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Both selected for a Viewpoint in Physics written by J. Dubail

(http://physics.aps.org/articles/v9/153#c1)
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Plan

Lecture I: the theory of generalized hydrodynamics (GHD).

Applications of hydrodynamic ideas, generalized thermalization, derivation of the main GHD

equations. Pictures and videos.

Lecture II: solutions and applications to transport and cor relations.

Some geometry at the core of GHD, an exact solution to the initial value problem in the form

of integral equations, relation to gases of classical solitons, relation with conventional

hydrodynamics, how GHD leads to exact results in transport problems including Drude

weights and non-equilibrium currents, connection with the theory of hydrodynamic

projections, and exact results for large-scale space-time correlations.
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Lecture I: the theory of generalized hydrodynamics.
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1. The problem: inhomogeneous dynamics of many-body integr able systems
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1. The problem: inhomogeneous dynamics of many-body integr able systems

Effects of integrability in the famous “Quantum Newton Cradle” experiment:

[Kinoshita, Wenger, Weiss 2006]

“Our results are probably explainable

by the well-known fact that a homoge-

neous 1D Bose gas with point-like colli-

sional interactions is integrable”

“Until now, however, the time evolution

of out-of-equilibrium 1D Bose gases

has been a theoretically unsettled is-

sue, as practical factors such as har-

monic trapping and imperfectly point-

like interactions may compromise inte-

grability”
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1. The problem: inhomogeneous dynamics of many-body integr able systems

As an example consider the Lieb-Liniger model, which describes point-like interactions of

Galilean invariant Bose gases. Its Hamiltonian is

H =

∫

dx h(x) =

∫

dx

(

1

2m
∂xΨ

†∂xΨ+
c

2
Ψ†Ψ†ΨΨ

)

.

It admits local conserved quantities Qi:

Qi =

∫

dx qi(x).

For instance, the number of particle N , the momentum P and the energy H :

• the particle density is q0(x) = n(x) = Ψ†(x)Ψ(x);

• the momentum density is q1(x) = p(x) = iΨ†(x)∂xΨ(x) + h.c.;

• the energy density is q2(x) = h(x).
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1. The problem: inhomogeneous dynamics of many-body integr able systems

We can describe theoretically (a simplification of) the problem as follows. The initial state is

an equilibrium state with a inhomogeneous potential

〈A〉 =
Tr (ρiniA)

Trρini
, ρini = exp

[

−β

(

H +

∫

dxVini(x)n(x)

)]

.

Then the evolution occurs with the Hamiltonian in a different inhomogeneous potential

〈A(t)〉 = 〈eiHevotAe−iHevot〉, Hevo = H +

∫

dxVevo(x)n(x).
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1. The problem: inhomogeneous dynamics of many-body integr able systems

How can we compute the evolution of such a gas?

Can we reproduce the effects seen in the quantum Newton cradle experiment?

What general theory would allow us to do so in a simple enough fashion, without using

advanced computational techniques for one-dimensional quantum systems?

What are the general principles?
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2. From Gibbs ensembles to conventional hydrodynamics

For a nice description of standard concepts in hydrodynamics, see e.g. A. Bressan, Hyperbolic

conservation laws: An illustrated tutorial. In Modelling and Optimisation of Flows on Networks, Cetraro,

Italy 2009, Lecture Notes in Mathematics 2062, Springer, 2013
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2. From Gibbs ensembles to conventional hydrodynamics

Hydrodynamics is the natural framework to describe inhomogeneous phenomena in

many-body systems, for instance waves in water. The main idea behind hydrodynamics is

what is usually referred to as “local thermodyanamic equilibrium” .

It says that locally and on very short time scales (in fluid cells), the many-body system

“equilibrates” or relaxes . This means (naively) that locally we observe Gibbs states . Since

things can be moving, then in general these will be boosted by the local fluid velocity. Thus,

at every point x, t, the density matrix is

ρGE(x, t) = e−β(x,t)(H−µ(x,t)N−ν(x,t)P )

and the hydrodynamic approximation is

〈O(x, t)〉ini ≈
Tr (ρGE(x, t)O(0, 0))

TrρGE(x, t)
.

For instance:
ρini = e−β(H+

∫
dxVini(x)n(x)) ⇒ ρGE(x, 0) = e−β(H+Vini(x)N).
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2. From Gibbs ensembles to conventional hydrodynamics



'

&

$

%

2. From Gibbs ensembles to conventional hydrodynamics

Let us show that hydrodynamics follows from local thermodyn amic equilibrium

combined with current conservation . Here for simplicity we suppose there are no force

terms: homogeneous evolution Hamiltonian Hevo.

There is an energy current jh such that

∂th(x, t) + ∂xjh(x, t) = 0.

Denote Tr(ρGE(x, t)h)/TrρGE(x, t) = h(x, t) and similarly for jh(x, t). By Stokes

theorem and local thermodynamic equilibrium, on macroscopic paths,

0 =

∮

d~x ∧

(

〈h(x, t)〉ini
〈jh(x, t))〉ini

)

=

∮

d~x ∧

(

h(x, t)

jh(x, t)

)

.

Therefore, h(x, t), jh(x, t) satisfy a conservation equation at the macroscopic scale:

∂th(x, t) + ∂xjh(x, t) = 0.
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2. From Gibbs ensembles to conventional hydrodynamics

The same holds with the momentum current jp and the particle current jn = p (equal to the

momentum density in Galilean systems), giving the macroscopic conservation laws:

∂th(x, t) + ∂xjh(x, t) = 0

∂tp(x, t) + ∂xjp(x, t) = 0

∂tn(x, t) + ∂xp(x, t) = 0.

