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Integer quantum Hall effect

Landau levels
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Classical Hall effect

Rxx

Rxy
B

Hall effect : a 2D electron gas in
a perpendicular magnetic field.

⇒ current ⊥ voltage
& transverse resistivity ρxy ∝ B

~r = ~R + ~η

Rµ : guiding center
No electric field :

Ṙµ = 0

Cyclotron motion at frequency

ωc =
|eB|
m

With electric field

ωc Ṙµ = εµνEν

Electron classical equation of motion :

~η : fast cyclotron motion (ωc)
~R : slow drift along equipotentials
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Integer Quantum Hall effect (IQHE)

At low temperature and high magnetic field however :
ρxy is no longer linear in B (plateaux) !

IQHE : von Klitzing (1980)

Quantized Hall conductance

σxy = ν
e2

h

ν is an integer up to O(10−9)
Used in metrology

This is a manifestation of quantum mechanics on macroscopic scales ! !
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A single electron in 2D and in a ⊥ magnetic field B .
Uniform ⊥ magnetic field : gauge choice
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Landau levels
In (dimensionless) complex coordinate z = (x + iy)/lB , and setting

a =
√

2

(
∂

∂z̄
+

z

2

)
, a† = −

√
2

(
∂

∂z
− z̄

2

)

Familiar form of the Hamiltonian

H = ~ωc

(
a†a +

1

2

)
[a, a†] = 1

(N + 1)th Landau level :

EN = ~ωc

(
N +

1

2

) hwc

hwcN=0

N=1

N=2

Discrete spectrum, large degeneracy
(translation invariance/guiding center).
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Lowest Landau Level (N = 0)
Since a =

√
2
(
∂
∂z̄ + z

2

)
, ground states are of the form

Ψ(z , z̄) = f (z) e
− zz̄

4l2
B

with f (z) is any holomorphic function (∂z̄ f = 0).

⇒ chirality : (x , y)→ z = (x + iy)

Ground states, a.k.a. Lowest Landau level (LLL) states

Ψ(x , y) = f (x + iy) e−(x2+y2)/4l2B

Projection to the LLL : x and y no longer commute [x̂ , ŷ ] = i l2B

∆x ∆y ≥ l2B/2

⇒ each electron occupies an area 2πl2B
magnetic flux through this area = quantum of flux Φ = h/e

LLL degeneracy ∼ number NΦ of flux quanta through the surface
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Magnetic translations

translation invariance : ~x and ~x + ~u are equivalent

up to a gauge transformation (since ~A = ~A(x , y))

~A→ ~A + ~∇Λ and Ψ→ Ψ̃ = e iΛΨ

Magnetic translations
T (~u) = exp[~u.(~∇− i ~A)− i~u × ~r ]

Aharonov-Bohm effect :

T~uT~v = e
i ~u∧~v

l2
B T~vT~u

Infinitesimal generators of translations commute with H, but

[tx , ty ] = −i 6= 0
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Cylinder with perimeter L (we identify y ≡ y + L)

Natural gauge choice : ~A = B

(
0
x

)

ty |Ψky 〉 = ky |Ψky 〉, ky =
2πn

L

LLL Ψky (x , y) = e iyky e
− (x−l2Bky )2

2l2
B

Momentum ky and position x are locked :

x ∼ l2Bky

[x̂ , ŷ ] = il2B implies that ~x̂ = l2B p̂y .

localized in x̂ and delocalized in ŷ

the interorbital distance is 2π
L l2B

lB

Density profile of the
LLL orbital Ψky (x , y).
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Projection to the LLL : dimensional reduction
Projection to the LLL : x and y no longer commute [x̂ , ŷ ] = i l2B (link with
non-commutative geometry).

4 dimensional phase space ⇒ 2 dimensional phase space

A basis of LLL states

looks like a one-dimensional chain

But !
Physical short range interactions become long range in this description

(distance of order lB means ∼ L/lB sites).
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Landau problem on arbitrary surfaces

Lowest Landau Level on arbitrary surface :

The magnetic flux has to be quantized
∫
d2x B = NΦ

h
e , with NΦ integer.

