Fractional quantum Hall effect Conformal Field Theory and Matrix Product States

Benoit Estienne (LPTHE, Paris)

Exact methods in low dimensional statistical physics
Cargèse
(1) Integer quantum Hall effect

- Landau levels
(2) Fractional quantum Hall effect
- Laughlin state
(3) The chiral boson
- and the Laughlin state
(4) Conformal field theory...
- as an ansatz for FQH states
(5) Matrix Product States

Integer quantum Hall effect

Classical Hall effect

Hall effect: a 2D electron gas in a perpendicular magnetic field.
\Rightarrow current \perp voltage
\& transverse resistivity $\rho_{x y} \propto B$

$$
\vec{r}=\vec{R}+\vec{\eta}
$$

R_{μ} : guiding center No electric field :

$$
\dot{R}_{\mu}=0
$$

With electric field

$$
\omega_{c} \dot{R}_{\mu}=\epsilon_{\mu \nu} E_{\nu}
$$

Cyclotron motion at frequency

$$
\omega_{c}=\frac{|e B|}{m}
$$

Electron classical equation of motion :

- $\vec{\eta}$: fast cyclotron motion $\left(\omega_{c}\right)$
- \vec{R} : slow drift along equipotentials

Integer Quantum Hall effect (IQHE)

At low temperature and high magnetic field however : $\rho_{x y}$ is no longer linear in B (plateaux)!

IQHE : von Klitzing (1980)

Quantized Hall conductance

$$
\sigma_{x y}=\nu \frac{e^{2}}{h}
$$

ν is an integer up to $O\left(10^{-9}\right)$ Used in metrology

This is a manifestation of quantum mechanics on macroscopic scales!!

A single electron in 2D and in a \perp magnetic field B.
Uniform \perp magnetic field : gauge choice

$$
H=\frac{1}{2 m}(\vec{p}-e \vec{A})^{2}, \quad \vec{A}=\frac{B}{2}\binom{-y}{x}
$$

$$
H=\frac{1}{2 m}\left(-i \hbar \frac{\partial}{\partial x}+\frac{e B}{2} y\right)^{2}+\frac{1}{2 m}\left(-i \hbar \frac{\partial}{\partial y}-\frac{e B}{2} x\right)^{2}
$$

- energy scale cyclotron frequency $\omega_{c}=\frac{|e B|}{m}$,
- length scale : magnetic length $I_{B}=\sqrt{\frac{\hbar}{|e B|}}$

$$
H=\frac{1}{2} \hbar \omega_{C}\left[\left(-i I_{B} \frac{\partial}{\partial x}+\frac{y}{2 I_{B}}\right)^{2}+\left(-i I_{B} \frac{\partial}{\partial y}-\frac{x}{2 I_{B}}\right)^{2}\right]
$$

Landau levels

In (dimensionless) complex coordinate $z=(x+i y) / I_{B}$, and setting

$$
a=\sqrt{2}\left(\frac{\partial}{\partial \bar{z}}+\frac{z}{2}\right), \quad a^{\dagger}=-\sqrt{2}\left(\frac{\partial}{\partial z}-\frac{\bar{z}}{2}\right)
$$

Familiar form of the Hamiltonian

$$
H=\hbar \omega_{c}\left(a^{\dagger} a+\frac{1}{2}\right) \quad\left[a, a^{\dagger}\right]=1
$$

$(N+1)^{\text {th }}$ Landau level :

$$
E_{N}=\hbar \omega_{c}\left(N+\frac{1}{2}\right)
$$

Discrete spectrum, large degeneracy (translation invariance/guiding center).

Lowest Landau Level ($N=0$)
Since $a=\sqrt{2}\left(\frac{\partial}{\partial \bar{z}}+\frac{z}{2}\right)$, ground states are of the form

$$
\Psi(z, \bar{z})=f(z) e^{-\frac{z \bar{z}}{4{ }_{2}^{\prime}}}
$$

with $f(z)$ is any holomorphic function ($\left.\partial_{\bar{z}} f=0\right)$.

$$
\Rightarrow \text { chirality }:(x, y) \rightarrow z=(x+i y)
$$

Ground states, a.k.a. Lowest Landau level (LLL) states

$$
\Psi(x, y)=f(x+i y) e^{-\left(x^{2}+y^{2}\right) /\left.4\right|_{B} ^{2}}
$$

Projection to the LLL : x and y no longer commute $[\hat{x}, \hat{y}]=i l_{B}^{2}$

$$
\Delta_{x} \Delta_{y} \geq I_{B}^{2} / 2
$$

\Rightarrow each electron occupies an area $\left.2 \pi\right|_{B} ^{2}$ magnetic flux through this area $=$ quantum of flux $\Phi=h / e$

LLL degeneracy \sim number N_{Φ} of flux quanta through the surface

Magnetic translations

translation invariance : \vec{x} and $\vec{x}+\vec{u}$ are equivalent
up to a gauge transformation (since $\vec{A}=\vec{A}(x, y)$)

$$
\vec{A} \rightarrow \vec{A}+\vec{\nabla} \Lambda \quad \text { and } \quad \Psi \rightarrow \tilde{\Psi}=e^{i \Lambda} \Psi
$$

Magnetic translations
$T(\vec{u})=\exp [\vec{u} .(\vec{\nabla}-i \vec{A})-i \vec{u} \times \vec{r}]$
Aharonov-Bohm effect :

$$
T_{\vec{u}} T_{\vec{v}}=e^{i \frac{\vec{u} \Lambda \vec{v}}{l} l_{B}^{2}} T_{\vec{v}} T_{\vec{u}}
$$

Infinitesimal generators of translations commute with H, but

$$
\left[t_{x}, t_{y}\right]=-i \neq 0
$$

Cylinder with perimeter L (we identify $y \equiv y+L$)