But also, since there are only three parameters µ, ν, β to determine a boosted Gibbs state,

there must be two relations:

jh = F (h, p, n), jp = G(h, p, n).

These are the equations of state of the gas (which are highly model-dependent), and

combined with the above give the hydrodynamic equations for h, p, n.

Note that h, p, n fix the potentials β, µ, ν. Thus hydrodynamics fixes the local space-time

dependent state.
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2. From Gibbs ensembles to conventional hydrodynamics

Remarks:

• This is valid at the Euler scale : all variations in space and time must be very smooth.

Beyond this scale, there are higher derivative corrections, such as viscosity terms. But at

large scales, such higher derivative terms are scaled out.

• These equations can be re-written in standard hydrodynamic form. Defining a velocity v

via p = n v, the n and p conservation laws imply

∂tv + v∂xv = −
1

n
∂xP

where the pressure is P = jp − nv2. This is the usual Euler equation. Combined with

∂tn+ ∂x(vn) = 0 these are the usual hydrodynamic equations (without viscosity).

• The pressure P in a boosted Gibbs state can be evaluated in the Lieb-Liniger model

using Bethe ansatz. This Lieb-Liniger conventional hydrodynamics has been used, with

partial success.
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2. From Gibbs ensembles to conventional hydrodynamics

Thus there is an unambiguous procedure to go from homogeneous, stationary states to

inhomogeneous, dynamical states, describing the large (Euler) scale space-time variations.
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3. From Gibbs ensembles to Generalized Gibbs ensembles (GGE s)

Main paper: M. Rigol, V. Dunjko, V. Yurovsky, M. Olshanii, Phys. Rev. Lett. 97, 050405 (2007).

Reviews:

- A. Polkovnikov, K. Sengupta, A. Silva, M. Vengalattore, Rev. Mod. Phys. 83, 863 (2011)

- J. Eisert, M. Friesdorf, C. Gogolin, Nat. Phys. 11, 124 (2015);

- C. Gogolin, J. Eisert, Rep. Prog. Phys. 79, 056001 (2016);

- F. Essler, M. Fagotti, J. Stat. Mech. 2016, 064002 (2016);

- L. Vidmar, M. Rigol, J. Stat. Mech. 2016, 064007 (2016);

- E. Ilievski, M. Medenjak, T. Prosen, L. Zadnik, J. Stat. Mech. 2016, 064008 (2016).
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3. From Gibbs ensembles to Generalized Gibbs ensembles (GGE s)

But the Lieb-Liniger model is integrable . Integrable models possess an infinite number of

local conserved quantities

Qi =

∫

dx qi(x), ∂tqi + ∂xji = 0, i = 0, 1, 2, 3, . . . unboundedly.

Because of the presence of all these conserved quantities, integrable models do not

generically relax to Gibbs ensembles .
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3. From Gibbs ensembles to Generalized Gibbs ensembles (GGE s)

Let us explain what replaces Gibbs ensembles using the follo wing “quench protocol”.

A system is in some homogeneous initial state ρini. Then this state is evolved with a

homogeneous Hamiltonian Hevo. Consider a local observable O(x) in the evolved state:

〈O(x, t)〉ini = 〈eiHevotO(x)e−iHevot〉ini.

What is the limit limt→∞〈O(x, t)〉ini?

Although the state of a closed quantum system itself cannot relax as a whole, it does from

the viewpoint of local observables in infinite volume.
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3. From Gibbs ensembles to Generalized Gibbs ensembles (GGE s)

Every conserved density is preserved. Thus the stationary state depends on all 〈qi(0, 0)〉ini.

∂t〈qi(x, t)〉 = −∂x〈ji(x, t)〉 = 0 (by homogeneity).

Ergodicity suggests stationary states should maximize entropy . Here under the condition

of conservation of all local charges . The maximal entropy state thus looks like

ρGGE = exp

[

−

∞
∑

i=0

βiQi

]

.

The resulting stationary state is called a generalized Gibbs ensemble (GGE).
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3. From Gibbs ensembles to Generalized Gibbs ensembles (GGE s)

Remarks

• The set of conserved charges {Qi} and the infinite series
∑

i βiQi must be defined

carefully. The correct definition is that of pseudolocal charges , which form a Hilbert

space in which
∑

i βiQi is interpreted as a basis decomposition [BD 2017].

• According to standard results of the operator algebra approach to quantum statistical

mechanics, any extremal Hevol-stationary state is a Gibbs state (or

Kubo-Martin-Schwinger (KMS) state) with respect to a conserved “Hamiltonian” Hsta

(not necessarily local, but generating a one-parameter group of unitaries).

• There is the related eigenstate thermalization hypothesis : in the large-volume limit, for

generic quantum lattices, 〈E|O|E〉 = Tr
(

e−βHO
)

/Tr e−βH . This is generalized to

integrable systems with the replacement e−βH 7→ e−
∑

i
βiQi .

• The space of all GGEs with respect to a given integrable H is infinite-dimensional . It is

probably an infinite-dimensional Riemannian manifold.
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3. From Gibbs ensembles to Generalized Gibbs ensembles (GGE s)

Thus there is an unambiguous procedure to construct homogeneous, stationary states of

integrable models: a “generalization” to infinitely-many conservation laws.
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Combining: inhomogeneous dynamics of integrable systems:

∂tqi + ∂xji = 0, qi, ji =
Tr [ρGGE(x, t) qi, ji]

Tr ρGGE(x, t)
, i = 0, 1, 2, . . .