The ground state degeneracy on a surface of genus g is

NΦ + (1− g)

provided Nφ is not too small, namely Nφ > 2g − 2.

it depends on the topology (genus).

it does NOT depend on the geometry (metric)
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For instance on the torus : boundary conditions

• The (flat) torus is

T2 = C/(L1 + e iθL2)Z

• Boundary conditions

T (~Lα) |Ψ〉 = e iφα |Ψ〉 , α = 1, 2

φα : solenoid fluxes passing through the torus cycles.
• Consistency of two b.c. requires quantized magnetic field

[T (~L1),T (~L2)] = 0 ⇔ |~L1 × ~L2| = 2πNΦ, NΦ ∈ Z

• discrete translations T (~u) with

~u =
n

NΦ

~L1 +
m

NΦ

~L2
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Let’s work in the Landau gauge ~A = (−y , 0).

Ψ(x , y) = e−y
2/2f (w)

where f has boundary conditions

f (w + L1) = e iφ1f (w), f (w + e iθL2) = e iφ2e
−i2πNΦ

(
w
L1

+ τ
2

)
f (w)

(holomophic sections of degree Nφ)

where NΦ =
L1L2 sin θ

2π
, τ =

L2

L1
e iθ

The number of independent solutions is Nφ, for instance

fm(w) =
1√
L1
√
π
ϑ

[
m
NΦ

+ φ1
2πNΦ

− φ2
2π

](
NΦ

w

L1

∣∣∣∣NΦτ

)
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Integer quantum Hall effect

a band insulator
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The IQHE : bulk insulator

Cartoon picture : no interactions, no disorder

Landau Levels = flat bands

Integer filling with fermions
⇒ Bulk insulator.

How come we have I ∝ V then ?
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The IQHE : conducting edges
⇒ Conducting edges
each channel contributes
e2/h to the Hall conductance

σxy = ν
e2

h

Chiral (and therefore
protected) massless edges

Topological insulator

This quantization is insensitive to disorder or strong periodic potential :

topological invariant : the Chern number

Disclaimer : this is just a cartoon picture. Does not explain plateaux.
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Fractional filling
the many-body problem

FQHE trial wavefunctions
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Fractional filling : the role of electron-electron interactions

Partially filled band ⇒ conventional metallic (i.e. gapless) bulk.

Yet, experimentally, emergence of exotic gapped states :

• insulating bulk,
• metallic chiral edge modes,
• bulk excitations with fractional charges.

How is this possible ? thanks to electron-electron interaction

Technical problem : the interaction cannot be treated perturbatively.

N fermions in NΦ states ⇒ macroscopic degeneracy
(Nφ
N

)
.

So what can we do ?

Numerics (e.g. exact diagonalization), effective field theories (theories of
anyons), model wavefunctions.
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What are model states/wave functions ?

• Typically an idealized hamiltonian/interaction
for which the ground state, quasihole, and edge excitations can be found
exactly (as zero energy states)
• They are highly fine tuned and non-generic similar to integrable vs generic systems

(for instance they minimize quantum entanglement)
• A model state is merely a representative of a universality class
characterised by some quantum numbers/symmetries (topological order).
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The mother of all trial wave functions

The ν = 1/3 Laughlin state.

filling fraction ν = 1/3 + short range model interaction
⇒ exact ground-state :

Ψ 1
3
(z1, · · · , zN) =

∏
i<j

(zi − zj)
3 e−

∑
i |zi |2/4l2B

The model interaction is the short range part of Coulomb.

Extremely high overlap with Coulomb interaction !
(obtained by exact diagonalization)

First hints of a topological phase :

excitations with fractional charge e/3

topology dependent ground state degeneracy : 3g exact ground states.
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Cartoon picture : thin cylinder limit (L� lB)

Very small cylinder perimeter L : LLL orbitals no longer overlap
1d problem

Laughlin’s Hamiltonian → Haldane’s exclusion statistics
no more than 1 particle in three orbitals

At filling fraction ν = 1/3, we get three possible states

|Ψ1〉 = | · · · 1 0 0 1 0 0 1 0 0 · · · 〉
|Ψ2〉 = | · · · 0 1 0 0 1 0 0 1 0 · · · 〉
|Ψ3〉 = | · · · 0 0 1 0 0 1 0 0 1 · · · 〉

3-fold degenerate ground state on the cylinder (and torus).
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Bulk excitations/defects : anyons

Adiabatic insertion of a flux quantum at position w
creates a hole in the electronic liquid :

Ψw =
∏
i

(w − zi )
∏
i<j

(zi − zj)
3

Cartoon picture : | · · · 1 0 0 1 0 0 0 1 0 0 · · · 〉
Electronic density around a quasihole

(N. Regnault)

fractionalization : the missing electronic charge is e/3
these excitations are called quasi-holes.

under adiabatic exchange of two quasi-holes

⇒ phase e2iπ/3

non trivial braiding !