Natural gauge choice : $\vec{A}=B\binom{0}{x}$

$$
t_{y}\left|\Psi_{k_{y}}\right\rangle=k_{y}\left|\Psi_{k_{y}}\right\rangle, \quad k_{y}=\frac{2 \pi n}{L}
$$

LLL

$$
\Psi_{k_{y}}(x, y)=e^{i y k_{y}} e^{-\frac{\left(x-I_{k}^{2} k y\right)^{2}}{22_{B}^{2}}}
$$

Momentum k_{y} and position x are locked :

$$
\left.x \sim\right|_{B} ^{2} k_{y}
$$

- $[\hat{x}, \hat{y}]=i l_{B}^{2}$ implies that $\hbar \hat{x}=l_{B}^{2} \hat{p}_{y}$.
- localized in \hat{x} and delocalized in \hat{y}
- the interorbital distance is $\left.\frac{2 \pi}{L}\right|_{B} ^{2}$

Density profile of the LLL orbital $\Psi_{k y}(x, y)$.

Projection to the LLL : dimensional reduction

Projection to the LLL : x and y no longer commute $[\hat{x}, \hat{y}]=\left.i\right|_{B} ^{2}$ (link with non-commutative geometry).

4 dimensional phase space $\Rightarrow 2$ dimensional phase space
A basis of LLL states

looks like a one-dimensional chain

But!
Physical short range interactions become long range in this description (distance of order I_{B} means $\sim L / I_{B}$ sites).

Landau problem on arbitrary surfaces

Lowest Landau Level on arbitrary surface :

The magnetic flux has to be quantized $\int d^{2} \times B=N_{\Phi} \frac{h}{e}$, with N_{Φ} integer.
The ground state degeneracy on a surface of genus g is

$$
N_{\Phi}+(1-g)
$$

provided N_{ϕ} is not too small, namely $N_{\phi}>2 g-2$.

- it depends on the topology (genus).
- it does NOT depend on the geometry (metric)

For instance on the torus: boundary conditions

- The (flat) torus is

$$
\mathbb{T}^{2}=\mathbb{C} /\left(L_{1}+e^{i \theta} L_{2}\right) \mathbb{Z}
$$

- Boundary conditions

$$
T\left(\vec{L}_{\alpha}\right)|\Psi\rangle=e^{i \phi_{\alpha}}|\Psi\rangle, \quad \alpha=1,2
$$

ϕ_{α} : solenoid fluxes passing through the torus cycles.

- Consistency of two b.c. requires quantized magnetic field

$$
\left[T\left(\vec{L}_{1}\right), T\left(\vec{L}_{2}\right)\right]=0 \quad \Leftrightarrow \quad\left|\vec{L}_{1} \times \vec{L}_{2}\right|=2 \pi N_{\Phi}, \quad N_{\Phi} \in \mathbb{Z}
$$

- discrete translations $T(\vec{u})$ with

$$
\vec{u}=\frac{n}{N_{\Phi}} \vec{L}_{1}+\frac{m}{N_{\Phi}} \vec{L}_{2}
$$

Let's work in the Landau gauge $\vec{A}=(-y, 0)$.

$$
\Psi(x, y)=e^{-y^{2} / 2} f(w)
$$

where f has boundary conditions

$$
f\left(w+L_{1}\right)=e^{i \phi_{1}} f(w), \quad f\left(w+e^{i \theta} L_{2}\right)=e^{i \phi_{2}} e^{-i 2 \pi N_{\phi}\left(\frac{w}{L_{1}}+\frac{\tau}{2}\right)} f(w)
$$

(holomophic sections of degree N_{ϕ})

$$
\text { where } \quad N_{\Phi}=\frac{L_{1} L_{2} \sin \theta}{2 \pi}, \quad \tau=\frac{L_{2}}{L_{1}} e^{i \theta}
$$

The number of independent solutions is N_{ϕ}, for instance

$$
f_{m}(w)=\frac{1}{\sqrt{L_{1} \sqrt{\pi}}} \vartheta\left[\begin{array}{c}
\frac{m}{N_{\Phi}}+\frac{\phi_{1}}{2 \pi N_{\Phi}} \\
-\frac{\phi_{2}}{2 \pi}
\end{array}\right]\left(\left.N_{\Phi} \frac{w}{L_{1}} \right\rvert\, N_{\Phi} \tau\right)
$$

Integer quantum Hall effect

a band insulator

The IQHE : bulk insulator

Cartoon picture : no interactions, no disorder

How come we have $I \propto V$ then ?

The IQHE : conducting edges

\Rightarrow Conducting edges

each channel contributes e^{2} / h to the Hall conductance

$$
\sigma_{x y}=\nu \frac{e^{2}}{h}
$$

Chiral (and therefore protected) massless edges

Topological insulator

This quantization is insensitive to disorder or strong periodic potential :

topological invariant : the Chern number

Disclaimer : this is just a cartoon picture. Does not explain plateaux.

Fractional filling the many-body problem

FQHE trial wavefunctions

Fractional filling : the role of electron-electron interactions

Partially filled band \Rightarrow conventional metallic (i.e. gapless) bulk.
Yet, experimentally, emergence of exotic gapped states :

- insulating bulk,
- metallic chiral edge modes,
- bulk excitations with fractional charges.

How is this possible? thanks to electron-electron interaction

Technical problem : the interaction cannot be treated perturbatively.
N fermions in N_{Φ} states \Rightarrow macroscopic degeneracy $\binom{N_{\phi}}{N}$.

So what can we do?

Numerics (e.g. exact diagonalization), effective field theories (theories of anyons), model wavefunctions.

What are model states/wave functions?