This is generalized hydrodynamics (GHD) .

• The hydrodynamic principle is the emergence of local entropy maximization with respect

to all available conserved charges, valid when variation lengths are large enough.

• Local averages are fixed by space-time dependent (generalized) Gibbs ensembles,

〈O(x, t)〉ini ≈
Tr [ρGGE(x, t)O]

Tr ρGGE(x, t)

• There are equations of states: ji = Fi({qj}), and a bijective relation qi ↔ βi.

• Equations of conservations give dynamical equations determining the space-time

dependent (generalized) Gibbs ensembles.
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4. GGEs via quasi-particles

(generalized thermodynamic Bethe ansatz)

A. Zamolodchikov, Nucl. Phys. B 342, 695 (1990);

J. Mossel, J.-S. Caux, J. Phys. A 45, 255001 (2012).

For an understanding the relation GGE = TBA in the XXZ chain, see

E. Ilievski, E. Quinn, J.-S. Caux, Phys. Rev. B 95, 115128 (2017).
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4. GGEs via quasi-particles

Gibbs ensembles and generalized Gibbs ensembles can be described, in Bethe ansatz

integrable models, by using the (generalized) thermodynamic Bethe ansatz .

This is based on the fact that there emerge quasi-particles . The set of their momenta and

other quantum numbers is preserved under scattering, thus giving good quantum numbers

used to describe GGEs.

These quantum numbers are gathered into a spectral parameter θ characterizing the

quasi-particle, and we imagine states to be of the form

|θ1, θ2, . . .〉.

A model is fully defined by giving the space of spectral parameters, the momentum p(θ) and

energy E(θ) functions, and the differential scattering phase ϕ(θ, θ′).
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4. GGEs via quasi-particles

For instance, in many models with a single-particle spectrum we may take θ ∈ R and

• with Galilean invariance p(θ) = mθ, E(θ) = mθ2/2

• with relativistic invariance p(θ) = m sinh(θ), E(θ) = m cosh θ

with in both case ϕ(θ − θ′) = −id logS(θ − θ′)/dθ where S(θ − θ′) is the two-particle

scattering amplitude.
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4. GGEs via quasi-particles

Each quasi-particle θ carry a quantity hi(θ) of the conserved charge Qi. That is, conserved

charges act as

Qi|θ1, θ2, . . .〉 =

(

∑

k

hi(θk)

)

|θ1, θ2, . . .〉.

A GGE can be seen as a single state with infinitely-many quasi-particles of a given density. It

is fully characterized by the number Lρp(θ)dθ of quasiparticles in the element [θ, θ + dθ]

(where L is the infinite volume).

In a GGE (where integral symbol includes sum over quasi-particle species),

qi =

∫

dθ hi(θ)ρp(θ).

The set of functions hi(θ) is assumed to be “complete” in some sense.

Thus the set {qi} and the function ρp(θ) are both complete characterization of a GGE .
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4. GGEs via quasi-particles

For instance:

• In the repulsive Lieb-Liniger model (c > 0), there is a single particle specie. We take

θ ∈ R. We have

h0(θ) = m, h1(θ) = p(θ) = mθ, h2(θ) = E(θ) = mθ2/2

and

ϕ(θ, α) =
2c

(θ − α)2 + c2
.

• In the attractive Lieb-Liniger model (c < 0), there are infinitely-many particle species

(Bethe-ansatz “strings”). We take θ ∈ R× N with θ = (v, j). We have (here with

m = 1/2 for simplicity)

h0(θ) =
j

2
, p(θ) =

jv

2
, E(θ) =

jv2

2
−

c2

48
j(j2 − 1)

and ϕ(θ, α) takes a known, complicated form.
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4. GGEs via quasi-particles

The relation to the Lagrange parameters βi is obtained as follows. Here we use fermionic

statistics , for instance as used for the quasi-particles of the Lieb-Liniger model.

Average of local conserved densities are evaluated using a free energy :

qi = −
∂

∂βi

F

where

F =

∫

dp(θ) log(1 + e−ǫ(θ))

with pseudo-energy

ǫ(θ) =
∑

i

βihi(θ)−

∫

dα

2π
ϕ(θ, α) log(1 + e−ǫ(α)).
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5. GGE equations of states

- O. A. Castro-Alvaredo, BD, T. Yoshimura, Phys. Rev. X 6, 041065 (2016);

- B. Bertini, M. Collura, J. De Nardis, M. Fagotti, Phys. Rev. Lett. 117, 207201 (2016);
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5. GGE equations of states

For GHD, we need the GGE equations of state : the expressions of the currents.

Since ρp fully determines the GGE, one can always write, for some veff(θ) = veff[ρp]
(θ),

ji =

∫

dθ hi(θ)v
eff(θ)ρp(θ).

Using a variety of arguments including form factor expansions of GGE averages in relativistic

QFT, and with numerical verifications in the XXZ chain, one finds

veff(θ) =
E′(θ)

p′(θ)
+

∫

dα
ϕ(θ, α) ρp(α)

p′(θ)
(veff(α)− veff(θ))

This can be seen as the GGE equations of state.
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5. GGE equations of states

Define the occupation function :

n(θ) =
ρp(θ)

ρs(θ)
, 2πρs(θ) = p′(θ) +

∫

dαϕ(θ, α)ρp(α).

Here ρs as the interpretation as a density of states : the “availabilities” for quasi-particles.