⇒ quasi-holes = abelian anyons
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Anyons of the ν = 1/m Laughlin state

• There are m types of quasi-holes/anyons

Ψw =
∏
i

(w − zi )
a
∏
i<j

(zi − zj)
m, a = 0, · · · ,m − 1

Indeed a is defined mod m (a = m is simply a hole, i.e. a missing electron).
• Two anyons at positions w1 and w2 can be fused (w1 → w2)

Ψw1,w2 =
∏
i

(w1 − zi )
a (w2 − zi )

b
∏
i<j

(zi − zj)
m

fusion rules : a× b =
∑
c

Nc
abc , Nc

ab = δa+b,c mod m

• Braiding anyons of type a and b gives a phase e
2iπ
m

ab (plasma argument).
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Laughlin ν = 1/m on the torus

The vanishing properties as zi → zj dictate

Ψ(z1, · · · , zN) = F (Z )
∏
i<j

θ1

(
zi − zj
L1

∣∣∣∣ τ)m

where Z =
∑

i zi is the center of mass. We recover the correct b.c. iff

F (Z + L1) = (−1)(N−1)me iφ1F (Z ),

F (Z + L2e
iθ) = (−1)(N−1)me iφ2e

−i2πm
(

Z
L1

+ τ
2

)
F (Z )

m ground-states on the torus

Ψa(z1, · · · , zN) = ϑ

[
a
m + φ1

2πm + N−1
2

− φ2
2π −

m(N−1)
2

](
m

Z

L1

∣∣∣∣mτ) ∏
i<j

θ1

(
zi − zj
L1

∣∣∣∣ τ)m
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Metallic boundary : massless edge modes

Ψu = Pu(z1, · · · , zN)
∏
i<j

(zi − zj)
3

where Pu is any symmetric, homogeneous polynomial.

Cartoon picture : no more than 1 electron in 3 orbitals.

dispersion relation : E ∝ P
chiral and gapless edge

Number of edge states :
I E = 0 : 1 state
I E = 1 : 1 state
I E = 2 : 2 states
I E = 3 : 3 states
I E = 4 : 5 states
I E = 5 : 7 states
I · · ·

(a) E = 0

(b) E = 1

(c) E = 1

(d) E = 2

(e) E = 2

(cartoon picture)

spectrum of a massless chiral boson.
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Metallic boundary : massless edge modes

Ψu = Pu

∏
i<j

(zi − zj)
3

where Pu is any symmetric, homogeneous polynomial.

Cartoon picture : no more than 1 electron in 3 orbitals.

dispersion relation : E ∝ P
chiral and gapless edge

Number of edge states :
(a) E = 0

(b) E = 1

(c) E = 1

(d) E = 2

(e) E = 2

(cartoon picture)

spectrum of massless chiral boson.
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Entanglement entropy

Cut the system in two parts A and B
(the boundary has length L)

The entanglement entropy is

SA = −Tr(ρA log ρA)

with ρA the reduced density matrix.

For a topological phase :

SA ∼ αL− logD

where D is the quantum dimension.

For ν = 1/3 Laughlin : D =
√

3

Entanglement entropy of the ν = 1/3 Laughlin state
as a function of the cylinder perimeter L

(N. Regnault)
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Entanglement spectrum

Schmidt decomposition

|Ψ〉 =
∑
α

exp(−ξα/2) |A, α〉 ⊗ |B, α〉

ρa =
∑
α

exp(−ξα) |A, α〉 〈A, α|

Entanglement spectrum
Li and Haldane (2008) :
spectrum of ξ = − log ρA
(plot ξ vs momentum)

⇒ Reproduces the physical
edge spectrum !

momentum
Entanglement spectrum of the ν = 1/3 Laughlin state on the sphere
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Chiral boson and Laughlin
using the edge theory to describe the bulk
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The free boson a.k.a. U(1) CFT