- Typically an idealized hamiltonian/interaction for which the ground state, quasihole, and edge excitations can be found exactly (as zero energy states)
- They are highly fine tuned and non-generic similar to integrable vs generic systems (for instance they minimize quantum entanglement)
- A model state is merely a representative of a universality class characterised by some quantum numbers/symmetries (topological order).

The mother of all trial wave functions

The $\nu=1 / 3$ Laughlin state.
filling fraction $\nu=1 / 3+$ short range model interaction \Rightarrow exact ground-state :

$$
\Psi_{\frac{1}{3}}\left(z_{1}, \cdots, z_{N}\right)=\prod_{i<j}\left(z_{i}-z_{j}\right)^{3} e^{-\sum_{i}\left|z_{i}\right|^{2} /\left.4\right|_{B} ^{2}}
$$

The model interaction is the short range part of Coulomb.

Extremely high overlap with Coulomb interaction ! (obtained by exact diagonalization)

First hints of a topological phase :

- excitations with fractional charge $e / 3$
- topology dependent ground state degeneracy : 3^{g} exact ground states.

Cartoon picture: thin cylinder limit $\left(L \ll I_{B}\right)$

Very small cylinder perimeter L: LLL orbitals no longer overlap 1d problem

Laughlin's Hamiltonian \rightarrow Haldane's exclusion statistics no more than 1 particle in three orbitals

At filling fraction $\nu=1 / 3$, we get three possible states

$$
\begin{aligned}
\left|\Psi_{1}\right\rangle & =|\cdots 100100100 \cdots\rangle \\
\left|\Psi_{2}\right\rangle & =|\cdots 010010010 \cdots\rangle \\
\left|\Psi_{3}\right\rangle & =|\cdots 001001001 \cdots\rangle
\end{aligned}
$$

3 -fold degenerate ground state on the cylinder (and torus).

Bulk excitations/defects : anyons

Adiabatic insertion of a flux quantum at position w

 creates a hole in the electronic liquid :$$
\Psi_{w}=\prod_{i}\left(w-z_{i}\right) \prod_{i<j}\left(z_{i}-z_{j}\right)^{3}
$$

Cartoon picture: $|\cdots 1001000100 \cdots\rangle$

Electronic density around a quasihole (N. Regnault)
fractionalization : the missing electronic charge is e/3 these excitations are called quasi-holes.

under adiabatic exchange of two quasi-holes
\Rightarrow phase $e^{2 i \pi / 3}$
non trivial braiding !
\Rightarrow quasi-holes $=$ abelian anyons

Anyons of the $\nu=1 / m$ Laughlin state

- There are m types of quasi-holes/anyons

$$
\Psi_{w}=\prod_{i}\left(w-z_{i}\right)^{a} \prod_{i<j}\left(z_{i}-z_{j}\right)^{m}, \quad a=0, \cdots, m-1
$$

Indeed a is defined $\bmod m$ ($a=m$ is simply a hole, i.e. a missing electron).

- Two anyons at positions w_{1} and w_{2} can be fused ($w_{1} \rightarrow w_{2}$)

$$
\Psi_{w_{1}, w_{2}}=\prod_{i}\left(w_{1}-z_{i}\right)^{a}\left(w_{2}-z_{i}\right)^{b} \prod_{i<j}\left(z_{i}-z_{j}\right)^{m}
$$

fusion rules :

$$
a \times b=\sum_{c} N_{a b}^{c} c, \quad N_{a b}^{c}=\delta_{a+b, c \bmod m}
$$

- Braiding anyons of type a and b gives a phase $e^{\frac{2 i \pi}{m} a b}$ (plasma argument).

Laughlin $\nu=1 / m$ on the torus
The vanishing properties as $z_{i} \rightarrow z_{j}$ dictate

$$
\Psi\left(z_{1}, \cdots, z_{N}\right)=F(Z) \prod_{i<j} \theta_{1}\left(\left.\frac{z_{i}-z_{j}}{L_{1}} \right\rvert\, \tau\right)^{m}
$$

where $Z=\sum_{i} z_{i}$ is the center of mass. We recover the correct b.c. iff

$$
\begin{aligned}
F\left(Z+L_{1}\right) & =(-1)^{(N-1) m} e^{i \phi_{1}} F(Z), \\
F\left(Z+L_{2} e^{i \theta}\right) & =(-1)^{(N-1) m} e^{i \phi_{2}} e^{-i 2 \pi m\left(\frac{Z}{L_{1}}+\frac{\tau}{2}\right)} F(Z)
\end{aligned}
$$

m ground-states on the torus

$$
\Psi_{a}\left(z_{1}, \cdots, z_{N}\right)=\vartheta\left[\begin{array}{c}
\frac{a}{m}+\frac{\phi_{1}}{2 \pi m}+\frac{N-1}{2} \\
-\frac{\phi_{2}}{2 \pi}-\frac{m(N-1)}{2}
\end{array}\right]\left(\left.m \frac{Z}{L_{1}} \right\rvert\, m \tau\right) \prod_{i<j} \theta_{1}\left(\left.\frac{z_{i}-z_{j}}{L_{1}} \right\rvert\, \tau\right)^{m}
$$

Metallic boundary : massless edge modes

$$
\Psi_{u}=P_{u}\left(z_{1}, \cdots, z_{N}\right) \prod_{i<j}\left(z_{i}-z_{j}\right)^{3}
$$

where P_{u} is any symmetric, homogeneous polynomial.
Cartoon picture : no more than 1 electron in 3 orbitals.

- dispersion relation : $E \propto P$ chiral and gapless edge
- Number of edge states:
- $E=0: 1$ state
- $E=1: 1$ state
- $E=2: 2$ states
- $E=3: 3$ states
- $E=4: 5$ states
- $E=5: 7$ states

spectrum of a massless chiral boson.

