
ab

We now have the final form of the problem:

Ri 7! a±Ri

x

(not smooth)

Vn(x)

V0(x)original

Identical quantum particles 
(fermions or bosons )
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• The quadratic expansion of this even function around 
the origin defines a natural “interaction metric”

• The problem is often simplified by giving it a continuous 
rotation symmetry that respects this metric, but this is 
non-generic, and not necessary.

• This metric and a rotation symmetry are important in 
model FQH wavefunctions based on cft, which have a 
stronger conformal invariance property.

H =
X

i<j

Vn(Ri �Rj)

[Ra, Rb] = �i`2B✏
ab Vn(x)
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• It is straightforward to solve the two-body 
Hamiltonian:

H = Vn(R12)

R12 = R1 �R2

[Ra
12, R

b
12] = 2i`2B✏

ab

Vn(x)

etc. E4
E3

E2

E1

• If there is a rotational symmetry, the energy 
levels (called “pseudopotentials”) completely 
characterize the interaction potential.

• a large gap between energy levels favors flux 
attachment with a shape close to that of  
the “interaction metric”

equivalent to a one-
particle problem
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• The  non-commutative quantum geometry does not 
have a Schrödinger representation because there is no 
orthogonal local basis within its Hilbert space

• We can create an unfaithful Schrödinger representation 
by adding back a now-unphysical copy of the Landau 
orbit-degrees of freedom:

physical unphysical

local basis Projection into physical basis of
holomorphic states
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• This looks like just mapping the quantum 
geometry back  into a “lowest-Landau-level 
problem”

• But important new features appear when 
the problem is “compactified on the torus” 
by imposing (quasi)periodic boundary 
conditions
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• Periodic Boundary Conditions on a primitive region 
with flux NΦ  in units h/e :

smallest translation
compatible with pbc

• Guiding-center translation operator

Bravais lattice of periodic translations

NOTE: choice of a basis L1, L2 
is a “modular choice”
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• On the Torus (pbc) there are two distinct 
type of bases:

(a).  Geometry-independent, orthonormal 
bases that depend on a modular choice:

This is a standard “Landau basis”
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• The other type of basis is a non-orthogonal 
basis of modular-invariant   geometry-
dependent holomorphic states:

zeroes

Weierstrass sigma function
(modular invariant)“almost holomorphic modular invariant”
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• Holomorphic Laughlin states

• Also get very useable forms for other states 
(composite fermion Fermi liquid states)

• A  surprise: only need to 
evaluate holomorphic states on 
the lattice               of           
points in the primitive region of 
the torus!
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• On the torus, the Heisenberg algebra is 
compactified to the unitaries

(discrete set of reciprocal vectors q)

• To construct the unfaithful Schrödinger 
representation, we now use compactified 
dual variables:

• We get a modular-invariant lattice-based Schrödinger representation 
on (NΦ)2 sites (square of one-particle Hilbert space dimension)

Thursday, August 3, 17



• A corollary: based on the naive lowest-Landau-level 
interpretation, one expects that the overlap between two 
holomorphic states must be calculated as

primitive region of torus

• In fact

primitive lattice sum

This allows a lattice-based Monte Carlo evaluation 
of model state properties on the torus, which 

would not have been guessed in the LLL picture
Thursday, August 3, 17



• Furthermore, the projections of the lattice sites into 
the physical (holomorphic) space is essentially a 
coherent state representation,  and all operators 
have a diagonal representation on the lattice.

• A very economical Monte-Carlo method for model 
wavefunction properties (with huge speed-ups 
compared to previous continuum methods) is 
obtained and has been tested! (with Ed Rezayi, Scott 
Geraedts, Jie Wang)
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• While the “lowest Landau level wavefunction” (LLLWF) 
interpretation of model FQH and CFL states is entrenched in 
the “common wisdom” it is misleading.   The system 
projected into a Landau level is a “quantum geometry” with 
no faithful Schrödinger representation.

• modular-invariant holomorphic model states have an intrinsic 
metric that is the shape of “flux attachment”, fixed by the 
interaction in translationally-invariant systems

• A new lattice-based approach to systems on the torus is 
obtained after discarding the LLLWF interpretation.    
Modular invariance is a key property.

summary
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• Flux attachment is a gauge condensation that removes 
the gauge ambiguity of the guiding centers, giving each 
one a “natural” origin, so they define a physical electric 
dipole moment of the “composite particle” in which they 
are bound by  the “attached flux”.

