Non-equilibrium dynamics of the Heisenberg spin chain: Exact methods

Balázs Pozsgay

"Premium Postdoctoral Program" and „Momentum" Statistical Field Theory Research group Hungarian Academy of Sciences

Cargèse, 31. July - 1. August 2017

Work with the Budapest group (Márton Kormos, Márton Mestyán, Gábor Takács, Miklós Werner) and Lorenzo Piroli and Eric Vernier from SISSA.

- Introduction
- Overlaps, Quench action and TBA
- Loschmidt amplitude
- Open problems

Work with the Budapest group (Márton Kormos, Márton Mestyán, Gábor Takács, Miklós Werner) and Lorenzo Piroli and Eric Vernier from SISSA.

- Introduction
- Overlaps, Quench action and TBA
- Loschmidt amplitude
- Open problems

Introduction: Motivation

- Non-equilibrium dynamics in quantum many-body systems (quantum quenches)
Connection to statistical physics: equilibration, thermalization
- Thermalization in integrable models: The Generalized Gibbs Ensemble

$$
\rho=\frac{1}{Z} e^{-\sum_{j} \beta_{j} Q_{j}}
$$

- Exact calculations
- Comparison with experiments (the GGE has been measured already, Science 348, p. 207)

Introduction: Motivation

- Non-equilibrium dynamics in quantum many-body systems (quantum quenches)
Connection to statistical physics: equilibration, thermalization
- Thermalization in integrable models: The Generalized Gibbs Ensemble

$$
\rho=\frac{1}{Z} e^{-\sum_{j} \beta_{j} Q_{j}}
$$

- Exact calculations
- Comparison with experiments (the GGE has been measured already, Science 348, p. 207)

Introduction: Motivation

- Non-equilibrium dynamics in quantum many-body systems (quantum quenches)
Connection to statistical physics: equilibration, thermalization
- Thermalization in integrable models: The Generalized Gibbs Ensemble

$$
\rho=\frac{1}{Z} e^{-\sum_{j} \beta_{j} Q_{j}}
$$

- Exact calculations
- Comparison with experiments (the GGE has been measured already, Science 348, p. 207)

Introduction: Motivation

- Non-equilibrium dynamics in quantum many-body systems (quantum quenches)
Connection to statistical physics: equilibration, thermalization
- Thermalization in integrable models: The Generalized Gibbs Ensemble

$$
\rho=\frac{1}{Z} e^{-\sum_{j} \beta_{j} Q_{j}}
$$

- Exact calculations
- Comparison with experiments (the GGE has been measured already, Science 348, p. 207)

Motivation: Setting

- The model:

$$
H=\sum_{j=1}^{L}\left(\sigma_{j}^{x} \sigma_{j+1}^{x}+\sigma_{j}^{y} \sigma_{j+1}^{y}+\Delta\left(\sigma_{j}^{z} \sigma_{j+1}^{z}-1\right)\right)
$$

But also higher spin or higher rank

- Time evolution from an initial state: $|\Psi(t)\rangle=e^{-i H t}\left|\Psi_{0}\right\rangle$

The initial state:

Motivation: Setting

- The model:

$$
H=\sum_{j=1}^{L}\left(\sigma_{j}^{㐅} \sigma_{j+1}^{x}+\sigma_{j}^{y} \sigma_{j+1}^{y}+\Delta\left(\sigma_{j}^{z} \sigma_{j+1}^{z}-1\right)\right)
$$

But also higher spin or higher rank

- Time evolution from an initial state: $|\Psi(t)\rangle=e^{-i H t}\left|\Psi_{0}\right\rangle$ The initial state:
- Ground state of some other Hamiltonian (quantum quench)
- Any experimentally realizable state, prepared using simple rules - Examples:

$$
\left.\left|\Psi_{0}\right\rangle=\mid \text { Néel }\right\rangle \equiv \otimes_{k=1}^{L / 2}|\uparrow \downarrow\rangle
$$

Motivation: Setting

- The model:

$$
H=\sum_{j=1}^{L}\left(\sigma_{j}^{x} \sigma_{j+1}^{x}+\sigma_{j}^{y} \sigma_{j+1}^{y}+\Delta\left(\sigma_{j}^{z} \sigma_{j+1}^{z}-1\right)\right)
$$

But also higher spin or higher rank

- Time evolution from an initial state: $|\Psi(t)\rangle=e^{-i H t}\left|\Psi_{0}\right\rangle$

The initial state:

- Ground state of some other Hamiltonian (quantum quench)
- Any experimentally realizable state, prepared using simple rules - Examples:

$$
\left.\left|\Psi_{0}\right\rangle=\mid \text { Née }\right\rangle \equiv \otimes_{k=1}^{L / 2}|\uparrow \downarrow\rangle
$$

Motivation: Setting

- The model:

$$
H=\sum_{j=1}^{L}\left(\sigma_{j}^{x} \sigma_{j+1}^{x}+\sigma_{j}^{y} \sigma_{j+1}^{y}+\Delta\left(\sigma_{j}^{z} \sigma_{j+1}^{z}-1\right)\right)
$$

But also higher spin or higher rank

- Time evolution from an initial state: $|\Psi(t)\rangle=e^{-i H t}\left|\Psi_{0}\right\rangle$

The initial state:

- Ground state of some other Hamiltonian (quantum quench)
- Any experimentally realizable state, prepared using simple rules
- Examples:
$\left|\Psi_{0}\right\rangle=\mid$ Née $\left.\left\rangle \equiv \otimes_{k=1}^{L / 2}\right| \uparrow \downarrow\right\rangle$

Integrable initial states

- Only translationally invariant cases!

Motivation: Setting

- The model:

$$
H=\sum_{j=1}^{L}\left(\sigma_{j}^{㐅} \sigma_{j+1}^{x}+\sigma_{j}^{y} \sigma_{j+1}^{y}+\Delta\left(\sigma_{j}^{z} \sigma_{j+1}^{z}-1\right)\right)
$$

But also higher spin or higher rank

- Time evolution from an initial state: $|\Psi(t)\rangle=e^{-i H t}\left|\Psi_{0}\right\rangle$

The initial state:

- Ground state of some other Hamiltonian (quantum quench)
- Any experimentally realizable state, prepared using simple rules
- Examples:

$$
\left.\left|\Psi_{0}\right\rangle=\mid \text { Néel }\right\rangle \equiv \otimes_{k=1}^{L / 2}|\uparrow \downarrow\rangle
$$

or

$$
\left.\left|\Psi_{0}\right\rangle=\mid \text { Dimer }\right\rangle \equiv \otimes_{k=1}^{L / 2} \frac{|\uparrow \downarrow\rangle-|\downarrow \uparrow\rangle}{\sqrt{2}}
$$

Integrable initial states

Motivation: Setting

- The model:

$$
H=\sum_{j=1}^{L}\left(\sigma_{j}^{㐅} \sigma_{j+1}^{x}+\sigma_{j}^{y} \sigma_{j+1}^{y}+\Delta\left(\sigma_{j}^{z} \sigma_{j+1}^{z}-1\right)\right)
$$

But also higher spin or higher rank

- Time evolution from an initial state: $|\Psi(t)\rangle=e^{-i H t}\left|\Psi_{0}\right\rangle$

The initial state:

- Ground state of some other Hamiltonian (quantum quench)
- Any experimentally realizable state, prepared using simple rules
- Examples:

$$
\left.\left|\Psi_{0}\right\rangle=\mid \text { Néel }\right\rangle \equiv \otimes_{k=1}^{L / 2}|\uparrow \downarrow\rangle
$$

or

$$
\left.\left|\Psi_{0}\right\rangle=\mid \text { Dimer }\right\rangle \equiv \otimes_{k=1}^{L / 2} \frac{|\uparrow \downarrow\rangle-|\downarrow \uparrow\rangle}{\sqrt{2}}
$$

Integrable initial states

- Only translationally invariant cases!

Objects of interest:

- Time-dependence of local observables
- Loschmidt amplitude (a.k.a. Return probability, Fidelity, etc)

$$
G(t)=\left\langle\Psi_{0}\right| e^{-i H t}\left|\Psi_{0}\right\rangle
$$

Introduction: Setting

Objects of interest:

- Local observables, $\mathcal{O}(t)=\left\langle\sigma_{1}^{a}(t) \sigma_{n}^{a}(t)\right\rangle, n=2,3, \ldots, a=x, z$.

Introduction: Setting

Objects of interest:

- Local observables, $\mathcal{O}(t)=\left\langle\sigma_{1}^{a}(t) \sigma_{n}^{a}(t)\right\rangle, n=2,3, \ldots, a=x, z$.

Introduction: Setting

Objects of interest:

- Local observables, $\mathcal{O}(t)=\left\langle\sigma_{1}^{a}(t) \sigma_{n}^{a}(t)\right\rangle, n=2,3, \ldots, a=x, z$.

$$
\begin{aligned}
\langle\mathcal{O}(t)\rangle & =\left\langle\Psi_{0}\right| e^{i H t} \mathcal{O} e^{-i H t}\left|\Psi_{0}\right\rangle \\
& =\sum_{n, m}\left\langle\Psi_{0} \mid n\right\rangle\langle n| \mathcal{O}|m\rangle\left\langle m \mid \Psi_{0}\right\rangle e^{-i\left(E_{m}-E_{n}\right) t}
\end{aligned}
$$

- Overlaps $C_{n}=\left\langle\Psi_{0} \mid n\right\rangle$
- Long-time limit

Introduction: Setting

Objects of interest:

- Local observables, $\mathcal{O}(t)=\left\langle\sigma_{1}^{a}(t) \sigma_{n}^{a}(t)\right\rangle, n=2,3, \ldots, a=x, z$.

$$
\begin{aligned}
\langle\mathcal{O}(t)\rangle & =\left\langle\Psi_{0}\right| e^{i H t} \mathcal{O} e^{-i H t}\left|\Psi_{0}\right\rangle \\
& =\sum_{n, m}\left\langle\Psi_{0} \mid n\right\rangle\langle n| \mathcal{O}|m\rangle\left\langle m \mid \Psi_{0}\right\rangle e^{-i\left(E_{m}-E_{n}\right) t}
\end{aligned}
$$

- Overlaps $C_{n}=\left\langle\Psi_{0} \mid n\right\rangle$
- Long-time limit

$$
\lim _{t \rightarrow \infty}\langle\mathcal{O}(t)\rangle=\sum_{n}\left|C_{n}\right|^{2}\langle n| \mathcal{O}|n\rangle
$$

Connection to Statistical Physics

Introduction: the long time limit

How to calculate the long time limit?

$$
\lim _{t \rightarrow \infty}\langle\mathcal{O}(t)\rangle=\sum_{n}\left|C_{n}\right|^{2}\langle n| \mathcal{O}|n\rangle
$$

Two important ingredients:

- Selecting the states that dominate the sum.
- Excited state correlations? $\langle n| \mathcal{O}|n\rangle=$?