Metallic boundary : massless edge modes

$$
\Psi_{u}=P_{u} \prod_{i<j}\left(z_{i}-z_{j}\right)^{3}
$$

where P_{u} is any symmetric, homogeneous polynomial.
Cartoon picture : no more than 1 electron in 3 orbitals.

- dispersion relation : $E \propto P$ chiral and gapless edge
- Number of edge states :

spectrum of massless chiral boson.

Entanglement entropy

Cut the system in two parts A and B (the boundary has length L)

The entanglement entropy is

$$
S_{A}=-\operatorname{Tr}\left(\rho_{A} \log \rho_{A}\right)
$$

with ρ_{A} the reduced density matrix.

For a topological phase :

$$
S_{A} \sim \alpha L-\log \mathcal{D}
$$

where \mathcal{D} is the quantum dimension.

Entanglement entropy of the $\nu=1 / 3$ Laughlin state as a function of the cylinder perimeter L
(N. Regnault)

For $\nu=1 / 3$ Laughlin : $\mathcal{D}=\sqrt{3}$

Entanglement spectrum

Schmidt decomposition

$$
\begin{aligned}
|\Psi\rangle & =\sum_{\alpha} \exp \left(-\xi_{\alpha} / 2\right)|A, \alpha\rangle \otimes|B, \alpha\rangle \\
\rho_{a} & =\sum_{\alpha} \exp \left(-\xi_{\alpha}\right)|A, \alpha\rangle\langle A, \alpha|
\end{aligned}
$$

Entanglement spectrum

Li and Haldane (2008) : spectrum of $\xi=-\log \rho_{A}$ (plot ξ vs momentum)
\Rightarrow Reproduces the physical edge spectrum!

Entanglement spectrum of the $\nu=1 / 3$ Laughlin state on the sphere

Chiral boson and Laughlin

 using the edge theory to describe the bulkThe free boson a.k.a. U(1) CFT
Massless gaussian field in $1+1$ dimensions

$$
S=\int \mathrm{d}^{2} z \partial \phi \bar{\partial} \phi
$$

The mode decomposition of the chiral free boson is

$$
\phi(z)=\boldsymbol{\Phi}_{0}-i \mathbf{a}_{\mathbf{0}} \log (z)+i \sum_{n \neq 0} \frac{1}{n} \mathbf{a}_{\mathbf{n}} z^{-n}
$$

$$
\left[\mathbf{a}_{\mathbf{n}}, \mathbf{a}_{\mathbf{m}}\right]=n \delta_{n+m, 0}, \quad\left[\boldsymbol{\Phi}_{0}, \mathbf{a}_{0}\right]=i
$$

$U(1)$ symmetry : $\phi(z) \rightarrow \phi(z)+\theta$
conserved current :

$$
J(z)=i \partial \phi(z)=\sum_{n} a_{n} z^{-n-1}
$$

Vertex operators :

$$
V_{Q}(z)=: e^{i Q \varphi(z)}:=\exp \left(Q \sum_{n>0} \frac{a_{-n}}{n} z^{n}\right) \exp \left(-Q \sum_{n>0} \frac{a_{n}}{n} z^{-n}\right) e^{i Q \varphi_{0}} z^{Q a_{0}}
$$

Primary states/ vacua $|Q\rangle$ are defined by their $U(1)$ charge $Q \in \frac{1}{\sqrt{3}} \mathbb{Z}$

$$
a_{0}|Q\rangle=Q|Q\rangle, \quad a_{n}|Q\rangle=0 \text { for } n>0
$$

The Hilbert space is simply a Fock space
Descendants are obtained with the lowering operators $a_{n}^{\dagger}=a_{-n}, n>0$

- $\Delta E=0: 1$ state $:|Q\rangle$
- $\Delta E=1: 1$ state $: a_{-1}|Q\rangle$
- $\Delta E=2: 2$ states : $a_{-1}^{2}|Q\rangle, a_{-2}|Q\rangle$
- $\Delta E=3: 3$ states $: a_{-1}^{3}|Q\rangle, a_{-2} a_{-1}|Q\rangle, a_{-3}|Q\rangle$
- $\Delta E=4: 5$ states : $a_{-1}^{4}|Q\rangle, a_{-2} a_{-1}^{2}|Q\rangle, a_{-2}^{2}|Q\rangle, a_{-3} a_{-1}|Q\rangle, a_{-4}|Q\rangle$
- $\Delta E=5: 7$ states :

The Laughlin state written in terms of a $U(1)$ CFT

Ground state wavefunction

$$
\prod_{i}\left(z_{i}-z_{j}\right)^{m}=\langle 0| \mathcal{O}_{\text {b.c. }} V\left(z_{1}\right) \cdots V\left(z_{N}\right)|0\rangle, \quad V(z)=: e^{i \sqrt{m} \varphi(z)}:
$$

where $\mathcal{O}_{\text {b.c. }}=e^{-i \sqrt{m} N \varphi_{0}}$ is just a neutralizing background charge.