• This is analogous to how the “the vector potential 
becomes an observable” (in a hand-waving way) in the 
London equations for a superconductor.

×
�R

center of flux-attachment

(fuzzy) region from which
particles other that those making 
up the “composite particle” are 
excluded
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• quantum solid

• repulsion of other particles make an attractive

potential well strong enough to bind particle

• unit cell is 
correlation hole

• defines geometry

solid melts if well is not strong enough to contain 
zero-point motion  (Helium liquids)
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• In Maxwell’s equations, the momentum 
density is 

⇡i = ✏ijkD
jBk Di = ✏0�

ijEj + P i

• The momentum of the condensed matter is 
p = d⇥B

electric dipole moment

• in 2D the guiding-center momentum then is
pa = eB✏ab�R

b

• The electrical polarization energy of the dielectric 
composite particle then gives its energy-momentum 
dispersion relation, with no involvement of any 
“Newtonian inertia” involving an effective mass
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×�R

• The Berry phase generated by 
motion of the “other particles”  
that “get out of the way” as the 
vortex-like “flux-attachment” 
moves with the particle(s) it 
encloses can be formally-
described as a Chern-Simons 
gauge field that cancels the 
Bohm-Aharonov phase, so that 
the composite object propagates 
like a neutral particle. 

v
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• All FQH states have an elementary unit  (analogous to the unit 
cell of a crystal) that is a composite boson under exchange.

• It may be sometimes be  useful to describe this boson as a a 
bound state of composite fermions (with their own preexisting 
flux attachment) bound by extra flux (Jain’s picture) 

• If the composite particle is a boson, it condenses into the 
zero-momentum (zero electric dipole-moment) 
inversion-symmetric state, giving an incompressible-fluid  
Fractional  Quantum Hall state, with an energy gap for 
excitations that carry momentum or electric dipole 
moment (“quantum incompressibility”, no transmission of 
pressure through the bulk). 

Thursday, August 3, 17
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(2 quasiparticle 
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goes into
continuum
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Moore-Read ⌫ = 2
4

“kF ”

fermionic
“roton”

bosonic “roton”

Collective mode with short-range three-body 
pseudopotential, 1/2 filling (Moore-Read state is 
exact ground state in that case)

• momentum ħk of a quasiparticle-quasihole pair is 
proportional to its electric dipole moment pe ~ka = �abBpbe

k�B

gap for electric dipole excitations is a MUCH stronger 
condition than charge gap: fluid does not transmit 
pressure through bulk!

Topologically-degenerate FQH state
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• The composite particle may also be a 
fermion.   Then one gets a Fermi surface in 
momentum-space = electric dipole space, 
and a gapless anomalous Hall effect which is 
quantized when the Berry phase cancels the 
Bohm-aharonov phase.  (HLR-type state)

p
x

filled
empty

py

• There must be a distribution of dipole 
moments (or momentum) of the composite 
fermions, centered at the inversion-symmetric 
zero-moment state which has lowest energy.  
These are quantized by a pbc, and no two 
composite fermions can have the same diople 
moment.
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• Fermi surface quasiparticle formulas for 
anomalous Hall effect (FDMH 2006)

• in 2D:

�H = e2

2⇡~ (n+ �
2⇡ )

Integer determined 
at edge

ei�

Berry phase for 
 moving a quasiparticle around 

Fermi surface (arc)

Thursday, August 3, 17



Ra

p
2`B

= waa† + waa [a, a†] = 1

(wa)
⇤wa = 1

2 (gab + i✏ab) wa = gabw
b det g = 1

• holomorphic representations of guiding-
center states

• This is the Girvin-Jach formalism, except they implicitly assumed the 
metric gab was  the Euclidean metric of the plane.  In fact, it is a 
free choice, not fixed by the any physics of the problem.
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• Then, once a metric (i.e., a complex 
structure) has been chosen, a one-particle 
state can be described as

| i = f(a†)|0i a|0i = 0

holomorphic

• Both the “vacuum” |0⟩ and the function f(z) vary as the metric is changed 
(a Bogoliubov transformation)

• Normalization/overlap:

h 1| 2i =
Z

dz ^ dz⇤

2⇡i
f1(z)