Introduction: the long time limit

How to calculate the long time limit?

$$
\lim _{t \rightarrow \infty}\langle\mathcal{O}(t)\rangle=\sum_{n}\left|C_{n}\right|^{2}\langle n| \mathcal{O}|n\rangle
$$

Two important ingredients:

- Selecting the states that dominate the sum.
- Excited state correlations?
$\langle n| \mathcal{O}|n\rangle=$?
Factorized correlation functions, hidden Grasmannian structure,
M. Mestyán and BP., J. Stat. Mech. (2014) P09020
M. BP, J. Phys. A: Math. Theor. 50 074006, (2017)

Introduction: the long time limit

How to calculate the long time limit?

$$
\lim _{t \rightarrow \infty}\langle\mathcal{O}(t)\rangle=\sum_{n}\left|C_{n}\right|^{2}\langle n| \mathcal{O}|n\rangle
$$

Two important ingredients:

- Selecting the states that dominate the sum.
- Excited state correlations?
$\langle n| \mathcal{O}|n\rangle=$?
Factorized correlation functions, hidden Grasmannian structure,
M. Mestyán and BP., J. Stat. Mech. (2014) P09020
M. BP, J. Phys. A: Math. Theor. 50 074006, (2017)

Introduction: the long time limit

How to calculate the long time limit?

$$
\lim _{t \rightarrow \infty}\langle\mathcal{O}(t)\rangle=\sum_{n}\left|C_{n}\right|^{2}\langle n| \mathcal{O}|n\rangle
$$

Two important ingredients:

- Selecting the states that dominate the sum.
- Excited state correlations?
$\langle n| \mathcal{O}|n\rangle=$?
Factorized correlation functions, hidden Grasmannian structure, ...
M. Mestyán and BP., J. Stat. Mech. (2014) P09020
M. BP, J. Phys. A: Math. Theor. 50 074006, (2017)

Introduction: the long time limit

Selecting the states:

$$
\lim _{t \rightarrow \infty}\langle\mathcal{O}(t)\rangle=\sum_{n}\left|C_{n}\right|^{2}\langle n| \mathcal{O}|n\rangle
$$

- In the TDL: States characterized by Bethe root densities
- If the exact overlaps $\left|C_{n}\right|^{2}$ are known: Quench Action method.

Introduction: the long time limit

Selecting the states:

$$
\lim _{t \rightarrow \infty}\langle\mathcal{O}(t)\rangle=\sum_{n}\left|C_{n}\right|^{2}\langle n| \mathcal{O}|n\rangle
$$

- In the TDL: States characterized by Bethe root densities
- If the exact overlaps $\left|C_{n}\right|^{2}$ are known: Quench Action method. Works in limited cases. Microscopic. Necessary for the full time evolution.

Introduction: the long time limit

Selecting the states:

$$
\lim _{t \rightarrow \infty}\langle\mathcal{O}(t)\rangle=\sum_{n}\left|C_{n}\right|^{2}\langle n| \mathcal{O}|n\rangle
$$

- In the TDL: States characterized by Bethe root densities
- If the exact overlaps $\left|C_{n}\right|^{2}$ are known: Quench Action method. Works in limited cases. Microscopic. Necessary for the full time evolution.

Introduction: the long time limit

Selecting the states:

$$
\lim _{t \rightarrow \infty}\langle\mathcal{O}(t)\rangle=\sum_{n}\left|C_{n}\right|^{2}\langle n| \mathcal{O}|n\rangle
$$

- In the TDL: States characterized by Bethe root densities
- If the exact overlaps $\left|C_{n}\right|^{2}$ are known: Quench Action method. Works in limited cases.
Microscopic. Necessary for the full time evolution.

Introduction: the long time limit

Selecting the states:

$$
\lim _{t \rightarrow \infty}\langle\mathcal{O}(t)\rangle=\sum_{n}\left|C_{n}\right|^{2}\langle n| \mathcal{O}|n\rangle
$$

- In the TDL: States characterized by Bethe root densities
- If the exact overlaps $\left|C_{n}\right|^{2}$ are known: Quench Action method. Works in limited cases.
Microscopic. Necessary for the full time evolution.
- Mean values of conserved charges Q_{j}.

Defining the charge density $q_{j}=Q_{j} / L$

$$
q_{j}(t=0)=\left\langle\Psi_{0}\right| q_{j}\left|\Psi_{0}\right\rangle=q_{j}(t=\infty)=\langle n| q_{j}|n\rangle
$$

Macroscopic. Good only for the large t behaviour.

Introduction: the long time limit

Selecting the states:

$$
\lim _{t \rightarrow \infty}\langle\mathcal{O}(t)\rangle=\sum_{n}\left|C_{n}\right|^{2}\langle n| \mathcal{O}|n\rangle
$$

- In the TDL: States characterized by Bethe root densities
- If the exact overlaps $\left|C_{n}\right|^{2}$ are known: Quench Action method. Works in limited cases.
Microscopic. Necessary for the full time evolution.
- Mean values of conserved charges Q_{j}.

Defining the charge density $q_{j}=Q_{j} / L$

$$
q_{j}(t=0)=\left\langle\Psi_{0}\right| q_{j}\left|\Psi_{0}\right\rangle=q_{j}(t=\infty)=\langle n| q_{j}|n\rangle
$$

Macroscopic. Good only for the large t behaviour.

Introduction: the long time limit

Selecting the states:

$$
\lim _{t \rightarrow \infty}\langle\mathcal{O}(t)\rangle=\sum_{n}\left|C_{n}\right|^{2}\langle n| \mathcal{O}|n\rangle
$$

- In the TDL: States characterized by Bethe root densities
- If the exact overlaps $\left|C_{n}\right|^{2}$ are known: Quench Action method. Works in limited cases.
Microscopic. Necessary for the full time evolution.
- Mean values of conserved charges Q_{j}.

Defining the charge density $q_{j}=Q_{j} / L$

$$
q_{j}(t=0)=\left\langle\Psi_{0}\right| q_{j}\left|\Psi_{0}\right\rangle=q_{j}(t=\infty)=\langle n| q_{j}|n\rangle
$$

Macroscopic. Good only for the large t behaviour.

Bethe Ansatz

Coordinate Bethe Ansatz solution of the XXZ Hamiltonian

$$
H=\sum_{j=1}^{L}\left(\sigma_{j}^{㐅} \sigma_{j+1}^{㐅}+\sigma_{j}^{y} \sigma_{j+1}^{y}+\Delta\left(\sigma_{j}^{z} \sigma_{j+1}^{z}-1\right)\right) .
$$

Defining $\Delta=\cosh (\eta)$ and

$$
\left|\{\lambda\}_{N}\right\rangle=\sum_{y_{1}<y_{2}<\cdots<y_{N}} \phi_{N}\left(\{\lambda\}_{N} \mid y_{1}, \ldots, y_{N}\right) \sigma_{y_{1}}^{-} \ldots \sigma_{y_{N}}^{-}|0\rangle
$$

the wave function is

$$
\begin{aligned}
& \phi_{N}\left(\{\lambda\}_{N} \mid\{y\}\right)= \\
& \quad=\sum_{P \in S_{N}}\left[\prod_{1 \leq m<n \leq N} \frac{\sin \left(\lambda_{P_{m}}-\lambda_{P_{n}}+i \eta\right)}{\sin \left(\lambda_{P_{m}}-\lambda_{P_{n}}\right)}\right]\left[\prod_{l=1}^{N}\left(\frac{\sin \left(\lambda_{P_{l}}+i \eta / 2\right)}{\sin \left(\lambda_{P_{l}}-i \eta / 2\right)}\right)^{y_{1}}\right]
\end{aligned}
$$

Bethe Ansatz

Bethe Ansatz equations:

$$
\left(\frac{\sin \left(\lambda_{j}+i \eta / 2\right)}{\sin \left(\lambda_{j}-i \eta / 2\right)}\right)^{L} \prod_{k \neq j} \frac{\sin \left(\lambda_{j}-\lambda_{k}-i \eta\right)}{\sin \left(\lambda_{j}-\lambda_{k}+i \eta\right)}=1
$$

String solutions: $(\Delta>1)$

In the thermodynamic limit: densities of roots: $\rho_{\mathrm{r}, \mathrm{k}}(\lambda)$
The number ΔN of k-strings with centers between λ and $\lambda+\Delta \lambda$: $\Delta N=L \rho_{\mathrm{r}, k}(\lambda) \Delta \lambda / 2 \pi$.

Densities of holes: $\rho_{\mathrm{h}, k}(\lambda)$.
They satisfy

where

In the thermodynamic limit: densities of roots: $\rho_{\mathrm{r}, \mathrm{k}}(\lambda)$
The number ΔN of k-strings with centers between λ and $\lambda+\Delta \lambda$: $\Delta N=L \rho_{\mathrm{r}, k}(\lambda) \Delta \lambda / 2 \pi$.

