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@ Open problems
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o Exact calculations

o Comparison with experiments
(the GGE has been measured already, Science 348, p. 207)
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Motivation: Setting

o The model:

L
H= Z(afafﬂ +olof +A(ofofy — 1))
=

But also higher spin or higher rank

@ Time evolution from an initial state: |W(t)) = e~ Ht|Wg)

The initial state:
o Ground state of some other Hamiltonian (quantum quench)
o Any experimentally realizable state, prepared using simple rules
o Examples:
|Wo) = [Néel) = @3 1)
or
L2 =1

|Wo) = |Dimer) = 7

Integrable initial states
o Only translationally invariant cases!



Objects of interest:

o Time-dependence of local observables

o Loschmidt amplitude (a.k.a. Return probability, Fidelity, etc)

G(t) = (Wole W)
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Introduction: Setting

Objects of interest:
o Local observables, O(t) = (o3(t)oa(t)), n=2,3,..., a=x,z.

(O(t)) = (Wole™Oe™™|wy)
= 2 (Wo|n) (n|O|m)(m|Wo)e~(En=Et
o Overlaps C, = (Vg|n)

o Long-time limit

Jlim (O(t)) = Z|C| (n|O|n)

Connection to Statistical Physics
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Introduction: the long time limit

How to calculate the long time limit?

(0(1) =D |Gal*(nlO]n)

n

lim
t—o0

Two important ingredients:

o Selecting the states that dominate the sum.

o Excited state correlations?
(n|Ol[n) =7
Factorized correlation functions, hidden Grasmannian structure, ...

M. Mestyan and BP., J. Stat. Mech. (2014) P09020
M. BP, J. Phys. A: Math. Theor. 50 074006, (2017)
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Introduction: the long time limit

Selecting the states:

lim (O(1)) = Z|C| (n|O|n)

o In the TDL: States characterized by Bethe root densities

o If the exact overlaps |C,|? are known: Quench Action method.
Works in limited cases.
Microscopic. Necessary for the full time evolution.

o Mean values of conserved charges Q;.
Defining the charge density q; = Q;/L

qj(t = 0) = (Wo|q;| Vo) = q;(t = o0) = (nl|q;|n)

Macroscopic. Good only for the large t behaviour.



Bethe Ansatz

Coordinate Bethe Ansatz solution of the XXZ Hamiltonian
H= Z( o1 to 1 + Ao 07— 1)).

Defining A = cosh(n) and

= > en(IMls )y, - 03, 10)

Yi<y2<--<yn

the wave function is

on({Atnl{y}) =

B sin(Ap, — Ap, +in N /sin Ap, +in/2)\”
N Z H sin(Ap, — Ap,) ] L n (sm (Ap, — /77/2)) ]

PeSy | 1<m<n<N




Bethe Ansatz

Bethe Ansatz equations:

(sin(/\j + in/2)>L sin(Aj = Ak = im)
#

sin(Aj — in/2) Py sin(\j — Ak + i)

String solutions: (A > 1)

X
X n
X X
X X
X
X

—m/2 w/2



In the thermodynamic limit: densities of roots: p x(A)

The number AN of k-strings with centers between A and A + AAX:
AN = Lp, k(N)AN/27.

Densities of holes: pp ().




In the thermodynamic limit: densities of roots: p; x(A)

The number AN of k-strings with centers between A and A + AAX:
AN = Lp, k(N)AN/27.

Densities of holes: pp ().
They satisfy
Prk+ phk = O0k1d + d * (Phk—1 + Phk+1) 5

where




Overlaps

Quench Action method. How to compute the overlaps?



Overlaps

Quench Action method. How to compute the overlaps?

The simplest case: the Néel state

Consider a chain of length L = 2N. The overlaps are

<Née”{)‘}> = ¢N({)‘}N|{2v4a 6,..., 2N}) =

B sin(Ap, — Ap, + in) N /sin Ap, +in/2)
N Z H sin(Ap, — Ap,) ] lH (sm (Ap, — 117/2)> ]

PeSy | 1<m<n<N =1

How to sum it up?



Overlaps

Quench Action method. How to compute the overlaps?

The simplest case: the Néel state

Consider a chain of length L = 2N. The overlaps are

<Née”{)‘}> = ¢N({)‘}N|{2v 4,6,..., 2N}) =

B sin(Ap, — Ap, + in) N /sin Ap, +in/2)
N Z H sin(Ap, — Ap,) lH (sm (Ap, — 117/2)) ]

PeSy | 1<m<n<N =1

How to sum it up?