⇤f2(z)e
�z⇤z
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• When compactified on the torus with flux 
NΦ , the modular-invariant formulation is

f(z) /
N�Y

i=1

�̃(z � wi)
X

i

wi = 0

�̃(z|{L}) = e
1
2C2({L})z2

�(z|{L})

Weierstrass sigma function

Bravais lattice in complex plane

“almost holomorphic modular 
invariant” (Eisenstein series)
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• In the Heisenberg-algebra reinterpretation 
X

i

wi = 0

• The filled Landau level is 

| i =

0

@
Y

i<j

�(a†i � a†j)�(
P

ia
†
i )

1

A |0i

• The Laughlin states are

| i =

0

@
Y

i<j

�(a†i � a†j)
m

1

A
mY

k=1

�(
P

ia
†
i � wk)|0i

mX

k=1

wk = 0.

| i =
N�Y

i=1

�(a†i � wi)|0i one particle

 filled Level
N = N�

N = 1

N� = mN
Laughlin state⌫ = 1

m

˜

˜

˜˜

˜

Thursday, August 3, 17



• A previously unknown (?) identity that I 
recently guessed and found was indeed 
true, and which dramatically transforms 
calculations on torus (e.g., orders of 
magnitude Monte-Carlo speedup)

h 1| 2i =
Z

⇤

dz ^ dz⇤

2⇡i
f1(z)

⇤f2(z)e
�z⇤z

=
1

N�

X

z

0 z 2 {mL1+nL2
N�

}

(NΦ )2 points
replace integral over 

fundamental region by a 
modular-invariant finite sum
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• with Ed Rezayi, I found a remarkable clean 
composite Fermi liquid model state on the flat 
torus, inspired by a construction by Jain on the 
sphere.

• On the torus, the state is precisely equivalent to 
the usual treatments of the Fermi gas with a pbc.

• It is very accurate as compared to exact 
diagonalization of the Coulomb interaction, and 
amazingly “almost” (99.99%) particle-hole 
symmetric at ν  = 1/2.
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• Composite Fermi liquid (HLR-like) at ⌫ =
1

m

Mij({zk}; {dk}) = ed
⇤
j zi/m

Y

k 6=i

0
�̃(zi � zj � di + d̄)

a set of dipole moments (particle number, not flux)di 2 L
N

f({zi}) =
Y

i<j

�̃(zi � zj)
(m�2) det

ij
Mij

mY

k=1

�̃(
P

izi � wk)

Fermi (Bose) for m even (odd)

gives Chern-Simons gives bf? / Z2

mX

↵=1

w↵ =
NX

j=1

dj = Nd̄
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• There are vastly more possible choices of 
dipole “occupations” than independent 
states:  The “good” ones are clusters that 
minimize P

i |di � d̄|2

Computing ph symmetry
(with Scott Geraedts)

model state is numerically very close 
to p-h symmetry when k’s are clustered

0.028677091503  0  1110101000 0.0286770915235  0
 0001010111

0.0171543754946  0  1110110000 0.0172785391733  0
 0001001111

0.00272205658268  0  1111000001
0.00272205658096  0  0000111110
0.00741749061239  0  1111000010
0.00741749061624  0  0000111101
0.0131254758865  0  1111000100 0.0131430302064  0

 0000111011
0.0172785391469  0  1111001000 0.017154375511  0

 0000110111
0.0141743825022  0  1111010000 0.0141743825338  0

 0000101111
0.00547651410185  0  1111100000
0.00547651412427  0  0000011111

# Z_{COM}  overlap with PH-conjugate in opposite charge sector    1-
overlap
0 0.999998870263 1.1297367517e-06
1 0.999999369175 6.3082507884e-07
2 0.99999860296 1.39704033186e-06
3 0.99999860296 1.3970403312e-06
4 0.999999369175 6.30825078063e-07
5 0.999998870263 1.12973675237e-06
6 0.999999369175 6.30825079173e-07
7 0.99999860296 1.39704032942e-06
8 0.99999860296 1.39704032909e-06
9 0.999999369175 6.30825078507e-07
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• particle-hole symmetry, and Kramers Z2 

structure (Scott Geraedts and Jie Wang)
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A many-body 
ansatz for 

Berry phase  we confirmed all paths are real, by Kramers 

These are ED
results on exact  
Coulomb interaction
 states, with the exact 
particle hole symmetry, 
with occupation 
patterns obtained by 
finding the model states 
they have high overlap 
with
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• is there an analog of Dirac cone point ?