Densities of holes: $\rho_{\mathrm{h}, k}(\lambda)$.
They satisfy

$$
\rho_{\mathrm{r}, k}+\rho_{\mathrm{h}, k}=\delta_{k, 1} d+d \star\left(\rho_{\mathrm{h}, k-1}+\rho_{\mathrm{h}, k+1}\right),
$$

where

$$
\begin{aligned}
(f \star g)(u) & =\int_{-\pi / 2}^{\pi / 2} \frac{d \omega}{2 \pi} f(u-\omega) g(\omega) \\
d(u) & =1+2 \sum_{n=1}^{\infty} \frac{\cos (2 n u)}{\cosh (\eta n)}
\end{aligned}
$$

Overlaps

Quench Action method. How to compute the overlaps?
The simplest case: the Néel state
Consider a chain of length $L=2 N$. The overlaps are
\langle Néel $\mid\{\lambda\}\rangle=\phi_{N}\left(\{\lambda\}_{N} \mid\{2,4,6, \ldots, 2 N\}\right)=$

How to sum it up?

Solution: relation to the six-vertex model

Overlaps

Quench Action method. How to compute the overlaps?
The simplest case: the Néel state
Consider a chain of length $L=2 N$. The overlaps are

$$
\begin{aligned}
\langle\text { Néel } \mid\{\lambda\}\rangle & =\phi_{N}\left(\{\lambda\}_{N} \mid\{2,4,6, \ldots, 2 N\}\right)= \\
& =\sum_{P \in S_{N}}\left[\prod_{1 \leq m<n \leq N} \frac{\sin \left(\lambda_{P_{m}}-\lambda_{P_{n}}+i \eta\right)}{\sin \left(\lambda_{P_{m}}-\lambda_{P_{n}}\right)}\right]\left[\prod_{l=1}^{N}\left(\frac{\sin \left(\lambda_{P_{l}}+i \eta / 2\right)}{\sin \left(\lambda_{P_{l}}-i \eta / 2\right)}\right)^{2 /}\right]
\end{aligned}
$$

How to sum it up?

Solution: relation to the six-vertex model

Overlaps

Quench Action method. How to compute the overlaps?
The simplest case: the Néel state
Consider a chain of length $L=2 N$. The overlaps are

$$
\begin{aligned}
\langle\text { Néel } \mid\{\lambda\}\rangle & =\phi_{N}\left(\{\lambda\}_{N} \mid\{2,4,6, \ldots, 2 N\}\right)= \\
& =\sum_{P \in S_{N}}\left[\prod_{1 \leq m<n \leq N} \frac{\sin \left(\lambda_{P_{m}}-\lambda_{P_{n}}+i \eta\right)}{\sin \left(\lambda_{P_{m}}-\lambda_{P_{n}}\right)}\right]\left[\prod_{l=1}^{N}\left(\frac{\sin \left(\lambda_{P_{l}}+i \eta / 2\right)}{\sin \left(\lambda_{P_{l}}-i \eta / 2\right)}\right)^{2 /}\right]
\end{aligned}
$$

How to sum it up?

Solution: relation to the six-vertex model

Overlaps

The overlap is related to a partition function, which is known:
O. Tsuchiya, Determinant formula for the six-vertex model with reflecting end, arXiv:solv-int/9804010

BP., J. Stat. Mech. (2014) P06011

Overlaps

The overlap is related to a partition function, which is known:
O. Tsuchiya, Determinant formula for the six-vertex model with reflecting end, arXiv:solv-int/9804010

$$
\left\langle\text { Néel } \mid \lambda_{1}, \ldots, \lambda_{M}\right\rangle=\frac{\prod_{j} \sin ^{2 M}\left(\lambda_{j}-\eta / 2\right) \sin ^{2 M+1}\left(\lambda_{j}+\eta / 2\right)}{\prod_{j} \sin \left(2 \lambda_{j}\right) \prod_{j<k} \sin \left(\lambda_{j}-\lambda_{k}\right) \sin \left(\lambda_{j}+\lambda_{k}\right)} \times \operatorname{det} L
$$

with

$$
L_{j k}=q_{2 j}\left(\lambda_{k}\right), \quad \text { where } \quad q_{a}(u)=\cot ^{a}(u-i \eta / 2)-\cot ^{a}(u+i \eta / 2)
$$

BP., J. Stat. Mech. (2014) P06011

Overlaps

Final formula is not convenient. An overlap formula is ,,good" when

$$
\left|\left\langle\Psi_{0} \mid\{\lambda\}_{N}\right\rangle\right|^{2}=C\left(\{\lambda\}_{N}\right) \prod_{j=1}^{N} v\left(\lambda_{j}\right), \quad C\left(\{\lambda\}_{N}\right) \sim \mathcal{O}\left(L^{0}\right)
$$

Analogy: $v(\lambda) \sim e^{-\beta E(\lambda)}$
M. Brockmann, J. De Nardis, B. Wouters, and J.-S. Caux, J. Phys. A: Math. Theor. 47 (2014) 145003
K. K. Kozlowski, B. P., J. Stat. Mech. (2012) P05021

Overlaps

Final formula is not convenient. An overlap formula is ,,good" when

$$
\left|\left\langle\Psi_{0} \mid\{\lambda\}_{N}\right\rangle\right|^{2}=C\left(\{\lambda\}_{N}\right) \prod_{j=1}^{N} v\left(\lambda_{j}\right), \quad C\left(\{\lambda\}_{N}\right) \sim \mathcal{O}\left(L^{0}\right)
$$

Analogy: $v(\lambda) \sim e^{-\beta E(\lambda)}$
M. Brockmann, J. De Nardis, B. Wouters, and J.-S. Caux, J. Phys. A: Math. Theor. 47 (2014) 145003
K. K. Kozlowski, B. P., J. Stat. Mech. (2012) P05021

$$
v_{\text {Néel }}(\lambda)=\frac{\tan (\lambda+i \eta / 2) \tan (\lambda-i \eta / 2)}{4 \sin ^{2}(2 \lambda)}, \quad \text { for } \quad\left|\{\lambda\}_{N}\right\rangle=\left|\{-\tilde{\lambda}, \tilde{\lambda}\}_{N / 2}\right\rangle
$$

Overlaps

Final formula is not convenient. An overlap formula is ,,good" when

$$
\left|\left\langle\Psi_{0} \mid\{\lambda\}_{N}\right\rangle\right|^{2}=C\left(\{\lambda\}_{N}\right) \prod_{j=1}^{N} v\left(\lambda_{j}\right), \quad C\left(\{\lambda\}_{N}\right) \sim \mathcal{O}\left(L^{0}\right)
$$

Analogy: $v(\lambda) \sim e^{-\beta E(\lambda)}$
M. Brockmann, J. De Nardis, B. Wouters, and J.-S. Caux, J. Phys. A: Math. Theor. 47 (2014) 145003
K. K. Kozlowski, B. P., J. Stat. Mech. (2012) P05021

$$
\begin{gathered}
v_{\text {Néel }}(\lambda)=\frac{\tan (\lambda+i \eta / 2) \tan (\lambda-i \eta / 2)}{4 \sin ^{2}(2 \lambda)}, \quad \text { for } \quad\left|\{\lambda\}_{N}\right\rangle=\left|\{-\tilde{\lambda}, \tilde{\lambda}\}_{N / 2}\right\rangle \\
C=\frac{\operatorname{det} G^{+}}{\operatorname{det} G^{-}}
\end{gathered}
$$

Overlaps

Other states?

- At present exact overlaps are only known for

$$
\left|\Psi_{0}\right\rangle=\prod \frac{|+-\rangle+\alpha|-+\rangle}{\sqrt{1+|\alpha|^{2}}}
$$

They correspond to diagonal K-matrices in the boundary Algebraic Bethe Ansatz.

- Other two-site states probably possible (Tsushiya-determinant with off-diagonal K-matrices)
- MPS states encountered in the AdS/CFT literature M. de Leam, Ch Kristiansen K. Zarembo, JHEP08(2015)098 I. Buhl-Mortensen, M. de Leeuw, Ch. Kristjansen, K. Zarembo, JHEP02(2016)052 Closely related!

Overlaps

Other states?

- At present exact overlaps are only known for

$$
\left|\Psi_{0}\right\rangle=\prod \frac{|+-\rangle+\alpha|-+\rangle}{\sqrt{1+|\alpha|^{2}}}
$$

They correspond to diagonal K-matrices in the boundary Algebraic Bethe Ansatz.

- Other two-site states probably possible (Tsushiya-determinant with off-diagonal K-matrices)
- MPS states encountered in the AdS/CFT literature M. de Leemn Ch Kristiansen K. Zarembo IHEP08(2015)098 I. Buhl-Mortensen, M. de Leeuw, Ch. Kristjansen, K. Zarembo, JHEP02(2016)052 Closely related!

Overlaps

Other states?

- At present exact overlaps are only known for

$$
\left|\Psi_{0}\right\rangle=\prod \frac{|+-\rangle+\alpha|-+\rangle}{\sqrt{1+|\alpha|^{2}}}
$$

They correspond to diagonal K-matrices in the boundary Algebraic Bethe Ansatz.

- Other two-site states probably possible (Tsushiya-determinant with off-diagonal K-matrices)
- MPS states encountered in the AdS/CFT literature
M. de Leeuw, Ch. Kristjansen, K. Zarembo, JHEP08(2015)098
I. Buhl-Mortensen, M. de Leeuw, Ch. Kristjansen, K. Zarembo, JHEP02(2016)052

Closely related!

Thermodynamic Bethe Ansatz (TBA)

Compute

$$
Z=\operatorname{Tr} e^{-H / T}=e^{-f L / T}
$$

in a Bethe Ansatz solvable model with

$$
E=\sum_{j=1}^{N} e\left(\lambda_{j}\right) \quad \text { and } \quad e^{i p\left(\lambda_{j}\right) L} \prod_{k \neq j} S\left(\lambda_{j}-\lambda_{k}\right)=1
$$

In the TDL densities for Bethe roots and holes, satisfying
with $\varphi=-i d \log (S(\lambda)) / d \lambda$.