Solution: relation to the six-vertex model



A1

An
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The overlap is related to a partition function, which is known:

O. Tsuchiya, Determinant formula for the six-vertex model with reflecting end,
arXiv:solv-int/9804010

[1;sin*"(\; — n/2)sin®™*1(\; + n/2)

Néel| A1, ..., A\pm) = : . -
(Neell s m) TT;sin(20\) TTj< sin(A; — M) sin(A; + Ae)

x det L

with
Lix = q2j(Ak), where ga(u) = cot?(u — in/2) — cot?(u + in/2)

BP., J. Stat. Mech. (2014) P06011
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M. Brockmann, J. De Nardis, B. Wouters, and J.-S. Caux, J. Phys. A: Math. Theor. 47
(2014) 145003

K. K. Kozlowski, B. P., J. Stat. Mech. (2012) P05021
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Overlaps

Final formula is not convenient. An overlap formula is ,,good” when

N
[(Wol M) P = CHMM T TV, C(faiw) ~ O(L°)

j=1
Analogy: v(\) ~ e PEMN)

M. Brockmann, J. De Nardis, B. Wouters, and J.-S. Caux, J. Phys. A: Math. Theor. 47
(2014) 145003

K. K. Kozlowski, B. P., J. Stat. Mech. (2012) P05021

tan(A + in/2) tan(A — in/2) I
() = a1 = [(-AAhe)

detGT
€= det G—
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Overlaps

Other states?
o At present exact overlaps are only known for
H |+ + a| >
V1+][a?
They correspond to diagonal K-matrices in the boundary Algebraic
Bethe Ansatz.

@ Other two-site states probably possible
(Tsushiya-determinant with off-diagonal K-matrices)

o MPS states encountered in the AdS/CFT literature

M. de Leeuw, Ch. Kristjansen, K. Zarembo, JHEP08(2015)098
1. Buhl-Mortensen, M. de Leeuw, Ch. Kristjansen, K. Zarembo, JHEP02(2016)052

Closely related!
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Thermodynamic Bethe Ansatz (TBA)

Compute
Z=Tre HT = /T

in a Bethe Ansatz solvable model with

E= i e();) and ePOWL HS()\j — M) =1
j=1 ki
In the TDL densities for Bethe roots and holes, satisfying
pr+pn=p"+¢*p,
with ¢ = —id log(S(X))/dA.

Express the partition function as a functional integral

d\
z= / Dp(Ne Sl 5= / D e(N)pr(N) + Svy
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Thermodynamic Bethe Ansatz (TBA)

Minimization of the free energy functional gives
e=Be+ pxlog(l+e°) f=—p xlog(l+e9),

where the pseudo-energy is defined as e==(“) = p,(u)/pn(u).

What about quenches? If the overlap is of the form
[{(Wol {Aw)[? = C H v(Xj)
Analogy: v(\) ~ e PE() gives the Quench Action
Soa = [ 52 log(v{w)pr (V) + 3 Svv

e = —2log(v) + ¢ xlog(l+e°)

J-S. Caux, F. H. L. Essler, Phys. Rev. Lett. 110, 257203 (2013)



Thermodynamic Bethe Ansatz (TBA)

XXZ spin chain for A > 1: for every k-string, k=1...00

pra(A), pni(A) and Yi(A) = 2443
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Thermodynamic Bethe Ansatz (TBA)

XXZ spin chain for A > 1: for every k-string, k=1...00
pe(N): o (V) and Yi(A) = 2243

Finite temperature: Z = Tre™*", 3 = 2sinh(n)s

log(Yj) = —Bddj1 + d x (log(1 + Yj11) + log(1 + Yj-1))

o O O O O
cos(2nu)
d(u) =1+ 22 cosh(im)

Important relation, Y-system:

Yi(u+in/2)Yj(u —in/2) = (1+ Yj1(u))(1 + Yjia(v))



Quench Action TBA

TBA using the overlaps of the form  (Wo|{An}) = C X HJN=1 v(A)

log(Y}) = dj + d x (log(1 + Y1) + log(1 + Y1)

with
di = —gj+dx(g-1+g+1), with go =0.
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Quench Action TBA

TBA using the overlaps of the form  (Wo|{An}) = C X HJN=1 v(A)

log(Y}) = dj + d x (log(1 + Y1) + log(1 + Y1)

with
dj = —gj+dx(gi-1+g1), with go=0.

where

gi(\) = Zlog (A4 in(n+1—2k)/2))

Y-system still holds!