Define the all-important “dressing” operation :

hdr(θ) = h(θ) +

∫

dα

2π
ϕ(θ, α)n(α)hdr(α).

Then 2πρs = (p′)dr(θ) where p′(θ) = dp(θ)/dθ.

The mapping n(θ) ↔ ρp(θ) is a change of coordinate in the space of GGEs.
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5. GGE equations of states

Then some not-too-hard calculations give, in these new coordinates,

qi =

∫

dp(θ)n(θ)hdr
i (θ), ji =

∫

dE(θ)n(θ)hdr
i (θ), veff(θ) =

(E′)dr(θ)

(p′)dr(θ)
.

Densities and currents can also be obtained from “free energies ”:

qi = −
∂

∂βi

F, ji = −
∂

∂βi

G,

F =

∫

dp(θ) log(1 + e−ǫ(θ)), G =

∫

dE(θ) log(1 + e−ǫ(θ))

with pseudo-energy as before, solving the nonlinear integral equation

ǫ(θ) =
∑

i

βihi(θ)−

∫

dα

2π
ϕ(θ, α) log(1 + e−ǫ(α)).

Also, it turns out that

n(θ) =
1

1 + eǫ(θ)
.
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6. GHD in the quasi-particle language

- O. A. Castro-Alvaredo, BD, T. Yoshimura, Phys. Rev. X 6, 041065 (2016);

- B. Bertini, M. Collura, J. De Nardis, M. Fagotti, Phys. Rev. Lett. 117, 207201 (2016);

and corrections due to external force fields, temperature fields etc. were found in

- BD, T. Yoshimura, SciPost Phys. 2, 014 (2017).



'

&

$

%

6. GHD in the quasi-particle language

We now make GGEs space-time dependent. This means we promote

ρp(θ) 7→ ρp(x, t; θ) or equivalently n(θ) 7→ n(x, t; θ).

The quantity ρp(x, t; θ)dxdθ is the number of quasi-particles in the “phase-space” element

[θ, θ + dθ]× [x, x+ dx].

Using

qi(x, t) =

∫

dθ hi(θ)ρp(x, t; θ), ji(x, t) =

∫

dθ hi(θ)v
eff(θ)ρp(x, t; θ)

and completeness of {hi(θ)}, the fundamental GHD equations ∂tqi + ∂xji = 0 become

∂tρp(x, t; θ) + ∂x
[

veff(x, t; θ)ρp(x, t; θ)
]

= 0.

These are the GHD hydrodynamic equations in the quasi-particle language .
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6. GHD in the quasi-particle language

Parenthesis: normal modes or Riemann invariants of hydrody namics.

Recall that

∂tq+ ∂xj = 0, j = F(q).

The hydrodynamic equations then involve the Jaciobian of the transformation q → j:

∂tq(x, t) + J(q(x, t)) ∂xq(x, t) = 0, J(q)ij = ∂jFi(q)

The spectrum of J is the set {veffi } of effective propagation velocities . It is independent of

the choice of fluid coordinates. If we are lucky, we may find the right fluid coordinates to

diagonalize it: the normal modes . Say q = Fq(n), j = Fj(n):

∂tni + veffi (n)∂xni = 0 ∀ i.

This is useful for solving the fluid equations in various situations.
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6. GHD in the quasi-particle language

Surprisingly, it is possible to find the normal modes or Riemann invariants of GHD in the

quasi-particle langiage.

Indeed a not-too-hard calculation gives

∂tn(x, t; θ) + veff(x, t; θ)∂xn(x, t; θ) = 0.

That is, the occupation function is the fluid coordinate that diagonalizes GHD. It is

convectively transported by the fluid, with propagation velocities veff(x, t; θ).
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6. GHD in the quasi-particle language

All of this generalizes to the presence of force fields, temperature fields, etc.

It is the energy function that controls the time evolution. Assume that it is explicitly space

dependent E(θ) = E(x; θ). For instance in the repulsive Lieb-Liniger model,

Hevo = H +

∫

dxVevo(x)n(x) ⇒ E(x; θ) = mθ2/2 + Vevo(x).

Then the two following equivalent equations hold (here suppressing x, t; θ dependence):

∂tρp + ∂x
[

veffρp
]

+ ∂θ
[

aeffρp
]

= 0

∂tn+ veff∂xn+ aeff∂θn = 0

where the effective acceleration is

aeff =
F dr

(p′)dr
, F = −∂xE.
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6. GHD in the quasi-particle language

Remarks:

• This is the full Euler-scale hydrodynamics with force or external fields. It is valid

assuming both that the fluid variables and the external fields vary only on large distances.

Beyond the Euler scale, there are higher-derivative terms (such as viscosity).

• The equations look a little bit like Boltzmann equations if we interpret veff as giving rise

to collision terms. However, they are not of Boltxmann type. The GHD equations are

rather Euler-type hydrodynamic equations: they are time-reversal invariant, and their

validity necessitates the assumption of local entropy maximization, which Boltzmann

equations are not / do not.

• The state density ρs satisfy the same equation ∂tρs + ∂x
[

veffρs
]

+ ∂θ
[

aeffρs
]

= 0.

• The Yang-Yang entropy of thermodynamic Bethe ansatz is also conserved.
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6. GHD in the quasi-particle language

• Since external space-dependent fields generically break integrability, in their presence,

beyond the Euler scale, there are also integrability-breaking terms. These will eventually

cause the system to relax towards the Gibbs ensemble of the evolution Hamiltonian.