Express the partition function as a functional integral

$$
Z=\int \mathcal{D} \rho_{r}(\lambda) e^{-S\left[\rho_{r}\right] L}, \quad S=\int \frac{d \lambda}{2 \pi} e(\lambda) \rho_{r}(\lambda)+S_{Y Y}
$$

Thermodynamic Bethe Ansatz (TBA)

Compute

$$
Z=\operatorname{Tr} e^{-H / T}=e^{-f L / T}
$$

in a Bethe Ansatz solvable model with

$$
E=\sum_{j=1}^{N} e\left(\lambda_{j}\right) \quad \text { and } \quad e^{i p\left(\lambda_{j}\right) L} \prod_{k \neq j} S\left(\lambda_{j}-\lambda_{k}\right)=1
$$

In the TDL densities for Bethe roots and holes, satisfying

$$
\rho_{r}+\rho_{h}=p^{\prime}+\varphi \star \rho_{r},
$$

with $\varphi=-i d \log (S(\lambda)) / d \lambda$.
Express the partition function as a functional integral

Thermodynamic Bethe Ansatz (TBA)

Compute

$$
Z=\operatorname{Tr} e^{-H / T}=e^{-f L / T}
$$

in a Bethe Ansatz solvable model with

$$
E=\sum_{j=1}^{N} e\left(\lambda_{j}\right) \quad \text { and } \quad e^{i p\left(\lambda_{j}\right) L} \prod_{k \neq j} S\left(\lambda_{j}-\lambda_{k}\right)=1
$$

In the TDL densities for Bethe roots and holes, satisfying

$$
\rho_{r}+\rho_{h}=p^{\prime}+\varphi \star \rho_{r},
$$

with $\varphi=-i d \log (S(\lambda)) / d \lambda$.
Express the partition function as a functional integral

$$
Z=\int \mathcal{D} \rho_{r}(\lambda) e^{-S\left[\rho_{r}\right] L}, \quad S=\int \frac{d \lambda}{2 \pi} e(\lambda) \rho_{r}(\lambda)+S_{Y Y}
$$

Thermodynamic Bethe Ansatz (TBA)

Minimization of the free energy functional gives

$$
\varepsilon=\beta e+\varphi \star \log \left(1+e^{-\varepsilon}\right) \quad f=-p^{\prime} \star \log \left(1+e^{-\varepsilon}\right),
$$

where the pseudo-energy is defined as $e^{-\varepsilon(u)}=\rho_{r}(u) / \rho_{h}(u)$.
What about quenches? If the overlap is of the form

Analogy: $v(\lambda) \sim e^{-\beta E(\lambda)}$ gives the Quench Action

Thermodynamic Bethe Ansatz (TBA)

Minimization of the free energy functional gives

$$
\varepsilon=\beta e+\varphi \star \log \left(1+e^{-\varepsilon}\right) \quad f=-p^{\prime} \star \log \left(1+e^{-\varepsilon}\right),
$$

where the pseudo-energy is defined as $e^{-\varepsilon(u)}=\rho_{r}(u) / \rho_{h}(u)$.
What about quenches? If the overlap is of the form

$$
\left|\left\langle\Psi_{0} \mid\{\lambda\}_{N}\right\rangle\right|^{2}=C \prod_{j=1}^{N} v\left(\lambda_{j}\right)
$$

Analogy: $v(\lambda) \sim e^{-\beta E(\lambda)}$ gives the Quench Action

$$
S_{Q A}=\int \frac{d \lambda}{2 \pi} \log (v(u)) \rho_{r}(\lambda)+\frac{1}{2} S_{Y Y}
$$

Thermodynamic Bethe Ansatz (TBA)

Minimization of the free energy functional gives

$$
\varepsilon=\beta e+\varphi \star \log \left(1+e^{-\varepsilon}\right) \quad f=-p^{\prime} \star \log \left(1+e^{-\varepsilon}\right),
$$

where the pseudo-energy is defined as $e^{-\varepsilon(u)}=\rho_{r}(u) / \rho_{h}(u)$.
What about quenches? If the overlap is of the form

$$
\left|\left\langle\Psi_{0} \mid\{\lambda\}_{N}\right\rangle\right|^{2}=C \prod_{j=1}^{N} v\left(\lambda_{j}\right)
$$

Analogy: $v(\lambda) \sim e^{-\beta E(\lambda)}$ gives the Quench Action

$$
\begin{aligned}
S_{Q A} & =\int \frac{d \lambda}{2 \pi} \log (v(u)) \rho_{r}(\lambda)+\frac{1}{2} S_{Y Y} \\
\varepsilon & =-2 \log (v)+\varphi \star \log \left(1+e^{-\varepsilon}\right)
\end{aligned}
$$

J-S. Caux, F. H. L. Essler, Phys. Rev. Lett. 110, 257203 (2013)

Thermodynamic Bethe Ansatz (TBA)

XXZ spin chain for $\Delta>1$: for every k-string, $k=1 \ldots \infty$
$\rho_{r, k}(\lambda), \rho_{h, k}(\lambda)$ and $Y_{k}(\lambda)=\frac{\rho_{h, k}(\lambda)}{\rho_{r, k}(\lambda)}$
Finite temperature: $Z=\operatorname{Tre}{ }^{-s H}, \beta=2 \sinh (\eta) s$

$$
\log \left(Y_{j}\right)=-\beta d \delta_{j, 1}+d \star\left(\log \left(1+Y_{j+1}\right)+\log \left(1+Y_{j-1}\right)\right)
$$

Important relation, Y-system:

$$
Y_{j}(u+i \eta / 2) Y_{j}(u-i \eta / 2)=\left(1+Y_{j-1}(u)\right)\left(1+Y_{j+1}(u)\right)
$$

Thermodynamic Bethe Ansatz (TBA)

XXZ spin chain for $\Delta>1$: for every k-string, $k=1 \ldots \infty$
$\rho_{r, k}(\lambda), \rho_{h, k}(\lambda)$ and $Y_{k}(\lambda)=\frac{\rho_{h, k}(\lambda)}{\rho_{r, k}(\lambda)}$
Finite temperature: $Z=\operatorname{Tre}{ }^{-s H}, \beta=2 \sinh (\eta) s$

$$
\log \left(Y_{j}\right)=-\beta d \delta_{j, 1}+d \star\left(\log \left(1+Y_{j+1}\right)+\log \left(1+Y_{j-1}\right)\right)
$$

$$
d(u)=1+2 \sum_{n=1}^{\infty} \frac{\cos (2 n u)}{\cosh (\eta n)}
$$

Important relation, Y-system:

Thermodynamic Bethe Ansatz (TBA)

XXZ spin chain for $\Delta>1$: for every k-string, $k=1 \ldots \infty$
$\rho_{r, k}(\lambda), \rho_{h, k}(\lambda)$ and $Y_{k}(\lambda)=\frac{\rho_{h, k}(\lambda)}{\rho_{r, k}(\lambda)}$
Finite temperature: $Z=\operatorname{Tre}^{-s H}, \beta=2 \sinh (\eta) s$

$$
\log \left(Y_{j}\right)=-\beta d \delta_{j, 1}+d \star\left(\log \left(1+Y_{j+1}\right)+\log \left(1+Y_{j-1}\right)\right)
$$

$$
d(u)=1+2 \sum_{n=1}^{\infty} \frac{\cos (2 n u)}{\cosh (\eta n)}
$$

Important relation, Y-system:

$$
Y_{j}(u+i \eta / 2) Y_{j}(u-i \eta / 2)=\left(1+Y_{j-1}(u)\right)\left(1+Y_{j+1}(u)\right)
$$

Quench Action TBA

TBA using the overlaps of the form $\quad\left\langle\Psi_{0} \mid\left\{\lambda_{N}\right\}\right\rangle=C \times \prod_{j=1}^{N} v\left(\lambda_{j}\right)$

$$
\log \left(Y_{j}\right)=d_{j}+d \star\left(\log \left(1+Y_{j+1}\right)+\log \left(1+Y_{j-1}\right)\right)
$$

with

$$
d_{j}=-g_{j}+d \star\left(g_{j-1}+g_{j+1}\right), \text { with } g_{0}=0
$$

where

$$
g_{j}(\lambda)=-\sum_{k=1}^{j} \log (v(\lambda+i \eta(n+1-2 k) / 2))
$$

Y-system still holds!

Quench Action TBA

TBA using the overlaps of the form $\left\langle\Psi_{0} \mid\left\{\lambda_{N}\right\}\right\rangle=C \times \prod_{j=1}^{N} v\left(\lambda_{j}\right)$

$$
\log \left(Y_{j}\right)=d_{j}+d \star\left(\log \left(1+Y_{j+1}\right)+\log \left(1+Y_{j-1}\right)\right)
$$

with

$$
d_{j}=-g_{j}+d \star\left(g_{j-1}+g_{j+1}\right), \text { with } g_{0}=0
$$

where

$$
g_{j}(\lambda)=-\sum_{k=1}^{j} \log (v(\lambda+i \eta(n+1-2 k) / 2))
$$

Y-system still holds!

$$
Y_{j}(u+i \eta / 2) Y_{j}(u-i \eta / 2)=\left(1+Y_{j-1}(u)\right)\left(1+Y_{j+1}(u)\right)
$$

Quench Action TBA

In the simplest cases

$$
v_{\text {Neél }}(\lambda)=\frac{\tan (\lambda+i \eta / 2) \tan (\lambda-i \eta / 2)}{4 \sin ^{2}(2 \lambda)} \quad \text { and } \quad v_{D}(\lambda)=\frac{\sinh ^{4}(\eta / 2) \cot ^{2}(\lambda)}{\sin (2 \lambda+i \eta) \sin (2 \lambda-i \eta)}
$$

Quench Action TBA

In the simplest cases

$$
v_{\text {Néel }}(\lambda)=\frac{\tan (\lambda+i \eta / 2) \tan (\lambda-i \eta / 2)}{4 \sin ^{2}(2 \lambda)} \quad \text { and } \quad v_{\mathrm{D}}(\lambda)=\frac{\sinh ^{4}(\eta / 2) \cot ^{2}(\lambda)}{\sin (2 \lambda+i \eta) \sin (2 \lambda-i \eta)}
$$

Correlators:

- Substitute the overlaps into the TBA
- Find $Y_{j}(u)$
- Find the root and hole densities from
- Find the local observabels using the theory of factorized correlators. M. Mestyán and BP, J. Stat. Mech. (2014) P09020

Quench Action TBA

In the simplest cases

$$
v_{\text {Neél }}(\lambda)=\frac{\tan (\lambda+i \eta / 2) \tan (\lambda-i \eta / 2)}{4 \sin ^{2}(2 \lambda)} \quad \text { and } \quad v_{D}(\lambda)=\frac{\sinh ^{4}(\eta / 2) \cot ^{2}(\lambda)}{\sin (2 \lambda+i \eta) \sin (2 \lambda-i \eta)}
$$

Correlators:

- Substitute the overlaps into the TBA
- Find $Y_{j}(u)$
- Find the root and hole densities from
- Find the local observabels using the theory of factorized correlators. M. Mestyán and BP, J. Stat. Mech. (2014) P09020

Quench Action TBA

In the simplest cases

$$
v_{\text {Néel }}(\lambda)=\frac{\tan (\lambda+i \eta / 2) \tan (\lambda-i \eta / 2)}{4 \sin ^{2}(2 \lambda)} \quad \text { and } \quad v_{D}(\lambda)=\frac{\sinh ^{4}(\eta / 2) \cot ^{2}(\lambda)}{\sin (2 \lambda+i \eta) \sin (2 \lambda-i \eta)}
$$

Correlators:

- Substitute the overlaps into the TBA
- Find $Y_{j}(u)$
- Find the root and hole densities from

$$
\rho_{\mathrm{h}, k}\left(1+Y_{k}^{-1}(u)\right)=\delta_{k, 1} d+d \star\left(\rho_{\mathrm{h}, k-1}+\rho_{\mathrm{h}, k+1}\right)
$$

- Find the local observabels using the theory of factorized correlators. M. Mestyán and BP, J. Stat. Mech. (2014) P09020

Quench Action TBA

In the simplest cases

$$
v_{\text {Neél }}(\lambda)=\frac{\tan (\lambda+i \eta / 2) \tan (\lambda-i \eta / 2)}{4 \sin ^{2}(2 \lambda)} \quad \text { and } \quad v_{D}(\lambda)=\frac{\sinh ^{4}(\eta / 2) \cot ^{2}(\lambda)}{\sin (2 \lambda+i \eta) \sin (2 \lambda-i \eta)}
$$

Correlators:

- Substitute the overlaps into the TBA
- Find $Y_{j}(u)$
- Find the root and hole densities from

$$
\rho_{\mathrm{h}, k}\left(1+Y_{k}^{-1}(u)\right)=\delta_{k, 1} d+d \star\left(\rho_{\mathrm{h}, k-1}+\rho_{\mathrm{h}, k+1}\right),
$$

- Find the local observabels using the theory of factorized correlators. M. Mestyán and BP, J. Stat. Mech. (2014) P09020

Quenches in the $X X Z$ chain

$\Delta=3, \quad\left|\Psi_{0}\right\rangle=|D\rangle, \quad\left\langle\sigma_{1}^{z} \sigma_{3}^{z}\right\rangle(t)$

iTEBD simulation, by Miklós Werner
B. P., M. Mestyán, M. A. Werner, M. Kormos, G. Zaránd, G. Takács, Phys. Rev. Lett. 113 (2014) 117203

Quench Action TBA

Exact solutions possible!

$$
1+Y_{1}(u)=(1+\mathfrak{a}(u+i \eta / 2))\left(1+\mathfrak{a}^{-1}(u-i \eta / 2)\right)
$$

with

$$
\mathfrak{a}_{\text {Néel }}(u)=\frac{\sin (2 u-i \eta)}{\sin (2 u+i \eta)} \frac{\sin (u+i \eta)}{\sin (u-i \eta)} \quad \text { and } \quad a_{\mathrm{D}}(u)=\frac{\sin (2 u-i \eta)}{\sin (2 u+i \eta)} \frac{\cos ^{2}(u+i \eta)}{\cos ^{2}(u-i \eta)}
$$

Using fusion relations and T-system.
Higher Y_{j} from the Y-system.
M Brockmann, B Wouters, D Fioretto, J De Nardis, R Vlijm and J-S Caux, J. Stat. Mech. (2014) P12009

Algebraic constructions

The R-matrix acting on $\mathbb{C}^{2} \otimes \mathbb{C}^{2}$:

$$
R(u)=\frac{1}{\sinh (u+\eta)}\left(\begin{array}{cccc}
\sinh (u+\eta) & 0 & 0 & 0 \\
0 & \sinh (u) & \sinh (\eta) & 0 \\
0 & \sinh (\eta) & \sinh (u) & 0 \\
0 & 0 & 0 & \sinh (u+\eta)
\end{array}\right)
$$

Pictorial representation:

$\sinh (u)$

$\sinh (\eta)$

Algebraic constructions

The monodromy matrix:

$$
T(u)=R_{M 0}(u) \ldots R_{10}(u)=\left(\begin{array}{ll}
A(u) & B(u) \\
C(u) & D(u)
\end{array}\right)
$$

Graphically:

The transfer matrix:

$$
t(u)=\operatorname{Tr}_{0} T(u)
$$

From Yang-Baxter:
$[t(u), t(v)]=0$

Algebraic constructions

The monodromy matrix:

$$
T(u)=R_{M 0}(u) \ldots R_{10}(u)=\left(\begin{array}{ll}
A(u) & B(u) \\
C(u) & D(u)
\end{array}\right)
$$

Graphically:

The transfer matrix:

$$
t(u)=\operatorname{Tr}_{0} T(u)
$$

From Yang-Baxter:

$$
[t(u), t(v)]=0
$$

Conctructing the charges

- Ultra-local charges
- $t(0)=U$ the translation operator
- Defining

$$
Q_{j}=\left.\left(\frac{d}{d u}\right)^{j-1} \log t(u)\right|_{u=0}
$$

Q_{j} is a sum of j-site operators
Quasi-local charges from spin-s (fused) transfer matrices $t_{s}(u)$

$$
Q_{2 s, j}=\left.\left(\frac{d}{d u}\right)^{j-1} \log t_{s}(u)\right|_{u=0}
$$

E. Ilievski, M. Medenjak, T. Prosen, L. Zadnik, J. Stat. Mech. (2016) 064008

Conctructing the charges

- Ultra-local charges
- $t(0)=U$ the translation operator
- Defining

$$
Q_{j}=\left(\frac{d}{d u}\right)^{j-1} \log t(u)
$$

Q_{j} is a sum of j-site operators

- Quasi-local charges from spin-s (fused) transfer matrices $t_{s}(u)$

$$
Q_{2 s, j}=\left.\left(\frac{d}{d u}\right)^{j-1} \log t_{s}(u)\right|_{u=0}
$$

Conctructing the charges

- Ultra-local charges
- $t(0)=U$ the translation operator
- Defining

$$
Q_{j}=\left.\left(\frac{d}{d u}\right)^{j-1} \log t(u)\right|_{u=0}
$$

Q_{j} is a sum of j-site operators

- Quasi-local charges from spin-s (fused) transfer matrices $t_{s}(u)$

$$
Q_{2 s, j}=\left.\left(\frac{d}{d u}\right)^{j-1} \log t_{s}(u)\right|_{u}
$$

Conctructing the charges

- Ultra-local charges
- $t(0)=U$ the translation operator
- Defining

$$
Q_{j}=\left.\left(\frac{d}{d u}\right)^{j-1} \log t(u)\right|_{u=0}
$$

Q_{j} is a sum of j-site operators

- Quasi-local charges from spin-s (fused) transfer matrices $t_{s}(u)$

$$
Q_{2 s, j}=\left.\left(\frac{d}{d u}\right)^{j-1} \log t_{s}(u)\right|_{u=0}
$$

E. Ilievski, M. Medenjak, T. Prosen, L. Zadnik, J. Stat. Mech. (2016) 064008

Constructing the charges

From charges to correlators:

- Initial states:

$$
\left|\Psi_{0}\right\rangle \quad \rightarrow \quad Q_{s, j}
$$

M. Fagotti and F. H. L. Essler, J. Stat. Mech. (2013) P07012

- Root densities:

E. Ilievski, J. D. Nardis, B. Wouters, J-S. Caux, F. H. L. Essler, T. Prosen, Phys. Rev. Lett. 115, 157201 (2015)

- Correlators:

Constructing the charges

From charges to correlators:

- Initial states:

$$
\left|\Psi_{0}\right\rangle \quad \rightarrow \quad Q_{s, j}
$$

M. Fagotti and F. H. L. Essler, J. Stat. Mech. (2013) P07012

- Root densities:

$$
Q_{s, j} \quad \rightarrow \quad \rho_{\mathrm{r}, s}(u)
$$

E. Ilievski, J. D. Nardis, B. Wouters, J-S. Caux, F. H. L. Essler, T. Prosen, Phys. Rev. Lett. 115, 157201 (2015)

- Correlators:

Constructing the charges

From charges to correlators:

- Initial states:

$$
\left|\Psi_{0}\right\rangle \quad \rightarrow \quad Q_{s, j}
$$

M. Fagotti and F. H. L. Essler, J. Stat. Mech. (2013) P07012

- Root densities:

$$
Q_{s, j} \quad \rightarrow \quad \rho_{\mathrm{r}, s}(u)
$$

E. Ilievski, J. D. Nardis, B. Wouters, J-S. Caux, F. H. L. Essler, T. Prosen, Phys. Rev. Lett. 115, 157201 (2015)

- Correlators:

$$
\rho_{\mathrm{r}, \mathrm{~s}} \quad \rightarrow \quad\langle n| \mathcal{O}|n\rangle \quad \rightarrow \quad \lim _{t \rightarrow \infty}\langle\mathcal{O}(t)\rangle
$$

M. Mestyán and BP, J. Stat. Mech. (2014) P09020

GGE

- GGE $=$ TBA
- Canonical form?

$$
\varrho_{G G E}=\frac{1}{Z} \exp \left(-\sum_{s=1}^{\infty} \int_{-\pi / 2}^{\pi / 2} d u \mu_{s}(u) \hat{\rho}_{s}(u)\right)
$$