State  with the quantum numbers of 
an inversion symmetric Fermi sea 

with a single hole at the center (has 
an even number of particles)

A state on the Torus with 
these quantum numbers is 

a parity doublet

• as a hole is moved into the bulk, the ansatz 
must fail as if goes through the inversion-
symmetric point!

�1

+1
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• quadratic + quartic dispersion (Yu Shen + FDMH)
13

-40

-20

 0

 20

 40

-40 -20  0  20  40

-40

-20

 0

 20

 40

-40 -20  0  20  40

-40

-20

 0

 20

 40

-40 -20  0  20  40

-40

-20

 0

 20

 40

-40 -20  0  20  40

-40

-20

 0

 20

 40

-40 -20  0  20  40

-10

-5

 0

 5

 10

-10 -5  0  5  10
-10

-5

 0

 5

 10

-10 -5  0  5  10
-10

-5

 0

 5

 10

-10 -5  0  5  10

FIG. 6. Contour plots of ln | 20|2 where  20 is the coherent
state in the 20th Landau level of the Hamiltonian p2

x

+ p2
y

+
2p4

x

+ 3p4
y

+ 4{p2
x

, p2
y

}+ {p
x

, p3
y

}. The lower plot is a zoom-in
on the central region. The contours have the same piece-wise
structures as in the case of pure quartic terms. Also note
that the central cross still points to the maxima and that the
spikes to the saddle points.

solving a tridiagonal Hermitian eigenproblem to obtain
the Taylor series for fn, and then used a root finder to
obtain approximate eigenstates in the form

| ni /
nY

i=1

(a† � z⇤i )|0i. (120)

To accurately explore the root structure {z⇤i }, we carried
out the diagonalization using MPACK,15 an adaptation
of the linear algebra routines from LAPACK to use the
GMP library for arbitrary-precision floating-point calcu-
lations. These calculations reveal the zeroes of fn(z⇤) in

some region |z| < RN , with truncation-dependent fea-
tures tied to the boundary |z| ⇡ RN , but with a struc-
ture for |z| ⌧ RN that becomes independent of N as it,
and consequently RN , is increased, as illustrated in Fig.1.
We therefore believe that this calculational method re-
veals the true structure of roots of the holomorphic non-
polynomial function fn(z⇤) in a range |z| < R that can be
increased at will at the expense of increasing the floating-
point precision of the numerical diagonalization.
Given that the exact eigenstate satisfies a three-term

recurrence relation (or a five-term recurrence relation if
quadratic terms are included) that depends on its eigen-
value, it is possible that, once the eigenvalue has been ac-
curately determined, the Taylor series could be extended
beyond the truncation point using the recurrence rela-
tion, but we found that the eigenvector of the truncated
tridiagonal matrix was accurate enough for finding the
pattern of roots, when calculated with high precision.
A typical layout (Class I) of the roots is presented in

Fig.2. The central zeroes, the number of which deter-
mines the topological spin, are organized in a cross shape
due to the C

4

symmetry. There are n mod 4 degenerate
zeroes at the origin, and the degeneracy will be lifted
once we add quadratic terms to the Hamiltonian. An-
other noticeable feature is the four “spikes” that point
to the origin and alternate with the central cross. The
regions with quasi-uniform 2D distributions are bounded
by line “charges” with constant density. If this pattern
can be extrapolated to infinity, the total number of roots
inside Br will go as r2, in agreement with the mathemat-
ical bound mentioned above. The precise locations of the
zeroes inside those 2D regions are sensitive to perturba-
tion of the Hamiltonian, but we believe the very existence
of such “dark” areas is of universal significance.
The structure of the roots strongly suggests that there