Yilu+in/2)Yj(u—in/2) = (1 + Yji-1(u))( + Yj1(u))
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Quench Action TBA

In the simplest cases

tan(X + in/2) tan(X — in/2)
4sin?(2)\)

sinh*(n/2) cot?(\)

el () = sin(2X + in) sin(2\ — in)

and wp(A) =

Correlators:
@ Substitute the overlaps into the TBA
o Find Yj(u)
o Find the root and hole densities from

prk(L+ Y N () = 6k1d + d* (Phk—1 + Phokr)

o Find the local observabels using the theory of factorized correlators.
M. Mestyan and BP, J. Stat. Mech. (2014) P09020



Quenches in the XXZ chain

L L | L
K 1 2
Time

iTEBD simulation, by Miklés Werner

B. P., M. Mestyan, M. A. Werner, M. Kormos, G. Zarand, G. Takacs, Phys. Rev. Lett. 113
(2014) 117203



Quench Action TBA

Exact solutions possible!
1+ Yi(u) = (L +a(u+in/2))(L +a"*(u—in/2))

with

sin(2u — in) cos®(u + in)
sin(2u + in) cos?(u — in)

sin(2u — in) sin(u + in)
sin(2u + in) sin(u — in)

and ap(u) =

aneel (1) =

Using fusion relations and T-system.

Higher Y; from the Y-system.

M Brockmann, B Wouters, D Fioretto, J De Nardis, R Vlijm and J-S Caux,
J. Stat. Mech. (2014) P12009



Algebraic constructions

The R-matrix acting on C? @ C?:

sinh(u +7) 0 0 0
R(u) = 1 0 sinh(u) sinh(n) 0
~ sinh(u+1n) 0 sinh(n) sinh(u) 0
0 0 0 sinh(u + 7)
Pictorial representation:

+ + _

+
-+ + - =
+ + +

sinh(u +n) sinh(u) sinh(n)
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The monodromy matrix:

T(4) = Ruo(u)- .. Rio(u) = (é‘% g%)

Graphically:

The transfer matrix:



Algebraic constructions

The monodromy matrix:

T(4) = Ruo(u)- .. Rio(u) = (é‘% g%)

Graphically:

The transfer matrix:
t(u) = Tro T(u)

From Yang-Baxter:

[t(u), t(v)] =0
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Conctructing the charges

o Ultra-local charges
o t(0) = U the translation operator

Q= (%)j_l log t(u)

Qj is a sum of j-site operators

o Defining

u=0

o Quasi-local charges from spin-s (fused) transfer matrices t(u)

d\'
Qosj = <E> log ts(u)

u=0

E. llievski, M. Medenjak, T. Prosen, L. Zadnik, J. Stat. Mech. (2016) 064008
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o Initial states:
|Wo) - Qs
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From charges to correlators:

o Initial states:
|Wo) - Qs

M. Fagotti and F. H. L. Essler, J. Stat. Mech. (2013) P07012

o Root densities:

Qs — pr.s(u)

E. llievski, J. D. Nardis, B. Wouters, J-S. Caux, F. H. L. Essler, T. Prosen,
Phys. Rev. Lett. 115, 157201 (2015)



Constructing the charges

From charges to correlators:

o Initial states:
|Wo) - Qs

M. Fagotti and F. H. L. Essler, J. Stat. Mech. (2013) P07012

o Root densities:

Qs — pr.s(u)

E. llievski, J. D. Nardis, B. Wouters, J-S. Caux, F. H. L. Essler, T. Prosen,
Phys. Rev. Lett. 115, 157201 (2015)

o Correlators:

Pr,s — (n|O|n) — lim (O(t))

t—o0

M. Mestyan and BP, J. Stat. Mech. (2014) P09020
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o Canonical form?

0GGE = = exp ( Z/_ du ps(u) ps(u)>

E. llievski, E. Quinn, J-S. Caux, Phys. Rev. B, 95, 11, id.115128
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= | m _—e
0ceE = Nm _Zexp =3 86y

s=1 j=1

BP, E. Vernier, arXiv:1703.09516, to appear in JSSTAT
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o GGE =TBA

o Canonical form?

0GGE = = exp Z/ du ps(u)ps(u)

E. llievski, E. Quinn, J-S. Caux, Phys. Rev. B, 95, 11, id.115128

Ns Ny
= I. p—
oeee = lim exp =30 8:Qs

yNg— 00
5o s=1 j=1

BP, E. Vernier, arXiv:1703.09516, to appear in JSSTAT

Infinite resolution in rapidity space: Not possible with quasi-local
operators
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The Loschmidt amplitude

Y2 G(s) = (Wole™|W,), seC

Ll n L

/]\ﬂ-’H > Dynamical free energy:
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The Loschmidt amplitude

Overlap-based evaluation:

G(S) — Z |Cn|2e—sEn

Quench Action: |C,|> — log(v(u))

Loschmidt: |C,|?e~%E" — log(v(u)) — se(u)

log(Y;) = dj—3dd; 1 + d * (log(1 + Yj+1) + log(1 + Yj_1))

1/”/2 du 1+ Yi(uv)
S)=—= —d(u) log ——=—~*~
8(s) =5 a2 27 () E ()

where 3 = 2sinh(n)s and Yi(u) is the solution at s = 0.