E. Ilievski, E. Quinn, J-S. Caux, Phys. Rev. B, 95, 11, id. 115128

$$
\varrho_{G G E}=\lim _{N_{s}, N_{d} \rightarrow \infty} \frac{1}{Z} \exp \left(-\sum_{s=1}^{N_{s}} \sum_{j=1}^{N_{d}} \beta_{s, j} Q_{s, j}\right)
$$

BP, E. Vernier, arXiv:1703.09516, to appear in JSTAT

- GGE $=$ TBA
- Canonical form?

$$
\varrho_{G G E}=\frac{1}{Z} \exp \left(-\sum_{s=1}^{\infty} \int_{-\pi / 2}^{\pi / 2} d u \mu_{s}(u) \hat{\rho}_{s}(u)\right)
$$

E. Ilievski, E. Quinn, J-S. Caux, Phys. Rev. B, 95, 11, id. 115128

$$
\varrho_{G G E}=\lim _{N_{s}, N_{d} \rightarrow \infty} \frac{1}{Z} \exp \left(-\sum_{s=1}^{N_{s}} \sum_{j=1}^{N_{d}} \beta_{s, j} Q_{s, j}\right)
$$

BP, E. Vernier, arXiv:1703.09516, to appear in JSTAT
Infinite resolution in rapidity space: Not possible with quasi-local operators

- GGE $=$ TBA
- Canonical form?

$$
\varrho_{G G E}=\frac{1}{Z} \exp \left(-\sum_{s=1}^{\infty} \int_{-\pi / 2}^{\pi / 2} d u \mu_{s}(u) \hat{\rho}_{s}(u)\right)
$$

E. Ilievski, E. Quinn, J-S. Caux, Phys. Rev. B, 95, 11, id. 115128

$$
\varrho_{G G E}=\lim _{N_{s}, N_{d} \rightarrow \infty} \frac{1}{Z} \exp \left(-\sum_{s=1}^{N_{s}} \sum_{j=1}^{N_{d}} \beta_{s, j} Q_{s, j}\right)
$$

BP, E. Vernier, arXiv:1703.09516, to appear in JSTAT
Infinite resolution in rapidity space: Not possible with quasi-local operators

- GGE $=$ TBA
- Canonical form?

$$
\varrho_{G G E}=\frac{1}{Z} \exp \left(-\sum_{s=1}^{\infty} \int_{-\pi / 2}^{\pi / 2} d u \mu_{s}(u) \hat{\rho}_{s}(u)\right)
$$

E. Ilievski, E. Quinn, J-S. Caux, Phys. Rev. B, 95, 11, id. 115128

$$
\varrho_{G G E}=\lim _{N_{s}, N_{d} \rightarrow \infty} \frac{1}{Z} \exp \left(-\sum_{s=1}^{N_{s}} \sum_{j=1}^{N_{d}} \beta_{s, j} Q_{s, j}\right)
$$

BP, E. Vernier, arXiv:1703.09516, to appear in JSTAT
Infinite resolution in rapidity space: Not possible with quasi-local operators

The Loschmidt amplitude

$G(s)=\left\langle\Psi_{0}\right| e^{-s H}\left|\Psi_{0}\right\rangle, \quad s \in \mathbb{C}$
 Dynamical free energy:
 $g(s)=-\lim _{L \rightarrow \infty} \frac{1}{L} \log G(s)$

$s \rightarrow i t:$ Return probability

Overlap-based evaluation:

The Loschmidt amplitude

$\uparrow e^{-2 H}$

$$
G(s)=\left\langle\Psi_{0}\right| e^{-s H}\left|\Psi_{0}\right\rangle, \quad s \in \mathbb{C}
$$

Dynamical free energy:

$$
g(s)=-\lim _{L \rightarrow \infty} \frac{1}{L} \log G(s)
$$

The Loschmidt amplitude

$$
G(s)=\left\langle\Psi_{0}\right| e^{-s H}\left|\Psi_{0}\right\rangle, \quad s \in \mathbb{C}
$$

Dynamical free energy:

$$
g(s)=-\lim _{L \rightarrow \infty} \frac{1}{L} \log G(s)
$$

$s \rightarrow i t:$ Return probability

The Loschmidt amplitude

$\uparrow e^{-2 H}$

Dynamical free energy:

$$
g(s)=-\lim _{L \rightarrow \infty} \frac{1}{L} \log G(s)
$$

$s \rightarrow i t:$ Return probability

Overlap-based evaluation:

$$
G(s)=\sum_{n}\left|C_{n}\right|^{2} e^{-s E_{n}}
$$

In the $s \rightarrow 0$ limit: Back to the Quench Action

The Loschmidt amplitude

$\uparrow e^{-2 H}$

Dynamical free energy:

$$
g(s)=-\lim _{L \rightarrow \infty} \frac{1}{L} \log G(s)
$$

$s \rightarrow i t:$ Return probability

Overlap-based evaluation:

$$
G(s)=\sum_{n}\left|C_{n}\right|^{2} e^{-s E_{n}}
$$

In the $s \rightarrow 0$ limit: Back to the Quench Action

The Loschmidt amplitude

Overlap-based evaluation:

$$
G(s)=\sum_{n}\left|C_{n}\right|^{2} e^{-s E_{n}}
$$

Quench Action: $\left|C_{n}\right|^{2} \rightarrow \log (v(u))$
Loschmidt: $\left|C_{n}\right|^{2} e^{-s E_{n}} \rightarrow \log (v(u))-s e(u)$

$$
\log \left(Y_{j}\right)=d_{j}-\beta d \delta_{j, 1}+d \star\left(\log \left(1+Y_{j+1}\right)+\log \left(1+Y_{j-1}\right)\right)
$$

where $\beta=2 \sinh (\eta) s$ and $\tilde{Y}_{1}(u)$ is the solution at $s=0$.
Valid even in the cases where the overlaps are not known!

The Loschmidt amplitude

Overlap-based evaluation:

$$
G(s)=\sum_{n}\left|C_{n}\right|^{2} e^{-s E_{n}}
$$

Quench Action: $\left|C_{n}\right|^{2} \rightarrow \log (v(u))$
Loschmidt: $\left|C_{n}\right|^{2} e^{-s E_{n}} \rightarrow \log (v(u))-\operatorname{se}(u)$

$$
\log \left(Y_{j}\right)=d_{j}-\beta d \delta_{j, 1}+d \star\left(\log \left(1+Y_{j+1}\right)+\log \left(1+Y_{j-1}\right)\right)
$$

where $\beta=2 \sinh (\eta) s$ and $\tilde{\gamma}_{1}(u)$ is the solution at $s=0$.
Valid even in the cases where the overlaps are not known!

The Loschmidt amplitude

Overlap-based evaluation:

$$
G(s)=\sum_{n}\left|C_{n}\right|^{2} e^{-s E_{n}}
$$

Quench Action: $\left|C_{n}\right|^{2} \rightarrow \log (v(u))$
Loschmidt: $\left|C_{n}\right|^{2} e^{-s E_{n}} \rightarrow \log (v(u))-\operatorname{se}(u)$

$$
\begin{gathered}
\log \left(Y_{j}\right)=d_{j}-\beta d \delta_{j, 1}+d \star\left(\log \left(1+Y_{j+1}\right)+\log \left(1+Y_{j-1}\right)\right) \\
g(s)=-\frac{1}{2} \int_{-\pi / 2}^{\pi / 2} \frac{d u}{2 \pi} d(u) \log \frac{1+Y_{1}(u)}{1+\tilde{Y}_{1}(u)}
\end{gathered}
$$

where $\beta=2 \sinh (\eta) s$ and $\tilde{Y}_{1}(u)$ is the solution at $s=0$.
Valid even in the cases where the overlaps are not known!

The Loschmidt amplitude

Overlap-based evaluation:

$$
G(s)=\sum_{n}\left|C_{n}\right|^{2} e^{-s E_{n}}
$$

Quench Action: $\left|C_{n}\right|^{2} \rightarrow \log (v(u))$
Loschmidt: $\left|C_{n}\right|^{2} e^{-s E_{n}} \rightarrow \log (v(u))-\operatorname{se}(u)$

$$
\begin{gathered}
\log \left(Y_{j}\right)=d_{j}-\beta d \delta_{j, 1}+d \star\left(\log \left(1+Y_{j+1}\right)+\log \left(1+Y_{j-1}\right)\right) \\
g(s)=-\frac{1}{2} \int_{-\pi / 2}^{\pi / 2} \frac{d u}{2 \pi} d(u) \log \frac{1+Y_{1}(u)}{1+\tilde{Y}_{1}(u)}
\end{gathered}
$$

where $\beta=2 \sinh (\eta) s$ and $\tilde{Y}_{1}(u)$ is the solution at $s=0$.
Valid even in the cases where the overlaps are not known!

The Loschmidt amplitude

Overlap-based evaluation:

$$
G(s)=\sum_{n}\left|C_{n}\right|^{2} e^{-s E_{n}}
$$

Quench Action: $\left|C_{n}\right|^{2} \rightarrow \log (v(u))$
Loschmidt: $\left|C_{n}\right|^{2} e^{-s E_{n}} \rightarrow \log (v(u))-\operatorname{se}(u)$

$$
\begin{gathered}
\log \left(Y_{j}\right)=d_{j}-\beta d \delta_{j, 1}+d \star\left(\log \left(1+Y_{j+1}\right)+\log \left(1+Y_{j-1}\right)\right) \\
g(s)=-\frac{1}{2} \int_{-\pi / 2}^{\pi / 2} \frac{d u}{2 \pi} d(u) \log \frac{1+Y_{1}(u)}{1+\tilde{Y}_{1}(u)}
\end{gathered}
$$

where $\beta=2 \sinh (\eta) s$ and $\tilde{Y}_{1}(u)$ is the solution at $s=0$.
Valid even in the cases where the overlaps are not known!
The fun stuff: analytic continuation to $s=i t$.