is a semiclassical treatment in which ln fn(z) is approx-
imated by a piecewise-holomorphic function in regions
separated by branch cuts along the apparent lines of ze-
roes, with a modification of the background 2D charge-
density distribution of the Poisson equation in the re-
gions where the roots seem to be a quasi-uniform 2D
distribution. To visualize that, we show in Fig.3 the
contours of the 2D Coulomb potential V (z, z⇤), which
is ln |fn(z)|2 plus a quadratic potential derived from the
Gaussian factor. Note that the actual topography has a
“volcano crater” at the center enclosed by an annulus-like
region containing the local maxima and saddle points.
The fact that all the central zeroes are inside the crater
and separated from the rest of the structure is critical
for a semiclassical definition of the topological spin. We
will see shortly that the same statement does not apply
to classes II, III, or IV. Additionally, for class I there is a
free parameter c� 1 that controls the shapes of contours
of constant "(p) in momentum space. A simple calcula-
tion reveals that c� 1 > 2 corresponds to contours with
concave shapes, while c� 1 < 2 to convex ones.
Now we move on to the other three classes of quartic

terms. As can be seen from the definitions, their qualita-
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solving a tridiagonal Hermitian eigenproblem to obtain
the Taylor series for fn, and then used a root finder to
obtain approximate eigenstates in the form

| ni /
nY

i=1

(a† � z⇤i )|0i. (120)

To accurately explore the root structure {z⇤i }, we carried
out the diagonalization using MPACK,15 an adaptation
of the linear algebra routines from LAPACK to use the
GMP library for arbitrary-precision floating-point calcu-
lations. These calculations reveal the zeroes of fn(z⇤) in

some region |z| < RN , with truncation-dependent fea-
tures tied to the boundary |z| ⇡ RN , but with a struc-
ture for |z| ⌧ RN that becomes independent of N as it,
and consequently RN , is increased, as illustrated in Fig.1.
We therefore believe that this calculational method re-
veals the true structure of roots of the holomorphic non-
polynomial function fn(z⇤) in a range |z| < R that can be
increased at will at the expense of increasing the floating-
point precision of the numerical diagonalization.
Given that the exact eigenstate satisfies a three-term

recurrence relation (or a five-term recurrence relation if
quadratic terms are included) that depends on its eigen-
value, it is possible that, once the eigenvalue has been ac-
curately determined, the Taylor series could be extended
beyond the truncation point using the recurrence rela-
tion, but we found that the eigenvector of the truncated
tridiagonal matrix was accurate enough for finding the
pattern of roots, when calculated with high precision.
A typical layout (Class I) of the roots is presented in

Fig.2. The central zeroes, the number of which deter-
mines the topological spin, are organized in a cross shape
due to the C

4

symmetry. There are n mod 4 degenerate
zeroes at the origin, and the degeneracy will be lifted
once we add quadratic terms to the Hamiltonian. An-
other noticeable feature is the four “spikes” that point
to the origin and alternate with the central cross. The
regions with quasi-uniform 2D distributions are bounded
by line “charges” with constant density. If this pattern
can be extrapolated to infinity, the total number of roots
inside Br will go as r2, in agreement with the mathemat-
ical bound mentioned above. The precise locations of the
zeroes inside those 2D regions are sensitive to perturba-
tion of the Hamiltonian, but we believe the very existence
of such “dark” areas is of universal significance.
The structure of the roots strongly suggests that there

is a semiclassical treatment in which ln fn(z) is approx-
imated by a piecewise-holomorphic function in regions
separated by branch cuts along the apparent lines of ze-
roes, with a modification of the background 2D charge-
density distribution of the Poisson equation in the re-
gions where the roots seem to be a quasi-uniform 2D
distribution. To visualize that, we show in Fig.3 the
contours of the 2D Coulomb potential V (z, z⇤), which
is ln |fn(z)|2 plus a quadratic potential derived from the
Gaussian factor. Note that the actual topography has a
“volcano crater” at the center enclosed by an annulus-like
region containing the local maxima and saddle points.
The fact that all the central zeroes are inside the crater
and separated from the rest of the structure is critical
for a semiclassical definition of the topological spin. We
will see shortly that the same statement does not apply
to classes II, III, or IV. Additionally, for class I there is a
free parameter c� 1 that controls the shapes of contours
of constant "(p) in momentum space. A simple calcula-
tion reveals that c� 1 > 2 corresponds to contours with
concave shapes, while c� 1 < 2 to convex ones.
Now we move on to the other three classes of quartic

terms. As can be seen from the definitions, their qualita-
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FIG. 7. Black region accounting for 90 percent of the to-
tal weight (probability) of  20, the coherent state in the
20th Landau level of the Hamiltonian p2

x

+ p2
y

+ 2p4
x

+ 3p4
y

+
4{p2

x

, p2
y

}+ {p
x

, p3
y

}. The annulus is bounded by contours at
the same value of the amplitude | 20| and cleanly separates
the central zeroes from the rest of the structure.