Writing E(x; θ) =
∑

i hi(θ)Vi(x), at very large times, after corrections to Euler

hydrodynamics accumulate, the system relaxes to the Gibbs state of the corresponding

Hamiltonian, exp
[

−β
∑

i

∫

dxVi(x)qi(x)
]

. In the hydrodynamic approximation, this

is

exp

[

−β
∑

i

∫

dxVi(x)qi(x)

]

⇒ exp

[

−β
∑

i

Vi(x)Qi

]

.

One can show that this is a stationary solution of the GHD equation in the corresponding

external inhomogeneous fields.
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7. An example: quantum Newton cradle-like setups

J.-S. Caux, BD, J. Dubail, R. Konik, T. Yoshimura, in preparation
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7. An example: quantum Newton cradle-like setups

We are now ready to write the full dynamics for the original problem.

In order to fix the initial state

ρini = e−β(H+
∫
dxVini(x)n(x)) hydro

⇒ ρGE(x, 0) = e−β(H+Vini(x)N),

we set n(x, 0; θ) = 1
1+eǫ(x;θ) where

ǫ(x; θ) = mθ2/2 + Vini(x)−

∫

dα

2π
ϕ(θ, α) log(1 + e−ǫ(x;α)).
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7. An example: quantum Newton cradle-like setups

Another way of initializing would be by representing the Bragg pulse used in experiment.

Here we calculate ρp(θ) associated to e−β(H+VharmoN), and then set, as the effect of the

Bragg pulse followed by fast local entropy maximization,

ρp(x, 0; θ) =
1

2

[

ρp(θ + θBragg) + ρp(θ − θBragg)
]

.
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7. An example: quantum Newton cradle-like setups

The evolution is then done through

Hevo = H +

∫

dxVevo(x)n(x)
hydro
⇒ E(x; θ) = mθ2/2 + Vevo(x).

Using veff = (∂θE)dr/(∂θp)
dr and aeff = −(∂xE)dr/(∂θp)

dr, we then solve

∂tn+ veff∂xn+ aeff∂θn = 0

with veff and aeff evaluated using n(x, t; θ).

Recall the dressing operation:

hdr(θ) = h(θ) +

∫

dα

2π
ϕ(θ, α)n(α)hdr(α).
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Lecture II: solutions and application to transport and
correlations.
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8. Exact solution to the initial value problem of GHD

BD, H. Spohn, T. Yoshinura, arXiv:1704.04409
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8. Exact solution to the initial value problem of GHD

It turns out that one can solve the initial value problem of GH D (without acceleration

term) in terms of integral equations.

Recall that a given GHD model, in the quasi-particle language, is determined by a spectral

parameter θ that lies in the appropriate space, a differential scattering phase ϕ(θ, α), a

momentum function p(θ) (which tells us how quasi-particles fit wihtin physical space), and

an energy function E(θ) (which tells us how to evolve in time).

Recall the dressing operation, which we will denote hdr
[n](θ) to emphasize its dependence on

the function θ 7→ n(θ),

hdr
[n](θ) = h(θ) +

∫

dα

2π
ϕ(θ, α)n(α)hdr

[n](α).

Recall the effective velocity

veff(x, t; θ) =
(E′)dr[n](θ)

(p′)dr[n](θ)
.
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8. Exact solution to the initial value problem of GHD

The exact solution to the initial-value problem

∂tn(x, t; θ) + veff(x, t; θ)∂xn(x, t; θ) = 0, n(x, 0; θ) = n0(x; θ)

is the solution (unique?) to the set of nonlinear integral equations

n(x, t; θ) = n0(u(x, t; θ); θ)

∫ u(x,t;θ)

x0

dy (p′)dr[n0(y)](θ) + (E′)dr[n0(x0)]
(θ) t =

∫ x

x0

dy (p′)dr[n(y,t)](θ).

Here the point x0 is an asymptotic stationary point , which must be chosen far enough on

the left such that ρp(x0, t; θ) is independent of t. We solve this by iteration as follows:

1. Set n(x, t; θ) = n0(x; θ).

2. Solve the second equation for u(x, t; θ).

3. Set n(x, t; θ) = n0(u(x, t; θ); θ), and repeat from the second step until convergence.
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8. Exact solution to the initial value problem of GHD

This is essentially a version of the solution by characteristics.

Special cases:

• Free models: ϕ = 0, giving u(x, t; θ) = x− v(θ)t where v(θ) = dE(θ)/dp(θ) is

the group velocity.

• Homogeneous initial state: u(x, t; θ) = x− veff(θ)t (but without acceleration field, the

state just stays the same for all times!)
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8. Exact solution to the initial value problem of GHD

This has a beautiful geometric interpretaion.

Let us introduce a family of metrics, which depend on the local state, on physical space,

parametrized by θ, with length square dq2 fixed by

dq(x; θ) =
(p′)dr[n(x)](θ)

p′(θ)
dx = K[n(x)](θ)dx.

This can be seen as emerging from a volume element proportional to the density of states

dV = dq dp = ρs(x; θ)dx 2πdθ.

Thanks to conservation of the state density, this is conserved by the dynamics.

Let n(x; θ) be the density per unit invariant volume . This is determined by ρp via

n(x; θ)dV = ρp(x; θ)dx 2πdθ.

Thus n(x; θ) = ρp(x; θ)/ρs(x; θ), equal to the occupation function !
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8. Exact solution to the initial value problem of GHD

Thus the occupation function should satisfy a simple conservation equation in the q

coordinate. One can show that the following is equivalent to GHD :

∂tn|q,θ + v−(θ)∂qn|t,θ = 0

where
v−(θ) = K[n(x0)](θ) v

eff(x0; θ)

and x0 is an asymptotic stationary point.