Bulk excitations

Wavefunction for p quasiholes
$\left\langle\mathcal{O}_{\text {b.c. }} . V_{\mathrm{qh}}\left(w_{1}\right) \cdots V_{\mathrm{qh}}\left(w_{p}\right) V\left(z_{1}\right) \cdots V\left(z_{N}\right)\right\rangle$
with

$$
V_{\mathrm{qh}}(w)=: e^{\frac{i}{\sqrt{m}} \varphi(w)}:
$$

Edge excitations

$$
\Psi_{u}=\langle u| \mathcal{O}_{\text {b.c. }} V\left(z_{1}\right) \cdots V\left(z_{N}\right)|0\rangle
$$

- edge mode $=$ CFT descendant
- we recover $1,1,2,3,5,7, \ldots$

Laughlin's anyons

- The Hilbert space splits into m anyon sectors

$$
\mathcal{H}=\bigoplus_{a=0}^{m-1} \mathcal{H}_{a} \quad \mathcal{H}_{a}=\{\text { states with } \sqrt{m} Q=a \bmod m\}
$$

- Anyon of type a :

$$
\Psi_{w}=\prod_{i}\left(w-z_{i}\right)^{a} \prod_{i<j}\left(z_{i}-z_{j}\right)^{m}, \quad \Phi_{a}(w)=: e^{\frac{i d}{\sqrt{m}} \varphi(w)}:
$$

- Fusion rules

$$
\text { fusion rules : } \quad a \times b=\sum_{c} N_{a b}^{c} c, \quad N_{a b}^{c}=\delta_{a+b, c}
$$

- m torus conformal blocks

$$
\Psi_{a}\left(z_{1}, \cdots, z_{N}\right)=\operatorname{Tr}_{\mathcal{H}_{a}}\left(e^{i 2 \pi \tau L_{0}-i \sqrt{\nu} N_{\Phi} \varphi_{0}} V\left(z_{1}\right) \cdots V\left(z_{N}\right)\right)
$$

Laughlin's edge modes

$$
\Psi_{u}=\langle u| \mathcal{O}_{\text {b.c. }} V\left(z_{1}\right) \cdots V\left(z_{N}\right)|0\rangle=P_{u}\left(z_{1}, \cdots, z_{N}\right) \prod_{i<j}\left(z_{i}-z_{j}\right)^{m}
$$

At level 0

- $\langle 0| \mathcal{O}_{\text {b.c. }} V\left(z_{1}\right) \cdots V\left(z_{N}\right)|0\rangle=1 \prod_{i<j}\left(z_{i}-z_{j}\right)^{m}$

At level 1

- $\langle 0| a_{1} \mathcal{O}_{\text {b.c. }} V\left(z_{1}\right) \cdots V\left(z_{N}\right)|0\rangle \propto \sum_{i} z_{i} \prod_{i<j}\left(z_{i}-z_{j}\right)^{m}$

At level 2

- $\langle 0| a_{1}^{2} \mathcal{O}_{\text {b.c. }} V\left(z_{1}\right) \cdots V\left(z_{N}\right)|0\rangle \propto\left(\sum_{i} z_{i}\right)^{2} \prod_{i<j}\left(z_{i}-z_{j}\right)^{m}$
- $\langle 0| a_{2} \mathcal{O}_{\text {b.c. }} V\left(z_{1}\right) \cdots V\left(z_{N}\right)|0\rangle \propto\left(\sum_{i} z_{i}^{2}\right) \prod_{i<j}\left(z_{i}-z_{j}\right)^{m}$

At level 3

One-to-one map between edge modes and CFT states

Conformal field theories (CFT)

CFT $=$ Quantum Field Theory + conformal invariance

conformal $=$ angle preserving

$$
z \rightarrow f(z)=\sum_{n} f_{n} z^{n}
$$

业

Symmetry generators $\left\{L_{n}, n \in \mathbb{Z}\right\}$
$\left[L_{n}, L_{m}\right]=(n-m) L_{n+m}+\frac{c}{12} n\left(n^{2}-1\right) \delta_{n+m, 0}$
In particular L_{0} generates dilatations.
conformal invariance comes from criticality.

- 2D classical stat mech models : scale invariance
- $1+1$ quantum models : masslessness

FQH model wave-function from CFT

Moore and Read (1990) proposed to write FQH model wavefunctions as CFT conformal blocks

$$
\Psi_{\alpha}\left(z_{1}, \cdots, z_{N}\right)=\left\langle V\left(z_{1}\right) \cdots V\left(z_{N}\right) \Phi_{a_{1}}\left(w_{1}\right) \cdots \Phi_{a_{p}}\left(w_{p}\right)\right\rangle_{\alpha} e^{-\frac{1}{\left.4\right|_{B} ^{2}} \sum_{i}\left|z_{i}\right|^{2}}
$$

with quasihole of type a_{i} at position w_{i}. α labels the different conformal blocks.

Underlying idea :

Universality classes of FQH states are to be distinguished solely by

- the quantum numbers of the ground state and excitations
- by the braiding and fusion algebras;
in other words by the corresponding CFT.
This construction yields consistent anyon models (a.k.a. modular tensor categories)

Constraints on the CFT

- $\left\langle V\left(z_{1}\right) \cdots V\left(z_{N}\right) \Phi_{a_{1}}\left(w_{1}\right) \cdots \Phi_{a_{p}}\left(w_{p}\right)\right\rangle_{\alpha}$ must be (anti-)symmetric in z_{i}
$\Rightarrow V(z)$ must be bosonic or fermionic.
- $\left\langle V\left(z_{1}\right) \cdots V\left(z_{N}\right) \Phi_{a_{1}}\left(w_{1}\right) \cdots \Phi_{a_{p}}\left(w_{p}\right)\right\rangle_{\alpha}$ must be a polynomial in z_{i}
$V(z)$ must be mutually local w.r.t. all fields $\Rightarrow V(z)$ is a chiral current generating an extended chiral algebra
- Charge conservation and density excitations
\Rightarrow the extended chiral algebra must contain a $\mathrm{U}(1)$ current $J=i \partial \varphi$
$V(z)$ is assumed to be of the form $V(z)=\Psi(z) \otimes: \exp \left(i \frac{1}{\sqrt{\nu}} \varphi(z)\right)$:
- Finitely many anyon types/ finite ground-state degeneracy on the torus
\Rightarrow the CFT must be rational w.r.t. the extended chiral algebra

