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Background:

These talks will often refer to results from my papers. They can
all be accessed at:

http://olallacastroalvaredo.weebly.com/publications.html

Two good introductions to the topic of twist fields and entangle-
ment measures are:

John L. Cardy, O.C.-A. and Benjamin Doyon, Form factors of
branch-point twist fields in quantum integrable models and entan-
glement entropy, J. Stat. Phys. 130 (2008) 129-168, arXiv:0706.3384.

O.C.-A. and Benjamin Doyon, Bi-partite entanglement entropy in
massive 1+1 dimensional quantum field theories, J. Phys. A42
(2009) 504006, arXiv:0906.2946 (Review Article).

A good source are also the lectures we gave last year in Bologna,
which were much more extensive. All the material can be found
here: http://thebolognalectures.weebly.com
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I would like to thank all my collaborators on this area of
research:

Davide Bianchini, Former PhD Student
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Benjamin Doyon, King’s College London
Emanuele Levi, Former PhD Student
Francesco Ravanini, Università di Bologna
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Disclaimers:

My approach to this topic is that of 1+1 dimensional many-
body quantum systems/quantum integrable systems.

I will not directly discuss the contributions form information
theory/holography approach to entanglement even if these
are also important.

I will talk about 1+1 quantum systems only.

I will mostly talk about 1+1 dimensional integrable systems
with diagonal scattering:
(integrable) two-body scattering matrices determine the whole
scattering theory and
(diagonal) all processes are of the form a + b → a + b with
scattering matrix Sab(θ) where θ is the rapidity difference
between particles a and b.

Recall [Joao’s talk] for analytic structure of such S-matrices
and [Benjamin’s talk] for special features of integrability
such as the description of n-particle states.
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1. Entanglement in quantum mechanics

A quantum system is in an entangled state if performing
a localised measurement (in space and time) may instanta-
neously affect local measurements far away.
A typical example: a pair of opposite-spin electrons:

|ψ〉 =
1√
2

(|↑ ↓ 〉+ |↓ ↑ 〉) , 〈Â〉 = 〈ψ|Â|ψ〉

What is special: Bell’s inequality says that this cannot be
described by local variables.

A situation that looks similar to |ψ〉 but without entangle-
ment is a factorizable state:

|ψ̂〉 =
1

2
(|↑ ↓ 〉+ |↓ ↑ 〉+ |↑ ↑ 〉+ |↓ ↓ 〉)

=
1

2
(|↑ 〉+ |↓ 〉)⊗ (|↑ 〉+ |↓ 〉)
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These examples are extremely simple but what happens in
extended many-body quantum systems?

First of all, what provides a good measure of entanglement?
[Plenio & Virmani’05]

1 Entanglement monotone: no increase under LOCC
2 Invariant under unitary transformations
3 Zero for separable states
4 Non-zero for non-separable states

Among others, the bi-partite entanglement entropy and the
logarithmic negativity are good measures of entanglement
according to these properties.
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2. Bi-partite (von Neumann) Entanglement Entropy

Let us consider a spin chain of length N , subdivided into regions
A and Ā of lengths L and N − L [Bennett et al.’96]

A
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then we define

Von Neumann Entanglement Entropy

SA = −TrA(ρA log(ρA)) with ρA = TrĀ(|Ψ〉〈Ψ|)

|Ψ〉 ground state and ρA the reduced density matrix.
Other entropies may also be defined such as

Other Entropies

SRényi
A =

log(TrA(ρnA))

1− n
, STsallis

A =
1− TrA(ρnA)

n− 1
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3. Replica Trick I

The object TrAρ
n
A with n integer is also a partition function

[Callan & Wilczek’93; Holzhey, Larsen & Wiczek’94; Calabrese
& Cardy’04]:

TrAρ
n
A =

Zn
Zn1

,

but now it is defined on an n-sheeted Riemann surface:

A〈φ|ρA|ψ〉A ∼

TrA(ρnA) ∼ Zn =

∫
[dϕ]Mn exp

[
−
∫
Mn

d2x L[ϕ](x)

]

M3 =
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4. Replica Trick II

We can express the bi-partite entanglement entropy directly
in terms of this partition function as

Replica Trick

SA = −TrA(ρA log(ρA)) = − lim
n→1+

d

dn
TrA(ρnA)

However, when computing this limit we need to extend our
notion of “replica” to n ≥ 1 and n ∈ R.