Valid even in the cases where the overlaps are not known!

The fun stuff: analytic continuation to s = jt.
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Neel, A=2.
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L. Piroli, BP, E. Vernier, J. Stat. Mech. (2017) 023106
[BP, J. Stat. Mech. (2013) P10028]
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Trotter decomposition:
N
_sH . sH
e "= lm (1-—
N— oo < N )

1 % — T(=B/2N)T(=n + B/2N) + O(N~?)

We have

and

G(s) = (Wo| TM(=B/2N) TN (=7 + B/2N)[Wo)

lim
N—oo
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BP, J. Stat. Mech. (2013) P10028
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The Loschmidt amplitude

Boundary transfer matrix:
7(u) = Tro{ K (u) T(u)K—(u) T (u)}
with T(u) = o T®(—u)o}.
Rewrite it as
7(u) = (v (u)| T(u) ® T(=u)lv™(u))
where
V7 (u)) = =k ()| 1) + kyy ()] 1) = koo () 11) + kaq (u)] L)
(V)" = =k (W) 1) + ks ()] T1) = ks (u)] 1) + ki ()] L)
Physical case: |Wo) =[] |v*(0)) = []|v(0)).
For each two-site there is a corresponding K-matrix.

Diagonal K-matrices give states of the form [T)talit)

ViHe?]
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22N

G(s) = (Wole*H|wo) = Y A;"
j=1
For real s: QTM is gapped, therefore
1
g(s) = — lim log G(s) = —= log(/Ao)
L—oo 2
Diagonalization of the boundary transfer matrix:

o Diagonal K-matrices: Bethe Ansatz
Leads to boundary-NLIE, BP 2013

o Off-diagonal K-matrices: Inhomogeneous T-Q equation

T(u)Q(u) = A(u)Q(u — n) + A(—u)Q(u + 1) + F(u)

Bethe roots and Trotter limit: Open problem!
o Fusion hierarchy
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T-system:
7 (u+1/2) 7 (u = n/2) = 7 () (u) + Dn(u)
Y-functions:

70D ()70 (y
yJ'(U): (ij)(u)+ ( )

Y -system:

yi (u+3) 5 (0=3) = 0+ ypua @] L+ 51 ()]

Identification:
yi(u) = V"B (u)

M. Takahashi and A. Kliimper, J. Phys. A: Math. Gen. 34 L187
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The Loschmidt amplitude

log(Y;) = —Bddj,1 + d; + d * (log(1 + Yj41) + log(1 + Yj—1))
Off-diagonal K-matrices: ,joverlap-TBA without overlaps”
Explicit calculation for ,tilted Néel”
_ /2| [cos(¥/2) —sin(v/2)
IN,0) = ;% Ksin(ﬂ/Q) 2\ cos(1/2)
Root distribution give the correct charges!

NA+in/2N (X —in/2)
x(A)

1+ Yi(A) =

with

N(X) = [~2cosh?(¢) cosh(2n) + cosh(2¢)(2cos(2)) — 1) + 4 cosh(n) sin?(\) + cos(4))]

sin(2X + 2in) sin(2X — 2in)
sin(2X + in) sin(2X — in)

¢ = — log(tan(9,2))

x(A\) = 16 (sin(A 4 in/2) sin(A — in/2) cos(A — i¢) cos(X + i€))?
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The Loschmidt amplitude

Exact solution from:

Ti(u+n/2)Ti(u—n/2)
¢1(u)

1+ Yl(u) =
For s = 0 we have
(Wole™|Wo) — (Wo|Wo)
The boundary QTM with no columns:
Ta(u) = {vi (i) v_(iv)) = Tr (K; (u)K_ (1))

Reproduces all previous exact solutions, and provides new ones for
off-diagonal K-matrices



Time dependence of observables

O(t) = (Wole 2" Oe 1| wy)
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The Loschmidt amplitude — Non-analyticity

W) = [N),A =05

Eigenvalues
0 T T T T T
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Open problems

@ Non-analyticities in general

@ What are integrable global quenches?

Precise relations between boundaries and integrable initial states.
Ghoshal-Zamolodchikov for lattice systems.

Upcoming!

o Integrable MPS states (from AdS/CFT)

o Correlation functions!



Thank you for the attention!