A few examples

- $\mathrm{U}(1) \quad \underline{\nu} \quad \underline{1 / m}$ Laughlin state $\quad V(z)=: e^{i \sqrt{m} \varphi(z)}:$

$$
\Psi_{\text {ground-state }}=\prod_{i<j}\left(z_{i}-z_{j}\right)^{m}
$$

- $\mathrm{SU}(2)_{2}$
(bosonic) Moore-Read state $V(z)=\Psi(z) \otimes: e^{i \varphi(z)}$:

$$
\Psi_{\text {ground-state }}=\operatorname{Pf}\left(\frac{1}{z_{i}-z_{j}}\right) \prod_{i<j}\left(z_{i}-z_{j}\right)
$$

- $\mathrm{SU}(2)_{k} \quad$ (bosonic) Read-Rezayi state

$$
V(z)=J^{+}(z)=\Psi_{1}(z) \otimes: e^{i \sqrt{2 / k} \varphi(z)}:
$$

$\Psi_{\text {ground-state }}=$ some complicated (Jack) polynomial

$\nu=1$ bosonic Moore-Read state $\left(\mathrm{SU}(2)_{2}=\mathbb{Z}_{2} \otimes U(1)\right)$

- 3 anyon types: $0,1, \sigma$, with corresponding fields
- a trivial quasi-hole $\Phi_{0}=1(\operatorname{spin} 0)$
- an abelian quasi-hole $\Phi_{1}=: e^{i \sqrt{\varphi}}$: (spin 1)
- a non-abelian quasi-hole $\Phi_{\sigma}=\sigma \otimes: e^{i \frac{1}{2} \sqrt{\varphi}}:(\operatorname{spin} 1 / 2)$
- fusion rules : $0 \times a=a, 1 \times \sigma=\sigma$ and $\sigma \times \sigma=0+1$
- Expected non-abelian braiding!

$$
\langle\sigma(\infty) \sigma(1) \sigma(w) \sigma(0)\rangle_{ \pm}=\frac{(1 \pm \sqrt{1-w})^{1 / 2}}{\sqrt{2}(w(1-w))^{1 / 8}}
$$

- Exclusion principle : no more than 2 particles in 2 consecutive orbitals
- 3 ground-states on the torus : $\cdot \cdots 2020 \cdots, \cdots 0202 \cdots$ and $\cdots 1111 \cdots$

What about the torus?

Holomorphic is no longer sufficient, we need the correct b.c.

$$
f(z+1)=f(z), \quad f(z+\tau)=e^{-i 2 \pi N_{\Phi}\left(z+\frac{\tau}{2}\right)} f(z)
$$

Answer (for bosons) :

$$
\Psi_{a}\left(z_{1}, \cdots, z_{N}\right)=\operatorname{Tr}_{\mathcal{H}_{a}}\left(e^{i 2 \pi \tau L_{0}-i \sqrt{\nu} N_{\Phi} \varphi_{0}} V\left(z_{1}\right) \cdots V\left(z_{N}\right)\right)
$$

easy to check using (setting $q=e^{2 i \pi \tau}$ and $w=e^{2 i \pi z}$)

$$
\begin{aligned}
q^{L_{0}} V(w)= & V(q w) q^{L_{0}}, \quad \beta^{\sqrt{\nu} a_{0}} V(w)=\beta V(w) \beta^{\sqrt{\nu} a_{0}} \\
& e^{-i \sqrt{\nu} N_{\Phi} \varphi_{0}} V(w)=w^{N_{\Phi}} V(w) e^{-i \sqrt{\nu} N_{\Phi} \varphi_{0}}
\end{aligned}
$$

RCFT \rightarrow finitely many conformal blocks on the torus degeneracy $=$ number of anyon types Topological sectors \leftrightarrow primary fields Φ_{a}

Model wavefunctions from CFT

Extrapolating the thermodynamic limit of these model states is difficult.

- Gapped?
- Well-defined quasi-holes?
- Non-Abelian braiding?
- Area law for the entanglement entropy?
- Entanglement spectrum?
- Quantum dimensions?
- etc...

The natural conjecture is that they are described by the anyon model (TQFT) corresponding to the underlying CFT.

Matrix Product State (MPS)

Limitations of exact diagonalizations and model wf

\rightarrow decomposition of a state $|\Psi\rangle$ on a convenient occupation basis

$$
|\Psi\rangle=\sum_{\left\{m_{i}\right\}} c_{\left\{m_{i}\right\}}\left|m_{1}, \ldots, m_{N_{\Phi}}\right\rangle
$$

What is the amount of memory needed to store the Laughlin state?

Can't store more than 21 particles!

Matrix Product State : more compact and computationally friendly

Matrix Product States

$$
|\Psi\rangle=\sum_{\left\{m_{i}\right\}} c_{\left\{m_{i}\right\}}\left|m_{1}, \ldots, m_{N_{\Phi}}\right\rangle
$$

replaced by

$$
|\Psi\rangle=\sum_{\left\{m_{i}\right\}}\left(\langle u| A^{\left[m_{1}\right]} \ldots A^{\left[m_{n}\right]}|v\rangle\right)\left|m_{1}, \ldots, m_{n}\right\rangle
$$

Why is this formalism interesting?
Many quantities (correlation functions, entanglement spectrum, ...) can be computed in the (relatively small) auxiliary space.