The analytic continuation problem is not solved in general
although existence and uniqueness are expected and may be
established under certain natural conditions.

Note that this is only a difficult problem when trying to
obtain analytical results. Numerically, if the eigenvalues of
ρA are known then any Rényi entropy can be computed.
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5. Logarithmic Negativity (LN)

A good measure of entanglement in pure and mixed states for
non-complementary regions such asA andB [Zyczkowski et al.’98;
Vidal’00; Eisert’01;Vidal & Werner’02; Plenio’05].

Logarithmic Negativity of a Pure State

E = log TrA∪B|ρTBA∪B| with ρA∪B = TrC(|Ψ〉〈Ψ|)

It involves the trace norm: TrA∪B|ρTBA∪B| =
∑

i |λi| where λi
are the eigenvalues of ρTBA∪B.
TB represents partial transposition in sub-system B, that is,
let eAi , e

B
i be bases in A and B then: 〈eAi eBj |ρ

TB
A∪B|eAk eBl 〉 =

〈eAi eBl |ρA∪B|eAk eBj 〉. The LN is basis-independent.
|Ψ〉 is the state of the whole system (for pure states).
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6. Logarithmic Negativity (LN): Replica Approach

There is also a “replica” approach to the LN [Calabrese,
Cardy & Tonni’12]:

Logarithmic Negativity from the Replica Trick

E [n] = log TrA∪B(ρTBA∪B)n then E = lim
n→1
E [ne]

where E [ne] means the function E [n] for n even. This limit
requires analytic continuation from n even to n = 1.
There is also a partition function picture in this case. How-
ever, the n-sheeted Riemann surface is more complicated:

Fig. from [Calabrese, Cardy & Tonni’12].
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7. Measures of Entanglement in QFT: Why?

The EE of the ground state of 1+1 dimensional QFTs sat-
isfies an area law: it grows proportionally to the number of
boundary points and this has important implications on the
efficiency of numerical simulations.

Both the EE and the LN display universal behaviour near
critical points, after a quantum quench and in many-body
localized (MBL) states (recall [Joel’s talk]).

They can be used to classify critical points in a numerically
very efficient way, to describe the dynamics after a quantum
quench and to identify MBL states.
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8. Rényi Entropies at and near Critical Points

At criticality (ξ →∞):

Universal scaling: [Holzhey,
Larsen & Wilczek’94; Vidal,
Latorre, Rico & Kitaev’03;
Calabrese & Cardy’04;
Bianchini et al.’15]:

Sn(`) ∼ ceff(n+ 1)

6n
log

`

ε

ceff is the effective central
change which uniquely
characterises the CFT.
ε is a non-universal cut-off.

For more than one interval:
information about operator
content of CFT.

Near criticality (ξ finite):

Universal saturation [Calabrese
& Cardy’04] and decay [Cardy,
OC-A & Doyon’08; Doyon’09]

S(`)− lim
`→∞

S(`) = −1

8
K0(2m`) + · · ·

where m is the mass of the
lightest particle in the
spectrum.
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9. LN near Critical Points

At criticality:

Universal scaling: For
“adjacent regions”
[Calabrese, Cardy &
Tonni’12’13’14]:

E⊥(`1, `2) ∼ c

4
log

`1`2
ε(`1 + `2)

c is the central change.

For general confs:
information about
operator content of CFT.
Best known for
compactified free Boson.