Note that v−(θ) is independent of the state n(x, t; θ). This is an equation for a density of

freely moving particles at velocities v−(θ) within the space with coordinate q.

The solution is straightforward:

n|q,t;θ = n0|q−v−(θ)t;θ.

The said integral-equation solution is obtained from this with

q(u(x, t; θ), 0; θ) = q(x, t; θ)− v−(θ)t.
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8. Exact solution to the initial value problem of GHD

Remarks:

• The integral equations can be solved on a laptop. It takes at most few minutes for every

value of t to get n(x, t; θ) for all x, θ at high precision. It doesn’t seem to matter how big

t is.

• We do not know if the integral equations have a unique solution or not, but in examples

we did the iterative procedure converges well.

• In principle one can analyze the large-t limit and approach to steady state.

• It seems to point to potential integrability of the GHD equations themselves. Connection

with simultaneously discovered integrability structure?

[Bulchandani, Vasseur, Karrasch, Moore 2017; Bulchandani 2017]
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9. Molecular dynamics

BD, T. Yoshimura, J.-S. Caux, arXiv:1704.05482 (2017).
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9. Molecular dynamics

There is a way of simulating the full GHD, with acceleration t erm, using a class of

classical dynamics of particles in one dimension.

The story starts with the hard rod gas. This is a gas of segments, say of length a, lying on

the line, and propagating freely except for elastic collisions.

Upon collision, velocities are exchanged. We can think of a “quasi-particle” as the tracer of a

given velocity . By elastic collision, the number of tracers in a given velocity interval

[v, v + dv] is preserved by the dynamics, giving infinitely many conservation laws .

A tracer jumps by a distance a at every collision .
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9. Molecular dynamics

It was shown rigorously that

[Boldrighini, Dobrushin, Sukhov 1982]

veffcl (v) = v − a

∫

dw ρp(w)(v
eff
cl (w)−veffcl (v))

This is GHD if we identify v = θ and

ϕ(θ, α) = −a !!!!
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9. Molecular dynamics

We can generalize this to velocity-dependent jump lengths d(v, w) in any direction .

Quasi-particles are now seen as the actual particles on which we put a dynamics, and at

collisions they jump, forward or backward, by a distance d(v, w). This is what we call the

“flea gas” .
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9. Molecular dynamics

Actual distance travelled in a macroscopic time ∆t:

∆x = ∆t veffcl (v).

∆x results from linear displacements at velocity v, ∆t v, plus accumulation of jumps the

quasi-particle undergoes as it travels through the gas .

Oriented distance jumped due to hitting a quasi-particle with velocity w is

sign(v − w)d(v, w).

Average number of quasi-particles of velocity between w and w + dw crossed, is the total

number dw ρcl(w)∆x within ∆x, times probability ∆t/∆x× |veffcl (v)− veffcl (w)|

crossing occurs in time ∆t.

Thus

∆x =

∫

dw d(v, w) ρcl(w)∆t (veffcl (v)− veffcl (w)).
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9. Molecular dynamics

Thus we find

veffcl (v) = v +

∫

dw d(v, w) ρcl(w) (v
eff
cl (v)− veffcl (w))

and the exact correspondence is

ρcl(v)dv = ρp(θ)dθ, v = vgr(θ), veffcl (v) = veff(θ), d(v, w) = −ϕ(θ, α)/p′(θ).

One can check numerically that it works (here Lieb-Liniger model):

−2 −1 0 1 2

−1

0

1

v

veff
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9. Molecular dynamics

Here is a numerical check: comparing the exact integral-equation solution with the flea

gas (ρ(x) = n(x) is the actual particle density at the point x).
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9. Molecular dynamics

Remarks:

• In the hard rod case, a well known solution method is to collapse all rods to points . We

then gets freely evolving point particles without interaction. After this collapse, the new

space coordinate is the coordinate q introduced above . That is, the metric can be

seen as coming from the jumps of the quasi-particles in classical gases.

• It is known that wave packets in integrable quantum models behave as classic al

solitons . As classical solitons, they undergo space shifts after collisions. These shifts

are exactly distances d(v, w) of the flea gas corresponding to the quantum model !

Thus, we see that quantum models, at the Euler scale, are equivalent to their

corresponding classical soliton gas [...].

• One can also add acceleration, simply by accelerating the quasi-particles between

collisions (works at least for Galilean single-particle spectrum).
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10. Zero-entropy GHD

BD, J. Dubail, R. Konik, T. Yoshimura, arXiv:1704.04151 (2017)
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10. Zero-entropy GHD

GHD simplifies drastically in the zero-entropy subspace of f ermionic systems

Let the occupation function n(θ) be formed of k disjoint, filled Fermi seas. Such occupation

functions have zero entropy. It turns out that the GHD equations simplify to a

finite-component hydrodynamics for the Fermi seas’ endpoin ts :

∂tθ
±
j + veff{θ}(θ

±
j )∂xθ

±
j = 0.

This is obtained from using e.g. ∂t,xΘ(θ − θ−j ) = δ(θ − θ−j ).

We refer to this as “2kHD”, for k = 1, 2, 3, . . .
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10. Zero-entropy GHD

Consider 2HD. A single Fermi sea: this is what we get in a zero temperature initial state .

This is a 2-component, Galilean invariant hydrodynamics . Hence the only possibility is

conventional hydrodynamics ! That is,

2HD = conventional hydrodynamics (CHD)

∂tn+ ∂x(vn) = 0, ∂tv + v∂xv = −
1

mn
∂xP, P = P(v, n).