Tensor Networks diagrams

(a)
(b)
scalar
(c) matrix
(d) rank-3 tensor

Contraction of indices $=$ gluing links

(a) Scalar product

(b) Matrix product

(c) Trace of the product of 6 matrices

MPS transfer matrix

$$
|\Psi\rangle=\sum_{\left\{m_{i}\right\}}\left(\langle u| A^{\left[m_{1}\right]} \ldots A^{\left[m_{n}\right]}|v\rangle\right)\left|m_{1}, \ldots, m_{n}\right\rangle
$$

MPS matrices $A_{i i^{\prime}}^{[\alpha]}$

$$
\langle u| A^{\left[m_{1}\right]} \ldots A^{\left[m_{n}\right]}|v\rangle
$$

overlap $\langle\Psi \mid \Psi\rangle$

MPS transfer matrix

Everything can be computed in terms of

$$
E_{I}=\sum_{m} A^{[m]} \otimes \bar{A}^{[m]}
$$

For instance the overlap for N sites

now reads

$$
\langle\Psi \mid \Psi\rangle=\langle u, u| E_{l}^{N}|v, v\rangle \sim \lambda_{1}^{N}
$$

We can work on the infinite cylinder! for the FQHE : this means infinitely many electrons...

Correlation functions

$$
C(r)=\left\langle O(r) O^{\prime}(0)\right\rangle-\langle O\rangle\left\langle O^{\prime}\right\rangle
$$

On the infinite cylinder :

$$
C(r)=\langle G S| \mathcal{O}^{\prime} E^{r} \mathcal{O}|G S\rangle-\langle G S| \mathcal{O}^{\prime}|G S\rangle\langle G S| \mathcal{O}|G S\rangle \sim\left(\frac{\lambda_{2}}{\lambda_{1}}\right)^{r}
$$

Where does this MPS come from?

CFT : operator picture

From the $1+1 \mathrm{D}$ perspective : cylinder of perimeter L.

$$
\begin{aligned}
& \left\langle\phi_{1}\left(x_{1}, t_{1}\right) \phi_{2}\left(x_{2}, t_{2}\right) \cdots \phi_{n}\left(x_{n}, t_{n}\right)\right\rangle= \\
& \langle 0| \hat{\phi}_{n}\left(x_{n}\right) \cdots \hat{\phi}_{3}\left(x_{3}\right) e^{-\hat{H}\left(t_{3}-t_{2}\right)} \hat{\phi}_{2}\left(x_{2}\right) e^{-\hat{H}\left(t_{2}-t_{1}\right)} \hat{\phi}_{1}\left(x_{1}\right) e^{-\hat{H} t_{1}}|0\rangle
\end{aligned}
$$

Dilatations on the plane become translations in the time direction :

$$
\hat{H} \sim \frac{2 \pi}{L} L_{0}
$$

The CFT ansatz $\Psi\left(z_{1}, \cdots, z_{n}\right)=\langle u| V\left(z_{1}\right) \cdots V\left(z_{n}\right)|v\rangle$ is a continuous MPS

Translation invariant MPS

$$
|\Psi\rangle=\sum_{\left\{m_{i}\right\}}\left(\langle u| B^{\left[m_{1}\right]} B^{\left[m_{2}\right]} \cdots B^{\left[m_{n}\right]}|v\rangle\right)\left|m_{1} \cdots m_{n}\right\rangle
$$

- the matrices $B^{[m]}$ are operators in the underlying CFT
- the auxiliary space is the (infinite dimensional) CFT Hilbert space ...
- ... which can be truncated while keeping arbitrary large precision

Starting from a model wavefunction given by a CFT correlator

$$
\Psi\left(z_{1}, \cdots, z_{N}\right)=\langle u| \mathcal{O}_{\text {b.c. }} V\left(z_{1}\right) \cdots V\left(z_{N}\right)|v\rangle
$$

and expanding $V(z)=\sum_{n} V_{-n} z^{n}$, one finds (up to orbital normalization)

$$
c_{\left(m_{1}, \cdots, m_{n}\right)}=\langle u| \mathcal{O}_{\text {b.c. }} \frac{1}{\sqrt{m_{n}!}} V_{-n}^{m_{n}} \cdots \frac{1}{\sqrt{m_{2}!}} V_{-2}^{m_{2}} \frac{1}{\sqrt{m_{1}!}} V_{-1}^{m_{1}}|v\rangle
$$

This is a site/orbital dependent MPS

$$
c_{\left(m_{1}, \cdots, m_{n}\right)}=\langle u| \mathcal{O}_{\text {b.c. }} B^{\left[m_{n}\right]}(n) \cdots B^{\left[m_{2}\right]}(2) B^{\left[m_{1}\right]}(1)|v\rangle
$$

with matrices at site/orbital j (including orbital normalization)

$$
B^{[m]}(j)=\frac{e^{\left(\frac{2 \pi}{L} j\right)^{2}}}{\sqrt{m!}}\left(V_{-j}\right)^{m}
$$

Translation invariant MPS

A relation of the form $B^{[m]}(j)=U^{-1} B^{[m]}(j-1) U$ yields

$$
B^{[m]}(j)=U^{-j} B^{[m]}(0) U^{j}
$$

and then

$$
B^{\left[m_{n}\right]}(n) \cdots B^{\left[m_{1}\right]}(1)=U^{-n} \times B^{\left[m_{n}\right]}(0) U \cdots B^{\left[m_{1}\right]}(0) U
$$

This is a translation invariant MPS, with matrices

$$
A^{[m]}=B^{[m]}(0) U
$$

Translation invariant MPS on the cylinder

Site independant MPS

$$
B^{[m]}(j)=\frac{e^{\left(\frac{2 \pi}{L}\right)^{2}}}{\sqrt{m!}}\left(V_{-j}\right)^{m} \quad \Rightarrow \quad A^{[m]}=\frac{1}{\sqrt{m!}}\left(V_{0}\right)^{m} U
$$

where U is the operator

$$
U=e^{-\frac{2 \pi}{L} H-i \sqrt{\nu} \varphi_{0}}
$$

where

- φ_{0} is the bosonic zero mode ($e^{-i \sqrt{\nu} \varphi_{0}}$ shifts the electric charge by ν)
- H is the cylinder Hamiltonian : $H=\frac{2 \pi}{L} L_{0}$
- V_{0} is the zero mode of $V(z)$
auxiliary space $=$ CFT Hilbert space infinite bond dimension :/