The Loschmidt amplitude

L. Piroli, BP, E. Vernier, J. Stat. Mech. (2017) 023106 [BP, J. Stat. Mech. (2013) P10028]

The Loschmidt amplitude

Trotter decomposition:

$$
e^{-s H}=\lim _{N \rightarrow \infty}\left(1-\frac{s H}{N}\right)^{N}
$$

We have

$$
1-\frac{s H}{N}=T(-\beta / 2 N) T(-\eta+\beta / 2 N)+\mathcal{O}\left(N^{-2}\right)
$$

$$
G(s)=\lim _{N \rightarrow \infty}\left\langle\Psi_{0}\right| T^{N}(-\beta / 2 N) T^{N}(-\eta+\beta / 2 N)\left|\psi_{0}\right\rangle
$$

The Loschmidt amplitude

Trotter decomposition:

$$
e^{-s H}=\lim _{N \rightarrow \infty}\left(1-\frac{s H}{N}\right)^{N}
$$

We have

$$
1-\frac{s H}{N}=T(-\beta / 2 N) T(-\eta+\beta / 2 N)+\mathcal{O}\left(N^{-2}\right)
$$

and

$$
G(s)=\lim _{N \rightarrow \infty}\left\langle\Psi_{0}\right| T^{N}(-\beta / 2 N) T^{N}(-\eta+\beta / 2 N)\left|\Psi_{0}\right\rangle
$$

The Loschmidt amplitude

BP, J. Stat. Mech. (2013) P10028

The Loschmidt amplitude

The Loschmidt amplitude

Boundary transfer matrix:

$$
\tau(u)=\operatorname{Tr}_{0}\left\{K_{+}(u) T(u) K_{-}(u) \tilde{T}(u)\right\}
$$

with $\tilde{T}(u)=\sigma_{0}^{y} T^{t_{0}}(-u) \sigma_{0}^{y}$.
Rewrite it as

$$
\tau(u)=\left\langle v^{+}(u)\right| T(u) \otimes T(-u)\left|v^{-}(u)\right\rangle
$$

where

Physical case: $\left|\Psi_{0}\right\rangle=\Pi\left|v^{+}(0)\right\rangle=\Pi\left|v^{-}(0)\right\rangle$.
For each two-site there is a corresponding K-matrix.
Diagonal K-matrices give states of the form $\frac{|\uparrow \downarrow\rangle+\alpha|\downarrow \uparrow\rangle\rangle}{\sqrt{1+\left|\alpha^{2}\right|}}$

The Loschmidt amplitude

Boundary transfer matrix:

$$
\tau(u)=\operatorname{Tr}_{0}\left\{K_{+}(u) T(u) K_{-}(u) \tilde{T}(u)\right\}
$$

with $\tilde{T}(u)=\sigma_{0}^{y} T^{t_{0}}(-u) \sigma_{0}^{y}$.
Rewrite it as

$$
\tau(u)=\left\langle v^{+}(u)\right| T(u) \otimes T(-u)\left|v^{-}(u)\right\rangle
$$

where

$$
\begin{aligned}
\left|v^{-}(u)\right\rangle & =-k_{12}^{-}(u)|\uparrow \uparrow\rangle+k_{11}^{-}(u)|\uparrow \downarrow\rangle-k_{22}^{-}(u)|\downarrow \uparrow\rangle+k_{21}^{-}(u)|\downarrow \downarrow\rangle \\
\left(\left|v^{+}(u)\right\rangle\right)^{*} & =-k_{21}^{+}(u)|\uparrow \uparrow\rangle+k_{11}^{+}(u)|\uparrow \downarrow\rangle-k_{22}^{+}(u)|\downarrow \uparrow\rangle+k_{12}^{+}(u)|\downarrow \downarrow\rangle
\end{aligned}
$$

Physical case: $\left|\Psi_{0}\right\rangle=\Pi\left|v^{+}(0)\right\rangle=\Pi\left|v^{-}(0)\right\rangle$.
For each two-site there is a corresponding K-matrix.
Diagonal K-matrices give states of the form $\frac{|\uparrow \downarrow\rangle+\alpha|\downarrow \uparrow\rangle}{\sqrt{1+\left|\alpha^{2}\right|}}$

The Loschmidt amplitude

Boundary transfer matrix:

$$
\tau(u)=\operatorname{Tr}_{0}\left\{K_{+}(u) T(u) K_{-}(u) \tilde{T}(u)\right\}
$$

with $\tilde{T}(u)=\sigma_{0}^{y} T^{t_{0}}(-u) \sigma_{0}^{y}$.
Rewrite it as

$$
\tau(u)=\left\langle v^{+}(u)\right| T(u) \otimes T(-u)\left|v^{-}(u)\right\rangle
$$

where

$$
\begin{aligned}
\left|v^{-}(u)\right\rangle & =-k_{12}^{-}(u)|\uparrow \uparrow\rangle+k_{11}^{-}(u)|\uparrow \downarrow\rangle-k_{22}^{-}(u)|\downarrow \uparrow\rangle+k_{21}^{-}(u)|\downarrow \downarrow\rangle \\
\left(\left|v^{+}(u)\right\rangle\right)^{*} & =-k_{21}^{+}(u)|\uparrow \uparrow\rangle+k_{11}^{+}(u)|\uparrow \downarrow\rangle-k_{22}^{+}(u)|\downarrow \uparrow\rangle+k_{12}^{+}(u)|\downarrow \downarrow\rangle
\end{aligned}
$$

Physical case: $\left|\Psi_{0}\right\rangle=\Pi\left|v^{+}(0)\right\rangle=\Pi\left|v^{-}(0)\right\rangle$.
For each two-site there is a corresponding K-matrix.
Diagonal K-matrices give states of the form $\frac{|\uparrow \downarrow+\alpha| \downarrow\rangle}{\sqrt{1+\left|\alpha^{2}\right|}}$

The Loschmidt amplitude

Boundary transfer matrix:

$$
\tau(u)=\operatorname{Tr}_{0}\left\{K_{+}(u) T(u) K_{-}(u) \tilde{T}(u)\right\}
$$

with $\tilde{T}(u)=\sigma_{0}^{y} T^{t_{0}}(-u) \sigma_{0}^{y}$.
Rewrite it as

$$
\tau(u)=\left\langle v^{+}(u)\right| T(u) \otimes T(-u)\left|v^{-}(u)\right\rangle
$$

where

$$
\begin{aligned}
\left|v^{-}(u)\right\rangle & =-k_{12}^{-}(u)|\uparrow \uparrow\rangle+k_{11}^{-}(u)|\uparrow \downarrow\rangle-k_{22}^{-}(u)|\downarrow \uparrow\rangle+k_{21}^{-}(u)|\downarrow \downarrow\rangle \\
\left(\left|v^{+}(u)\right\rangle\right)^{*} & =-k_{21}^{+}(u)|\uparrow \uparrow\rangle+k_{11}^{+}(u)|\uparrow \downarrow\rangle-k_{22}^{+}(u)|\downarrow \uparrow\rangle+k_{12}^{+}(u)|\downarrow \downarrow\rangle
\end{aligned}
$$

Physical case: $\left|\Psi_{0}\right\rangle=\Pi\left|v^{+}(0)\right\rangle=\Pi\left|v^{-}(0)\right\rangle$.
For each two-site there is a corresponding K-matrix.
Diagonal K-matrices give states of the form $\frac{|\uparrow \downarrow\rangle+\alpha| | \uparrow\rangle\rangle}{\sqrt{1+\left|\alpha^{2}\right|}}$

The Loschmidt amplitude

$$
G(s)=\left\langle\Psi_{0}\right| e^{-s H}\left|\Psi_{0}\right\rangle=\sum_{j=1}^{2^{2 N}} \Lambda_{j}^{L / 2}
$$

For real s: QTM is gapped, therefore

$$
g(s)=-\lim _{L \rightarrow \infty} \log G(s)=-\frac{1}{2} \log \left(\Lambda_{0}\right)
$$

Diagonalization of the boundary transfer matrix:

The Loschmidt amplitude

$$
G(s)=\left\langle\Psi_{0}\right| e^{-s H}\left|\Psi_{0}\right\rangle=\sum_{j=1}^{2^{2 N}} \Lambda_{j}^{L / 2}
$$

For real s : QTM is gapped, therefore

$$
g(s)=-\lim _{L \rightarrow \infty} \log G(s)=-\frac{1}{2} \log \left(\Lambda_{0}\right)
$$

Diagonalization of the boundary transfer matrix:

The Loschmidt amplitude

$$
G(s)=\left\langle\Psi_{0}\right| e^{-s H}\left|\Psi_{0}\right\rangle=\sum_{j=1}^{2^{2 N}} \Lambda_{j}^{L / 2}
$$

For real s: QTM is gapped, therefore

$$
g(s)=-\lim _{L \rightarrow \infty} \log G(s)=-\frac{1}{2} \log \left(\Lambda_{0}\right)
$$

Diagonalization of the boundary transfer matrix:

- Diagonal K-matrices: Bethe Ansatz

Leads to boundary-NLIE, BP 2013

- Off-diagonal K-matrices: Inhomogeneous T-Q equation

$$
T(u) Q(u)=A(u) Q(u-\eta)+A(-u) Q(u+\eta)+F(u)
$$

The Loschmidt amplitude

$$
G(s)=\left\langle\Psi_{0}\right| e^{-s H}\left|\Psi_{0}\right\rangle=\sum_{j=1}^{2^{2 N}} \Lambda_{j}^{L / 2}
$$

For real s: QTM is gapped, therefore

$$
g(s)=-\lim _{L \rightarrow \infty} \log G(s)=-\frac{1}{2} \log \left(\Lambda_{0}\right)
$$

Diagonalization of the boundary transfer matrix:

- Diagonal K-matrices: Bethe Ansatz

Leads to boundary-NLIE, BP 2013

- Off-diagonal K-matrices: Inhomogeneous T-Q equation

$$
T(u) Q(u)=A(u) Q(u-\eta)+A(-u) Q(u+\eta)+F(u)
$$

Bethe roots and Trotter limit: Open problem!