Indeed a single Fermi sea is determined by fixing the density of particles and the boost

velocity . So the local density matrices have the form e−β(H−µN−νP )|β→∞.
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10. Zero-entropy GHD

Comparison with ABACUS quantum evolution:
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10. Zero-entropy GHD

In CHD, one usually encounters shocks that are sustained over time. At shocks, entropy is

continuously produced (the production of entropy at shocks is described by higher-derivative

terms neglected in Euler hydrodynamics).

However, in GHD, shocks are not sustained. Gradient catastrophes ari se in 2HD, but

immediately “dissolve,” thanks to the availability of a lar ge fluid space, into 4HD .
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10. Zero-entropy GHD

Remarks:

• CHD has been used in the past many times in order to describe the Lieb-Liniger model in

inhomogeneous situations. It was quite successful. However it has been observed that at

both collision of clouds and in propagation of density waves, shocks appear, beyond

which CHD is unable to reproduce numerics. Here we have a full explanation of why

CHD works at zero temperature based on hydrodynamic principle only (local entropy

maximization), and exact hydrodynamic equations for describing what happens after

the gradient catastrophes .

• The 2kHD equations are very simple to solve, and do not necessitate integral equations

of molecular dynamics (and agree with them). They fully describe zero-temperature

problems .

• In real systems, gradient catastrophes do not ever occur: higher derivative terms (beyond

Euler hydrodynamics) become important before. However, at very large scales (Euler

scales), gradients will look very sharp. GHD captures well what happens at such scales.
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11. Exact solution to domain wall problems

- O. A. Castro-Alvaredo, BD, T. Yoshimura, Phys. Rev. X 6, 041065 (2016);

- B. Bertini, M. Collura, J. De Nardis, M. Fagotti, Phys. Rev. Lett. 117, 207201 (2016);

See also:

- Review of works pre-2016: D. Bernard, BD, J. Stat. Mech 2016, 064005 (2016);

- BD, H. Spohn, J. Stat. Mech. 2017, 073210 (2017);

- L. Piroli, J. De Nardis, M. Collura, B. Bertini, M. Fagotti, arXiv: 1706.00413

and more...
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11. Exact solution to domain wall problems

In the domain wall problem, the initial state is prepared to be a juxtaposition of two

homogeneous states, one on the left, one on the right.

The two halves play the role of baths, able to furnish unbounded energy, particles, etc. At

large times, a current-carrying steady state is expected to emerge if ther e is ballistic

transport. This has been referred to as the partitioning protocol for generating

non-equilibrium currents.

[Caroli et. al. 1971; Rubin et. al. 1971; Spohn, Lebowitz 1977; Ruelle 2000; Tasaki 2000; Araki, Ho 2000;

Aschbacher, Pillet 2003; Bernard, BD 2012]
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11. Exact solution to domain wall problems

For instance, in a purely thermal case, the initial state is 〈· · ·〉ini with

ρini = e−βLHL−βRHR .

Unitary evolution is performed with the full homogeneous hamiltonian

H = HL +HR + δHLR

and stationary state is defined by

Osta := lim
t→∞

〈eiHtOe−iHt〉ini, O local observable.

As an example, in the Heisenberg chain, one could take

HL =

−1
∑

i=−∞

~σi · ~σi+1, HR =

∞
∑

i=1

~σi · ~σi+1, δHLR = ~σ0 · ~σ1.



'

&

$

%

11. Exact solution to domain wall problems

The hydrodynamic description for the initial conditions is

n(x, 0; θ) = nL(θ)Θ(−x) + nR(θ)Θ(x).

Since the evolution is invariant under scaling (x, t) 7→ λ(x, t) and the initial condition

has the same invariance , we may expect the solution to be scaling invariant:

n(x, t; θ) = n(ξ; θ), ξ = x/t.

Thus the GHD equations in the quasi-particle formulation simplifies to

(

ξ − veff(ξ; θ)
)

∂ξn(ξ; θ) = 0, n(±∞; θ) = nR,L(θ).
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11. Exact solution to domain wall problems

The derivative is only nonzero where ξ = veff(ξ; θ). Therefore we get a self-consistent

system of integral equations :

n(ξ; θ) = nL(θ)Θ(θ − θ⋆(ξ)) + nR(θ)Θ(θ⋆ − θ(ξ)), veff(ξ; θ⋆(ξ)) = ξ.

Interpretations: Particles arrive either from the left reservoir or the right reservoir depending

on their dressed velocity at the ray ξ.
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11. Exact solution to domain wall problems

Parenthesis: in ordinary (finite-component) fluids, generi cally there are shocks

developing in the domain wall problem. Here no shocks thanks to the

infinite-dimensionality of the space of local fluid states.

In finite hydro, we write equations of state j = F(q) and we get

(J(q)− ξ1)∂ξq = 0, J(q)ij = ∂jFi(q).

A shock is a jump in q as a function of ξ. A rarefaction wave is a smooth solution between ξ1
and ξ2. With discrete spectrum: not enough freedom to bridge generic states with rarefaction

waves ⇒ need shocks.
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[Castro-Alvaredo, BD, Yoshimura 2016]

High-temperature in sinh-Gordon

model: CFT.