Massless gaussian field in 1 + 1 dimensions

S =

∫
d2z ∂φ ∂̄φ

The mode decomposition of the chiral free boson is

φ(z) = Φ0 − ia0 log(z) + i
∑
n 6=0

1

n
anz
−n

[an, am] = nδn+m,0, [Φ0, a0] = i

U(1) symmetry : φ(z)→ φ(z) + θ

conserved current :

J(z) = i∂φ(z) =
∑
n

anz
−n−1
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Vertex operators :

VQ(z) =: e iQϕ(z) := exp

(
Q
∑
n>0

a−n
n

zn

)
exp

(
−Q

∑
n>0

an
n
z−n

)
e iQϕ0zQa0

Primary states/ vacua |Q〉 are defined by their U(1) charge Q ∈ 1√
3
Z

a0|Q〉 = Q|Q〉, an|Q〉 = 0 for n > 0

The Hilbert space is simply a Fock space

Descendants are obtained with the lowering operators a†n = a−n, n > 0

∆E = 0 : 1 state : |Q〉
∆E = 1 : 1 state : a−1 |Q〉
∆E = 2 : 2 states : a2

−1 |Q〉, a−2 |Q〉
∆E = 3 : 3 states : a3

−1 |Q〉, a−2a−1|Q〉, a−3 |Q〉
∆E = 4 : 5 states : a4

−1 |Q〉, a−2a
2
−1 |Q〉, a2

−2 |Q〉, a−3a−1 |Q〉, a−4 |Q〉
∆E = 5 : 7 states : · · ·
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The Laughlin state written in terms of a U(1) CFT

Ground state wavefunction

∏
i<j

(zi − zj)
m = 〈0|Ob.c.V (z1) · · ·V (zN)|0〉, V (z) =: e i

√
mϕ(z) :

where Ob.c. = e−i
√
mNϕ0 is just a neutralizing background charge.

Bulk excitations

Wavefunction for p quasiholes

〈Ob.c.Vqh(w1) · · ·Vqh(wp)V (z1) · · ·V (zN)〉

with
Vqh(w) =: e

i√
m
ϕ(w)

:

Edge excitations

Ψu = 〈u|Ob.c.V (z1) · · ·V (zN)|0〉

edge mode = CFT descendant

we recover 1, 1, 2, 3, 5, 7, · · ·

Benoit Estienne (LPTHE) Matrix Product State for FQHS 2017, July 33 / 65



Laughlin’s anyons
• The Hilbert space splits into m anyon sectors

H =
m−1⊕
a=0

Ha Ha = {states with
√
mQ = a mod m}

• Anyon of type a :

Ψw =
∏
i

(w − zi )
a
∏
i<j

(zi − zj)
m, Φa(w) =: e

ia√
m
ϕ(w)

:

• Fusion rules

fusion rules : a× b =
∑
c

Nc
abc , Nc

ab = δa+b,c

• m torus conformal blocks

Ψa(z1, · · · , zN) = TrHa

(
e i2πτL0−i

√
νNΦϕ0V (z1) · · ·V (zN)

)
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Laughlin’s edge modes

Ψu = 〈u|Ob.c.V (z1) · · ·V (zN)|0〉 = Pu(z1, · · · , zN)
∏
i<j

(zi − zj)
m

At level 0
• 〈0|Ob.c.V (z1) · · ·V (zN)|0〉 = 1

∏
i<j(zi − zj)

m

At level 1
• 〈0|a1Ob.c.V (z1) · · ·V (zN)|0〉 ∝∑i zi

∏
i<j(zi − zj)

m

At level 2
• 〈0|a2

1Ob.c.V (z1) · · ·V (zN)|0〉 ∝ (
∑

i zi )
2∏

i<j(zi − zj)
m

• 〈0|a2Ob.c.V (z1) · · ·V (zN)|0〉 ∝
(∑

i z
2
i

)∏
i<j(zi − zj)

m

At level 3
• · · ·

One-to-one map between edge modes and CFT states
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Conformal field theories (CFT)
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CFT = Quantum Field Theory + conformal invariance

conformal = angle preserving

z → f (z) =
∑
n

fnz
n

Symmetry generators {Ln, n ∈ Z}

[Ln, Lm] = (n −m)Ln+m +
c

12
n(n2 − 1)δn+m,0

In particular L0 generates dilatations.

conformal invariance comes from criticality.