tive di↵erence from class I is that the classical dispersion
"(p) is consistently zero along one (for classes II, IV) or
two (for class III) radial directions on the momentum
plane. As a result, the classical orbits for these three
classes are not closed. Though the noncommutativity of
pa gives rise to e↵ective quadratic terms for classes II
and III, thus closing the quantum orbits, we expect that
a clean separation between the central zeroes and the
outer structure by a set of contours cannot be achieved
for any of the three classes, which is verified in Fig.4.

We now combine quartic terms with quadratic terms.
The parametrization is

H =Ap2x +Bp2y + Cp4x +Dp4y

+ E{p2x, p2y}+ F{px, p3y}+G{p3x, py}. (121)

The addition of quadratic terms does not introduce
qualitatively new features although the C

4

symmetry
generically breaks down. However, as we go to high-
energy states, the quartic terms will eventually dominate.
Therefore we expect to see a quasi-C

4

symmetry gradu-
ally appear as the Landau index n increases, as shown in
Fig.5. Due to this asymptotic C

4

symmetry, the generic
features of the root structure and the contours still hold,
as illustrated in Fig 6.

To make connection with the usual Galilean theory,
we remark that as we reduce the weights of the quartic
terms, the central zeroes will shrink toward the origin
and the outer zeroes will be pushed toward infinity (but
generic patterns don’t change), consistent with the fact
that at the limit of pure quadratic terms fn(z⇤) becomes
a monomial (z⇤)n and all the zeroes stay at the origin.

We conclude this section by revisiting the semiclassi-

cal interpretation of the root structure and demonstrat-
ing that the region we pick to isolate the central zeroes
can indeed encompass as much as 90 percent of the to-
tal weight of the wavefunction, as shown in Fig.7. In
the rotationally invariant case,  n has n zeroes at the
origin, a rim of maxima at a radius of order

p
n and

a Gaussian tail extending to infinity. With a moderate
perturbation that breaks rotational invariance, the new
zeroes will only appear where the original wavefunction
has vanishingly small amplitudes, i.e., around the origin
or along the Gaussian tail. This explains why we are
able to extract a region that accounts for as much as 90
percent of the total probability while covering no zeroes.

VIII. OTHER PROPERTIES OF THE LANDAU
ORBIT

There are some other important characteristic physical
properties of the Landau orbit. The simplest is its dia-
magnetic magnetic moment normal to the plane, given
by

µn =
@En

@B

����
"(p)

(122)

which in the Newtonian model with Galilean invariance
reduces to µn = ~eBsn/me.
The second property is the e↵ective mass that charac-

terizes the kinetic energy of a guiding center that flows
along a line of constant En(x), if there is slow adiabatic
spatial variation of the Hamiltonian. This is given by the
linear response to a perturbation that breaks the inver-
sion symmetry of the Landau orbit around its guiding
center. The perturbed Landau levels are given by

(H � vapa)| n,↵(v)i = En(v)| n,↵(v)i, (123)

where v is a parameter of the perturbed Hamiltonian.
Then

h n↵(v)|H| n↵(v)i = En + 1

2

mn
abv

avb +O(v4), (124)

and

En(v) = En � 1

2

mn
abv

avb +O(v4), (125)

For the Newtonian model, mn
ab = me�ab. Though both

mn
ab and gnab are proportional to the Euclidean metric

in the Newtonian model, there is in general no propor-
tionality between them unless there is a discrete three-,
four- or six-fold crystal rotational symmetry of the lat-
tice plane on which the electrons move (and no tangen-
tial component of the magnetic flux), in which case they
both remain proportional to the Euclidean metric which
is invariant under the crystal symmetry.
The generic lack of any relation between the viscos-

ity tensor and the e↵ective mass tensor can be traced
to the fact that the viscosity derives from perturbations

• non-polynomial landau orbit states
10

FIG. 1. Root distribution on the complex plane of the
truncated antiholomorphic part of the coherent state in the
10th Landau level f10(z

⇤) for class I quartic term (113) with
c � 1 = 4 at di↵erent truncations N . Here N is not the de-
gree of the polynomial (truncated f10(z

⇤)), but the number
of fixed-parity states (in this case (z⇤)n with n being an even
number) we kept for diagonalization. For example, N = 500
means we kept states from (z⇤)0 to (z⇤)998. For each N , we
used a su�ciently high precision in diagonalization so that
further increasing the precision would not do any better in
terms of the locations of the zeroes. As N increases, the re-
gion covered by the zeroes expands. However, the existing
pattern of zero distribution does not change, which justifies
the validity of our results.