Near criticality:

Universal saturation and decay: For
adjacent regions (`1 := `, `2 →∞)
[Blondeau-Fournier, OC-A &
Doyon’16]

E⊥(`)− lim
`→∞

E⊥(`) = − 2

3
√

3π
K0(
√

3m`)+ · · ·

where m ∝ ξ−1 is the mass of the
lightest particle and E⊥(∞) is a
constant which has a universal part.

For semi-infinite non-adjacent regions:

Ea`(`) =
(m`)2

2π2

[
K0(m`)

2
+
K0(m`)K1(m`)

m`
−K1(m`)

2
]
+· · ·

O.A. Castro-Alvaredo, City, University of London Introduction to Entanglement Measures in IQFT



10. Branch Point Twist Fields

In the context of entanglement, the idea of quantum fields
associated with branch points of the Riemann surfaces Mn

appeared first in [Calabrese & Cardy’04].

The interpretation of these fields as symmetry fields of a
QFT replica model Sµ1µ2(θ) = (Sab(θ))

δij , with µ1 = (a, i)
and µ2 = (b, j) was first given in [Cardy, OC-A & Doyon’08]:

Φi(y)T (x) = T (x)Φi+1(y) x1 > y1,

Φi(y)T (x) = T (x)Φi(y) x1 < y1,

for i = 1, . . . , n and n+ i ≡ i. Similarly T̃ = T † implements
the symmetry i 7→ i− 1.

Twist fields have a quantum spin chain counterpart [OC-A
& Doyon’11] as product of local operators on replica chains.

Branch point twist fields were studied earlier in the context
of orbifold CFT [Knizhnik’87; Dixon et al.’87] and their con-
formal dimension was known: ∆n = c

24

(
n− 1

n

)
.
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11. Entanglement-One Point Functions Dictionary

ε2∆n〈T 〉n

EE of semi-infinite region. By
CTM approach [Calabrese,
Cardy, Peschel, Bianchini, Er-
colessi, Franchini, Evangelisti,
Ravanini,...], Töplitz determinants
[Its, Jin & Korepin’04], QFT tech-
niques [Cardy,OC-A & Doyon’08,
Blondeau-Fournier & Doyon’16]
or numerically [Vidal et al.’03]

ε2∆n 〈0|T (`)|B〉n

EE of finite interval with bound-
ary. Boundary entropy from
twist fields [OC-A & Doyon’09]
or by CFT techniques [Cornfeld
& Sela’17]. In impurity problems
[Saleur et al.’13; Vasseur et al.’17].

ε
2(∆n+ ∆

n
−n∆)

× 〈:φT:〉n
〈φ〉n

EE of semi-inifinite region in non-
unitary QFT where φ(0)|0〉 is
the “conformal” ground state and
∆ is the dimension of φ [Bian-
chini et al.’15’16]
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12. Entanglement-Two Point Functions Dictionary

ε4∆n 〈T (0)T̃ (`)〉n

EE of finite interval. In CFT
[Callan & Wilczek’93; Holzhey et
al.’94; Vidal et al.’03;Calabrese &
Cardy’04...]. In massive models
[Cardy, OC-A, Doyon, Levi, Bian-
chini...]

ε
4∆n 〈T (0)DT̃ (`)〉n EE of finite interval in the presence

of a defect [Jiang’17].

ε4∆n 〈T (0)T (`)〉n

LN of disjoint semi-infinite inter-
vals [Blondeau-Fournier, OC-A &
Doyon’16]. For the free non-
compactified massive Boson [Bian-
chini & OC-A’16]

ε
2(∆n+∆

n′ )

×〈T (0)T̃ 2
(`)〉n

LN of adjacent intervals (one
of them semi-infinite) [Cal-
abrese, Cardy & Tonni’12’13’14;
Blondeau-Fournier, OC-A &
Doyon’16].