2D classical stat mech models : scale invariance

1+1 quantum models : masslessness
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FQH model wave-function from CFT

Moore and Read (1990) proposed to write
FQH model wavefunctions as CFT conformal blocks

Ψα(z1, · · · , zN) = 〈V (z1) · · ·V (zN)Φa1(w1) · · ·Φap(wp)〉αe
− 1

4l2
B

∑
i |zi |2

with quasihole of type ai at position wi . α labels the different conformal blocks.

Underlying idea :

Universality classes of FQH states are to be distinguished solely by

the quantum numbers of the ground state and excitations

by the braiding and fusion algebras ;

in other words by the corresponding CFT.
This construction yields consistent anyon models (a.k.a. modular
tensor categories)
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Constraints on the CFT
• 〈V (z1) · · ·V (zN)Φa1(w1) · · ·Φap(wp)〉α must be (anti-)symmetric in zi

⇒ V (z) must be bosonic or fermionic.

• 〈V (z1) · · ·V (zN)Φa1(w1) · · ·Φap(wp)〉α must be a polynomial in zi

V (z) must be mutually local w.r.t. all fields
⇒ V (z) is a chiral current generating an extended chiral algebra

• Charge conservation and density excitations

⇒ the extended chiral algebra must contain a U(1) current J = i∂ϕ

V (z) is assumed to be of the form V (z) = Ψ(z)⊗ : exp
(
i 1√

ν
ϕ(z)

)
:

• Finitely many anyon types/ finite ground-state degeneracy on the torus

⇒ the CFT must be rational w.r.t. the extended chiral algebra
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A few examples

U(1) ν = 1/m Laughlin state V (z) =: e i
√
mϕ(z) :

Ψground-state =
∏
i<j

(zi − zj)
m

SU(2)2 (bosonic) Moore-Read state V (z) = Ψ(z)⊗ : e iϕ(z) :

Ψground-state = Pf

(
1

zi − zj

)∏
i<j

(zi − zj)

SU(2)k (bosonic) Read-Rezayi state

V (z) = J+(z) = Ψ1(z)⊗ : e i
√

2/kϕ(z) :

Ψground-state = some complicated (Jack) polynomial
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ν = 1 bosonic Moore-Read state (SU(2)2 = Z2 ⊗ U(1))

• 3 anyon types : 0, 1, σ, with corresponding fields

a trivial quasi-hole Φ0 = 1 (spin 0)

an abelian quasi-hole Φ1 =: e i
√
ϕ : (spin 1)

a non-abelian quasi-hole Φσ = σ⊗ : e i
1
2

√
ϕ : (spin 1/2)

• fusion rules : 0× a = a, 1× σ = σ and σ × σ = 0 + 1
• Expected non-abelian braiding !

〈σ(∞)σ(1)σ(w)σ(0)〉± =
(1±

√
1− w)1/2

√
2(w(1− w))1/8

• Exclusion principle : no more than 2 particles in 2 consecutive orbitals
• 3 ground-states on the torus : · · · 2020 · · · , · · · 0202 · · · and · · · 1111 · · ·
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What about the torus ?

Holomorphic is no longer sufficient, we need the correct b.c.

f (z + 1) = f (z), f (z + τ) = e−i2πNΦ(z+ τ
2 )f (z)

Answer (for bosons) :

Ψa(z1, · · · , zN) = TrHa

(
e i2πτL0−i

√
νNΦϕ0V (z1) · · ·V (zN)

)
easy to check using (setting q = e2iπτ and w = e2iπz)

qL0V (w) = V (qw)qL0 , β
√
νa0V (w) = βV (w)β

√
νa0

e−i
√
νNΦϕ0V (w) = wNΦV (w)e−i

√
νNΦϕ0

RCFT → finitely many conformal blocks on the torus

degeneracy = number of anyon types
Topological sectors ↔ primary fields Φa
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Model wavefunctions from CFT

Extrapolating the thermodynamic limit of these model states is difficult.

Gapped ?

Well-defined quasi-holes ?

Non-Abelian braiding ?

Area law for the entanglement entropy ?

Entanglement spectrum ?

Quantum dimensions ?

etc...