Low-temperature in Lieb-Liniger model

with chemical potential: Luttinger liquid

Inequalities [BD 2015]

hL − hR

2
≥ psta ≥

jp
L − jp

R

2
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Figure 1: Hard rod density at times (a) t = 0, (b) t = 0.5, (c) t = 1, (d) t = 2, (e) t = 3, (f)

t = 4, rod length a = 0.001. Simulation data in blue, exact solution in red. [BD, Spohn 2017]
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Figure 2: Current at times (a) t = 1, (b) t = 2, (c) t = 3, (d) t = 4. , rod length a = 0.001.

Simulation data in blue, exact solution in red. [BD, Spohn 2017]
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Figure 3: GHD for the LL model with m = 1, c = 1 is simulated using the classical flea gas. (a)

Truncated Gaussian distribution ρcl(v) = 0.5e−v
2

χ(−3 < v < 3). Effective velocity evaluated

using approx. 1500 trajectories over a time of 1200 (blue); using the formula for effective velocity (red).

(b) Density profile from domain wall initial condition, initial left and right temperatures 10 and 1/3 (resp.),

at times t = 10, 30, 50, 70. Simulation with approx. 2400 quasi-particles (initial baths of lengths

1000, open boundary condition) averaged over 1000 samples (blue); exact self-similar solution (red).[BD,

Yoshimura, Caux 2017]
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And very convincing numerical comparisons against tDMRG in

B. Bertini, M. Collura, J. De Nardis, M. Fagotti, Phys. Rev. Lett. 117, 207201 (2016).
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12. Drude weights and correlations

General results within GHD found in: BD and H. Spohn, arXiv:1705.08141 (2017).

See also:

- S. Fujimoto and N. Kawakami, J. Phys. A 31, 465 (1998);

- X. Zotos, Phys. Rev. Lett. 82, 1764 (1999)

- A. Klümper and K. Sakai, J. Phys. A 35, 2173 ( 2002);

- K. Sakai and A. Klümper, J. Phys. A 36, 11617 (2003);

- T. Prosen, Phys. Rev. Lett. 106, 217206 (2011);

- T. Prosen and E. Ilievski, Phys. Rev. Lett. 111, 057203 (2013);

- E. Ilievski and T. Prosen, Commun. Math. Phys. 318, 809-830 (2013);

- J. De Nardis and M. Panfil, SciPost Phys. 1, 015 (2016);

- E. Ilievski and J. De Nardis, arXiv:1702.02930 (2017);

- V. B. Bulchandani, R. Vasseur, C. Karrasch and J. E. Moore, arXiv:1702.06146 (2017).

and more...
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12. Drude weights and correlations

One can go much further and calculate correlations between l ocal densities and

currents.

With hydrodynamics, one can evaluate large-scale correlations, which are due to propagating

waves. One can look for the connected correlation functions

〈qi(x, 0)qj(y, t)〉
c, 〈qi(x, 0)jj(y, t)〉

c, 〈ji(x, 0)jj(y, t)〉
c.
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12. Drude weights and correlations

Consider stationary, homogeneous states .

It is simple to calculate
∫

dx 〈qi(x, t)qj(0, 0)〉
c =

∂

∂βi

qj ,

∫

dx 〈qi(x, t)jj(0, 0)〉
c =

∂

∂βi

jj .

It is less trivial to evaluate the Drude weight

Di,j = lim
t→∞

∫

dx 〈ji(x, t)jj(0, 0)〉
c.

The techniques of hydrodynamic projections can be used. Formally, one writes

Di,j =
∑

k

〈ji|qk〉C
−1
k,l 〈ql|jj〉, Ci,j = 〈qi|qj〉

with inner product 〈a|b〉 =
∫

dx 〈a(x, t)b(0, 0)〉c. Similar projection methods also give the

operator Ai,j for generating space-time dependent correlations.
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12. Drude weights and correlations

Results:
∫

dx 〈qi(x, 0)qj(0, 0)〉
c =

∫

dθρp(θ)(1− σn(θ))hdr
i (θ)hdr

j (θ),

∫

dx 〈ji(x, 0)qj(0, 0)〉
c =

∫

dθρp(θ)(1− σn(θ))veff(θ)hdr
i (θ)hdr

j (θ),

lim
t→∞

∫

dx 〈ji(x, t)jj(0, 0)〉
c =

∫

dθρp(θ)(1− σn(θ))veff(θ)2hdr
i (θ)hdr

j (θ),

∫

dt 〈ji(0, t)jj(0, 0)〉
c =

∫

dθρp(θ)(1− σn(θ))|veff(θ)|hdr
i (θ)hdr

j (θ),

∫

dx eikx〈qi(x, t)qj(0, 0)〉
c =

∫

dθ eiktv
eff (θ)ρp(θ)(1− σn(θ))hdr

i (θ)hdr
j (θ).

(the last relation being valid at t → ∞, k → 0 with kt fixed), where

σ = 1, −1, 0 for fermionic, bosonic, and classical gases respectively.
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Some open questions

• Most important question of all: higher-derivative corrections. This includes viscosity

terms and associated diffusive effects (analyzed in an extensive numerical study in XXZ

[Ljubotina, Znidaric, Prosen (2017)]), and integrability terms when force field is present. Time

scale of integrablity breaking?

• Second most important question of all: large deviation theory of charge transfer,

fluctuation relations, macroscopic fluctuation theory. Our result for
∫

dt 〈ji(0, t)jj(0, 0)〉
c is the first “second cumulant” in any nontrivial integrable

quantum model, but we need infinitely many more...

• Proving emergence of hydrodynamics using integrability techniques?

• Generalizing to time-dependent external field, GHD of classical field theory, ... (works in

progress by various people).