VII. A CASE STUDY: THE QUARTIC
DISPERSION

We will now present a detailed case study of the sim-
plest model dispersion that exhibits the generic property
that there is no congruence between the shapes of di↵er-
ent semiclassical orbits.

This is the model with quadratic and quartic terms in
the dispersion:

H = Aab
1

papb +
1

4

Aabcd
2

{pa, pb}{pc, pd}. (108)

Up to the addition of the quadratic Casimir, which is
a constant, and does not a↵ect the semiclassical orbits,
there are four possible classes of quartic terms compat-
ible with strict monotonicity. If g̃abi are the inverses of
unimodular metrics:

Ãab,cd
2,I = g̃ab

1

g̃cd
2

+ g̃ab
2

g̃cd
1

, 1

2

(g̃ab
1

+ gab
2

) = cg̃ab
0

,

Ãab,cd
2,II = g̃ab

1

uc
1

ud
1

+ ua
1

ub
1

g̃cd
1

,

Ãab,cd
2,III = ua

1

ub
1

uc
2

ud
2

+ ua
2

ub
2

uc
1

ud
1

, ua
1

ub
1

+ ua
2

ub
2

= �g̃ab
0

,

Aab,cd
2,IV = ua

1

ub
1

uc
1

ud
1

. (109)

where � > 0, and c � 1. Strict monotonicity also requires
that the quadratic term Aab

1

has the form �0g̃0ab, �0 � 0,

FIG. 2. Root distribution on the complex plane of the
truncated antiholomorphic part of the coherent state in the
10th Landau level f10(z

⇤) for class I quartic term (113) with
c � 1 = 4 at a truncation of 500 fixed-parity states, i.e., the
truncated f10(z

⇤) is a polynomial of degree 998 with only even
powers. Ten central zeroes, with two being degenerate at the
origin, form a cross due to the C4 symmetry of (113). The
peripheral zeroes also have interesting features, such as four
“spikes” pointing to the origin and line charges with constant
density that bound 2D regions of quasi-uniform distributions.
The arcs on the boundary are generated due to finite trunca-
tion and should not be regarded as part of the zero pattern.

but the weaker condition that the spectrum of H is stable
(i.e., bounded below) only requires that ✏ac✏bdAab

1

uc
iu

d
i �

0 in classes II, III, IV.
The class I and III quartic terms have a C

4

symmetry
with inverse metric g̃ab

0

. If Aab
1

/ gab
0

the full model also
has this symmetry, and all Landau orbits have the same
metric given by the inverse of g̃ab

0

. If, in addition, g̃ab
1

= g̃ab
2

= g̃ab
0

, so c = 1, class I models have a continuous
SO(2) symmetry.
We first review the purely quadratic case, where the

quartic term is absent, Aabcd
2

= 0. In this case

H = 1

2

E
0

g̃ab�ab, E
0

> 0, (110)

where g̃ab is the inverse of a unimodular metric g̃ab and
there is a pseudo-Galilean invariance with �ab replaced
by g̃ab, and me replaced by (E

0

`2B/~)�1. However, the
resemblance to the Newtonian model is superficial, as
(E

0

`2B)
�1 and g̃ab can be spatially-varying (and their

product can have Gaussian curvature) on a completely-
geometrically-flat plane with a Cartesian coordinate sys-
tem. In this non-generic case, the Landau-orbit metric is
g̃ab independent of the Landau index, with all the zeroes
of the Landau-orbit coherent state at its origin.
The next-simplest case is the purely-quartic class I

model, which also has the non-generic feature of a com-
mon metric g̃ab for all Landau orbits, because of its hid-
den C

4

four-fold rotational symmetry. The generic model
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