The natural conjecture is that they are described by the anyon model
(TQFT) corresponding to the underlying CFT.
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Matrix Product State (MPS)
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Limitations of exact diagonalizations and model wf
→ decomposition of a state |Ψ〉 on a convenient occupation basis

|Ψ〉 =
∑
{mi}

c{mi} |m1, ...,mNΦ
〉

What is the amount of memory needed to store the Laughlin state ?

Can’t store more than 21
particles !

Matrix Product State : more compact and computationally friendly
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Matrix Product States

|Ψ〉 =
∑
{mi}

c{mi} |m1, ...,mNΦ
〉

replaced by

|Ψ〉 =
∑
{mi}

(
〈u|A[m1] · · ·A[mn] |v〉

)
|m1, ...,mn〉

Why is this formalism interesting ?
Many quantities (correlation functions, entanglement spectrum, . . . ) can

be computed in the (relatively small) auxiliary space.
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Tensor Networks diagrams (taken from Orus, arXiv :1306.2164)

Contraction of indices = gluing links

(a) Scalar product (b) Matrix product (c) Trace of the
product of 6 matrices
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MPS transfer matrix (taken from Orus, arXiv :1306.2164)

|Ψ〉 =
∑
{mi}

(
〈u|A[m1] · · ·A[mn] |v〉

)
|m1, ...,mn〉

MPS matrices A
[α]
i i ′

〈u|A[m1] · · ·A[mn] |v〉

overlap 〈Ψ |Ψ〉
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MPS transfer matrix
Everything can be computed in terms of

EI =
∑
m

A[m] ⊗ Ā[m]

For instance the overlap for N sites

now reads

〈Ψ |Ψ〉 = 〈u, u|EN
I |v , v〉 ∼ λN1

We can work on the infinite cylinder !
for the FQHE : this means infinitely many electrons . . .
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Correlation functions (taken from Orus, arXiv :1306.2164)

C (r) = 〈O(r)O ′(0)〉 − 〈O〉〈O ′〉

On the infinite cylinder :

C (r) = 〈GS | O′E rO |GS〉 − 〈GS | O′ |GS〉 〈GS | O |GS〉 ∼
(
λ2

λ1

)r
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Where does this MPS come from ?
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CFT : operator picture

From the 1 + 1D perspective : cylinder of perimeter L.

〈φ1(x1, t1)φ2(x2, t2) · · ·φn(xn, tn)〉 =

〈0|φ̂n(xn) · · · φ̂3(x3)e−Ĥ(t3−t2)φ̂2(x2)e−Ĥ(t2−t1)φ̂1(x1)e−Ĥt1 |0〉

Dilatations on the plane become translations in the time direction :

Ĥ ∼ 2π

L
L0
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The CFT ansatz Ψ(z1, · · · , zn) = 〈u|V (z1) · · ·V (zn)|v〉
is a continuous MPS

Dubail, Read, Rezayi (2012)

Translation invariant MPS

|Ψ〉 =
∑
{mi}

(
〈u|B [m1]B [m2] · · ·B [mn] |v〉

)
|m1 · · ·mn〉

Zaletel, Mong (2012)

the matrices B [m] are operators in the underlying CFT

the auxiliary space is the (infinite dimensional) CFT Hilbert space . . .

. . . which can be truncated while keeping arbitrary large precision
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Starting from a model wavefunction given by a CFT correlator

Ψ(z1, · · · , zN) = 〈u|Ob.c.V (z1) · · ·V (zN)|v〉

and expanding V (z) =
∑

n V−nz
n, one finds (up to orbital normalization)

c(m1,··· ,mn) = 〈u| Ob.c.
1√
mn!

Vmn
−n · · ·

1√
m2!

Vm2
−2

1√
m1!

Vm1
−1 |v〉

This is a site/orbital dependent MPS

c(m1,··· ,mn) = 〈u| Ob.c.B
[mn](n) · · ·B [m2](2)B [m1](1) |v〉

with matrices at site/orbital j (including orbital normalization)

B [m](j) =
e( 2π

L
j)

2

√
m!

(V−j)
m
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Translation invariant MPS

A relation of the form B [m](j) = U−1B [m](j − 1)U yields

B [m](j) = U−jB [m](0)U j

and then

B [mn](n) · · ·B [m1](1) = U−n × B [mn](0)U · · ·B [m1](0)U

This is a translation invariant MPS, with matrices

A[m] = B [m](0)U
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Translation invariant MPS on the cylinder

Site independant MPS

B [m](j) =
e( 2π

L
j)

2

√
m!