Truncation of the auxiliary space

The auxiliary space (i.e. the CFT Hilbert space) basis is graded by the conformal dimension Δ_{α}.

$$
L_{0}|\alpha\rangle=\Delta_{\alpha}|\alpha\rangle
$$

But in the MPS matrices we have a term

$$
A^{[m]}=\frac{1}{\sqrt{m!}}\left(V_{0}\right)^{m} e^{-\frac{i}{\sqrt{\nu}} \varphi_{0}} e^{-\left(\frac{2 \pi}{L}\right)^{2} L_{0}}
$$

The conformal dimension provides a natural cut-off.
Truncation parameter P : keep only states with $\Delta_{\alpha} \leq P$.

- $P=0$ recovers the thin-cylinder limit $|\cdots 100100100 \cdots\rangle$
- The correct 2d physics requires $L \gg$ bulk correlation length ζ
- For a cylinder perimeter L, we must take $P \sim L^{2}$
- Bond dimension $\chi \sim e^{\alpha L}$
\cdots of course! since $S_{A} \sim \alpha L$.

What about the torus?

CFT ansatz : ground state $|\Psi\rangle_{a}$

$$
\Psi_{a}\left(z_{1}, \cdots, z_{N}\right)=\operatorname{Tr}_{a}\left(e^{i 2 \pi \tau L_{0}-i \sqrt{\nu} N \varphi_{0}} V\left(z_{1}\right) \cdots V\left(z_{N}\right)\right)
$$

becomes

$$
|\Psi\rangle_{a}=\sum_{\left\{m_{i}\right\}} \operatorname{Tr}_{a}\left(e^{i \pi(N-1) \sqrt{\nu} a_{0}} A^{\left[m_{n}\right]} \ldots A^{\left[m_{1}\right]}\right)\left|m_{1}, \cdots, m_{n}\right\rangle
$$

where the blue term is only present for fermions (ensures antisymmetry). The MPS matrices are

$$
A^{[m]}=q^{\frac{L_{0}}{2 n}} e^{-i \frac{\sqrt{\nu}}{2} \varphi_{0}} \frac{1}{\sqrt{m!}} V_{0}^{m} e^{-i \frac{\sqrt{\nu}}{2}} \varphi_{0} q^{\frac{L_{0}}{2 n}}, \quad q=e^{2 i \pi \tau}
$$

Again χ grows exponentially with torus thickness.

Matrix Product States: a powerful numerical method

plots from collaborations with :
Y-L. Wu, Z. Papic, N. Regnault, B. A. Bernevig

Infinitely long cylinder, bulk correlation length
$\left\langle O(0) O^{\prime}(r)\right\rangle \sim \exp (-r / \zeta)$

The transfer matrix $E_{1}=\sum_{m} A^{[m]} \otimes \bar{A}^{[m]}$

\Rightarrow correlation length $\zeta^{-1} \propto \log \left(\lambda_{1} / \lambda_{2}\right)$

Model state	Laughlin $1 / 3$	Laughlin $1 / 5$	MR vac.	MR qh
ζ / I_{B}	$1.381(1)$	$2.53(7)$	$2.73(1)$	$2.69(1)$

Entanglement entropy (orbital cut)

Area law $S_{A}=\alpha L-\gamma$, where the subleading term γ is universal

$$
\gamma=\log \mathcal{D} / d_{a}
$$

Model state	$\gamma_{\text {vac }}$	γ_{qh}	\mathcal{D}
MR	1.04	0.69	$2 \sqrt{2}$
$\mathbb{Z}_{3} \mathrm{RR}$	1.45	0.97	$\frac{5}{2 \sin \left(\frac{\pi}{5}\right)}$

Quasi-hole excitations

- Insert quasi-holes in the MPS
- Compute the density profile
- Measure the radius of the quasi-hole

	ν	R / ℓ_{0}	
Laughlin	$\frac{1}{3}$	$\frac{e}{3}: 2.6$	
Moore-Read	$\frac{1}{2}$	$\frac{e}{4}: 2.8$	$\frac{e}{2}: 2.7$
\mathbb{Z}_{3} Read-Rezayi	$\frac{3}{5}$	$\frac{e}{5}: 3.0$	$\frac{3 e}{5}: 2.8$

Braiding non-Abelian quasi-holes

Instead of computing the Berry phase,
\Rightarrow check the behavior of conformal block overlaps

$$
\left\langle\Psi_{a} \mid \Psi_{b}\right\rangle=C_{a} \delta_{a b}+O\left(e^{-|\Delta \eta| / \xi_{a b}}\right)
$$

Microscopic, quantitative verification of the non-Abelian braiding.

Conclusion

Conclusion

FQH model wavefunctions have been used for more than 30 years :
They are nothing but Matrix Product States in disguise

Numerically powerful

- Bulk correlation length ζ (or equivalently bulk gap)
- precision computation of the topological entanglement entropy γ (and the quantum dimensions d_{a})
- Non-Abelian quasihole radius and braiding

CFT/MPS provide a strong link between microscopics and 3d TQFT

As conjectured by Moore and Read Model states \Rightarrow (non-Abelian) chiral topological phases.
Limitations : at the end of the day these states are model states with the anyon data as an input. Similar to quantum-double models.

- Are they in the same universality class as the experimental states?
- DMRG methods might help answer this question.