- Fusion hierarchy

The Loschmidt amplitude

$$
G(s)=\left\langle\Psi_{0}\right| e^{-s H}\left|\Psi_{0}\right\rangle=\sum_{j=1}^{2^{2 N}} \Lambda_{j}^{L / 2}
$$

For real s: QTM is gapped, therefore

$$
g(s)=-\lim _{L \rightarrow \infty} \log G(s)=-\frac{1}{2} \log \left(\Lambda_{0}\right)
$$

Diagonalization of the boundary transfer matrix:

- Diagonal K-matrices: Bethe Ansatz

Leads to boundary-NLIE, BP 2013

- Off-diagonal K-matrices: Inhomogeneous T-Q equation

$$
T(u) Q(u)=A(u) Q(u-\eta)+A(-u) Q(u+\eta)+F(u)
$$

Bethe roots and Trotter limit: Open problem!

- Fusion hierarchy

The Loschmidt amplitude

T-system:

$$
\tau^{(n)}(u+\eta / 2) \tau^{(n)}(u-\eta / 2)=\tau^{(n-1)}(u) \tau^{(n+1)}(u)+\Phi_{n}(u)
$$

Y-functions:

$$
y_{j}(u)=\frac{\tau^{(j-1)}(u) \tau^{(j+1)}(u)}{\Phi_{j}(u)}
$$

Y-system:

$$
y_{j}\left(u+\frac{\eta}{2}\right) y_{j}\left(u-\frac{\eta}{2}\right)=\left[1+y_{j+1}(u)\right]\left[1+y_{j-1}(u)\right]
$$

Identification:

$$
y_{j}(u)=Y_{j}^{\mathrm{TBA}}(u)
$$

The Loschmidt amplitude

T-system:

$$
\tau^{(n)}(u+\eta / 2) \tau^{(n)}(u-\eta / 2)=\tau^{(n-1)}(u) \tau^{(n+1)}(u)+\Phi_{n}(u)
$$

Y-functions:

$$
y_{j}(u)=\frac{\tau^{(j-1)}(u) \tau^{(j+1)}(u)}{\Phi_{j}(u)}
$$

Y-system:

$$
y_{j}\left(u+\frac{\eta}{2}\right) y_{j}\left(u-\frac{\eta}{2}\right)=\left[1+y_{j+1}(u)\right]\left[1+y_{j-1}(u)\right]
$$

Identification:

The Loschmidt amplitude

T-system:

$$
\tau^{(n)}(u+\eta / 2) \tau^{(n)}(u-\eta / 2)=\tau^{(n-1)}(u) \tau^{(n+1)}(u)+\Phi_{n}(u)
$$

Y-functions:

$$
y_{j}(u)=\frac{\tau^{(j-1)}(u) \tau^{(j+1)}(u)}{\Phi_{j}(u)}
$$

Y-system:

$$
y_{j}\left(u+\frac{\eta}{2}\right) y_{j}\left(u-\frac{\eta}{2}\right)=\left[1+y_{j+1}(u)\right]\left[1+y_{j-1}(u)\right]
$$

Identification:

$$
y_{j}(u)=Y_{j}^{\top \mathrm{BA}}(u)
$$

M. Takahashi and A. Klümper, J. Phys. A: Math. Gen. 34 L187

The Loschmidt amplitude

$$
\log \left(Y_{j}\right)=-\beta d \delta_{j, 1}+d_{j}+d \star\left(\log \left(1+Y_{j+1}\right)+\log \left(1+Y_{j-1}\right)\right)
$$

Off-diagonal K-matrices: „overlap-TBA without overlaps"
Explicit calculation for ,tilted Néel"

$$
|N, \vartheta\rangle \equiv \otimes_{j=1}^{L / 2}\left[\binom{\cos (\vartheta / 2)}{\sin (\vartheta / 2)} \otimes\binom{-\sin (\vartheta / 2)}{\cos (\vartheta / 2)}\right]
$$

Root distribution give the correct charges!
with
$\mathcal{N}(\lambda)=\left[-2 \cosh ^{2}(\zeta) \cosh (2 \eta)+\cosh (2 \zeta)(2 \cos (2 \lambda)-1)+4 \cosh (\eta) \sin ^{2}(\lambda)+\cos (4 \lambda)\right]$
$\chi(\lambda)=16 \frac{\sin (2 \lambda+2 i \eta) \sin (2 \lambda-2 i \eta)}{\sin (2 \lambda+i \eta) \sin (2 \lambda-i \eta)}(\sin (\lambda+i \eta / 2) \sin (\lambda-i \eta / 2) \cos (\lambda-i \zeta) \cos (\lambda+i \zeta))^{2}$
$\zeta=-\log (\tan (\vartheta / 2))$

The Loschmidt amplitude

$$
\log \left(Y_{j}\right)=-\beta d \delta_{j, 1}+d_{j}+d \star\left(\log \left(1+Y_{j+1}\right)+\log \left(1+Y_{j-1}\right)\right)
$$

Off-diagonal K-matrices: „overlap-TBA without overlaps"
Explicit calculation for ,tilted Néel"

$$
|N, \vartheta\rangle \equiv \otimes_{j=1}^{L / 2}\left[\binom{\cos (\vartheta / 2)}{\sin (\vartheta / 2)} \otimes\binom{-\sin (\vartheta / 2)}{\cos (\vartheta / 2)}\right]
$$

Root distribution give the correct charges!

$$
1+Y_{1}(\lambda)=\frac{\mathcal{N}(\lambda+i \eta / 2) \mathcal{N}(\lambda-i \eta / 2)}{\chi(\lambda)}
$$

with

$$
\begin{aligned}
\mathcal{N}(\lambda) & =\left[-2 \cosh ^{2}(\zeta) \cosh (2 \eta)+\cosh (2 \zeta)(2 \cos (2 \lambda)-1)+4 \cosh (\eta) \sin ^{2}(\lambda)+\cos (4 \lambda)\right] \\
\chi(\lambda) & =16 \frac{\sin (2 \lambda+2 i \eta) \sin (2 \lambda-2 i \eta)}{\sin (2 \lambda+i \eta) \sin (2 \lambda-i \eta)}(\sin (\lambda+i \eta / 2) \sin (\lambda-i \eta / 2) \cos (\lambda-i \zeta) \cos (\lambda+i \zeta))^{2} \\
\zeta & =-\log (\tan (\vartheta / 2))
\end{aligned}
$$

The Loschmidt amplitude

Exact solution from:

$$
1+Y_{1}(u)=\frac{T_{1}(u+\eta / 2) T_{1}(u-\eta / 2)}{\Phi_{1}(u)}
$$

For $s=0$ we have

$$
\left\langle\Psi_{0}\right| e^{-s H}\left|\Psi_{0}\right\rangle \rightarrow\left\langle\Psi_{0} \mid \Psi_{0}\right\rangle
$$

The boundary QTM with no columns:

$$
T_{1}(u)=\left\langle v_{+}(i u) \mid v_{-}(i u)\right\rangle=\operatorname{Tr}\left(K_{+}(u) K_{-}(u)\right)
$$

Reproduces all previous exact solutions, and provides new ones for off-diagonal K-matrices

The Loschmidt amplitude

Exact solution from:

$$
1+Y_{1}(u)=\frac{T_{1}(u+\eta / 2) T_{1}(u-\eta / 2)}{\Phi_{1}(u)}
$$

For $s=0$ we have

$$
\left\langle\Psi_{0}\right| e^{-s H}\left|\Psi_{0}\right\rangle \rightarrow\left\langle\Psi_{0} \mid \Psi_{0}\right\rangle
$$

The boundary QTM with no columns:

$$
T_{1}(u)=\left\langle v_{+}(i u) \mid v_{-}(i u)\right\rangle=\operatorname{Tr}\left(K_{+}(u) K_{-}(u)\right)
$$

Reproduces all previous exact solutions, and provides new ones for off-diagonal K-matrices

The Loschmidt amplitude

Exact solution from:

$$
1+Y_{1}(u)=\frac{T_{1}(u+\eta / 2) T_{1}(u-\eta / 2)}{\Phi_{1}(u)}
$$

For $s=0$ we have

$$
\left\langle\Psi_{0}\right| e^{-s H}\left|\Psi_{0}\right\rangle \rightarrow\left\langle\Psi_{0} \mid \Psi_{0}\right\rangle
$$

The boundary QTM with no columns:

$$
T_{1}(u)=\left\langle v_{+}(i u) \mid v_{-}(i u)\right\rangle=\operatorname{Tr}\left(K_{+}(u) K_{-}(u)\right)
$$

Reproduces all previous exact solutions, and provides new ones for off-diagonal K-matrices

$$
\mathcal{O}(t)=\left\langle\Psi_{0}\right| e^{-s_{2} H} \mathcal{O} e^{-s_{1} H}\left|\Psi_{0}\right\rangle
$$

The Loschmidt amplitude - Non-analyticity

$\left|\Psi_{0}\right\rangle=|N\rangle, \Delta=0.5$

Eigenvalues

Open problems

- Non-analyticities in general
- What are integrable global quenches? Precise relations between boundaries and integrable initial states. Ghoshal-Zamolodchikov for lattice systems. Upcoming!
- Integrable MPS states (from AdS/CFT)
- Correlation functions!

Open problems

- Non-analyticities in general
- What are integrable global quenches?

Precise relations between boundaries and integrable initial states. Ghoshal-Zamolodchikov for lattice systems.
Upcoming!

- Integrable MPS states (from AdS/CFT)
- Correlation functions!

Open problems

- Non-analyticities in general
- What are integrable global quenches?

Precise relations between boundaries and integrable initial states. Ghoshal-Zamolodchikov for lattice systems.
Upcoming!

- Integrable MPS states (from AdS/CFT)
- Correlation functions!

Open problems

- Non-analyticities in general
- What are integrable global quenches?

Precise relations between boundaries and integrable initial states. Ghoshal-Zamolodchikov for lattice systems.
Upcoming!

- Integrable MPS states (from AdS/CFT)
- Correlation functions!

Thank you for the attention!