(V−j)
m ⇒ A[m] =

1√
m!

(V0)m U

where U is the operator

U = e−
2π
L
H−i
√
νϕ0

where

ϕ0 is the bosonic zero mode (e−i
√
νϕ0 shifts the electric charge by ν)

H is the cylinder Hamiltonian : H = 2π
L L0

V0 is the zero mode of V (z)

auxiliary space = CFT Hilbert space
infinite bond dimension :/
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Truncation of the auxiliary space
The auxiliary space (i.e. the CFT Hilbert space) basis is graded by the
conformal dimension ∆α.

L0 |α〉 = ∆α|α〉

But in the MPS matrices we have a term

A[m] =
1√
m!

(V0)m e
− i√

ν
ϕ0e−( 2π

L )
2
L0

The conformal dimension provides a natural cut-off.
Truncation parameter P : keep only states with ∆α ≤ P.

P = 0 recovers the thin-cylinder limit | · · · 100100100 · · · 〉
The correct 2d physics requires L� bulk correlation length ζ

For a cylinder perimeter L, we must take P ∼ L2

Bond dimension χ ∼ eαL · · · of course ! since SA ∼ αL.
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What about the torus ?

CFT ansatz : ground state |Ψ〉a

Ψa(z1, · · · , zN) = Tra
(
e i2πτL0−i

√
νNϕ0V (z1) · · ·V (zN)

)
becomes

|Ψ〉a =
∑
{mi}

Tra
(
e iπ(N−1)

√
νa0A[mn] . . .A[m1]

)
|m1, · · · ,mn〉

where the blue term is only present for fermions (ensures antisymmetry).
The MPS matrices are

A[m] = q
L0
2n e−i

√
ν

2
ϕ0

1√
m!

Vm
0 e−i

√
ν

2
ϕ0q

L0
2n , q = e2iπτ

Again χ grows exponentially with torus thickness.
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Matrix Product States :
a powerful numerical method

plots from collaborations with :
Y-L. Wu, Z. Papic, N. Regnault, B. A. Bernevig
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Infinitely long cylinder, bulk correlation length

〈O(0)O ′(r)〉 ∼ exp(−r/ζ)
The transfer matrix E1 =

∑
m A[m] ⊗ Ā[m]

⇒ correlation length ζ−1 ∝ log(λ1/λ2)
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Entanglement entropy (orbital cut)
Area law SA = αL− γ, where the subleading term γ is universal

γ = logD/da
Model state γvac γqh D
MR 1.04 0.69 2

√
2

Z3 RR 1.45 0.97 5
2 sin(π5 )
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Quasi-hole excitations
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Compute the density profile
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Braiding non-Abelian quasi-holes

Instead of computing the Berry phase,
⇒ check the behavior of conformal block overlaps

〈Ψa|Ψb〉 = Caδa b + O
(
e−|∆η|/ξab

)

0 5 10 15

∆η / `0

0.0

0.4

0.8

1.2

〈a
bc
|a
b′
c〉

/
a.

u
. Moore-Read

||1σ1||2

||1σψ||2
||σ1σ||2= ||σψσ||2
〈σ1σ|σψσ〉
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∆η / `0

Z3 Read-Rezayi

||1σ1σ2||2
||σ1ψ1ε||2 ||σ1σ2ε||2
||1σ1ψ1||2
〈σ1ψ1ε|σ1σ2ε〉

Microscopic, quantitative verification of the non-Abelian braiding.
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Conclusion
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Conclusion
FQH model wavefunctions have been used for more than 30 years :

They are nothing but Matrix Product States in disguise

Numerically powerful

I Bulk correlation length ζ (or equivalently bulk gap)
I precision computation of the topological entanglement entropy γ

(and the quantum dimensions da)
I Non-Abelian quasihole radius and braiding

CFT/MPS provide a strong link between microscopics and 3d TQFT

As conjectured by Moore and Read

Model states ⇒ (non-Abelian) chiral topological phases.

Limitations : at the end of the day these states are model states
with the anyon data as an input. Similar to quantum-double models.

I Are they in the same universality class as the experimental states ?
I DMRG methods might help answer this question.
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