O.A. Castro-Alvaredo, City, University of London Introduction to Entanglement Measures in IQFT



13. Entanglement-Multipoint Functions Dictionary

ε
8∆n 〈T (0)T̃ (`1)T (`2)T̃ (`3)〉n

EE of two disconnected
regions [Calabrese,
Cardy, Tonni, Casini,
Huerta, Furukawa,
Pasquier, Shiraishi,
Caraglio, Gliozzi,
Igloi, Peschel, Alba,
Tagliacozzo, Fagotti,
Rajabpour, Datta,
David...]

ε
8∆n 〈T (0)T̃ (`1)T̃ (`2)T (`3)〉n

LN of connected
regions [Calabrese,
Cardy, Tonni, de No-
bile, Ruggiero, Alba,
Coser...]

ε
4k∆n 〈T (`1)T̃ (`2) · · · T (`2k−1)T̃ (`2k)〉n

EE of multiple discon-
nected regions. Little
known yet except for
free Fermions in CFT
[Calabrese & Cardy’04]
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14. Form Factors of Local Fields: Definition

Let |θ1, . . . , θk〉µ1...µk a k-particle in-state. The particles
have rapidities θ1 > · · · > θk and quantum numbers µ1 . . . µk.
Let O(0) be a local field located at the origin of space-time.
Let |0〉 = (〈0|)† be the ground state (vacuum).

Form Factor

F
O|µ1...µk
k (θ1, . . . , θk) := 〈0|O(0)|θ1, . . . , θk〉µ1...µk

=

Form factors are the building blocks of correlation functions.
If all FFs of local fields are known then all correlators of the
QFT are known (at least formally).
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15. Form Factors of Local Fields: Properties

It is easy to “shift” operators away from the origin by using:

〈0|O(x)|θ1, . . . , θk〉µ1...µk =

 k∏
j=1

eip
ν(θj)xν

F
O|µ1...µk
k (θ1, . . . , θk).

Note that p0(θj) = mµj cosh θj and p1(θj) = mµj sinh θj .

Under Hermitian conjugation:

µ1...µk〈θk . . . θ1|O(0)|0〉 = (F
O†|µ1...µk
k (θ1, . . . , θk))

∗

For local fields in integrable quantum field theory, FFs are
known to be the solutions of a Riemann-Hilbert problem and
have been computed for many models [Karowski & Weisz’78;
Smirnov’90s]
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16. Standard Watson’s Equations

F
O|...µpµp+1...

k (. . . θp, θp+1 . . .) = Sµpµp+1 (θp,p+1)F
O|...µp+1µp...

k (. . . , θp+1, θp, . . .)

F
O|µ1...µk
k (θ1 + 2πi, . . . , θk) = ωF

O|µ2...µkµ1
k (θ2, . . . , θk, θ1)
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17. Twist Field Watson’s Equations

F
T |...µpµp+1...

k (. . . θp, θp+1 . . .) = Sµpµp+1 (θp,p+1)F
T |...µp+1µp...

k (. . . , θp+1, θp, . . .)

F
T |µ1...µk
k (θ1 + 2πi, . . . , θk) = F

T |µ2...µkµ̂1
k (θ2, . . . , θk, θ1)
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18. Standard Kinematic Residue Equations

lim
θ̄0→θ0

(θ̄0 − θ0)F
O|µ̄µµ1...µk
k+2 (θ̄0 + iπ, θ0, θ1, . . . , θk)

= i

1− ω
k∏
j=1

Sµµj (θ0j)

F
O|µ1...µk
k (θ1, . . . , θk)
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19. Twist Field Residue Equations

For twist fields, the kinematic residue equation splits into
two equations:

lim
θ̄0→θ0

(θ̄0 − θ0)F
T |µ̄µµ1...µk
k+2 (θ̄0 + iπ, θ0, θ1, . . . , θk) = iF

T |µ1...µk
k (θ1, . . . , θk)

lim
θ̄0→θ0

(θ̄0−θ0)F
T |µ̄µ̂µ1...µk
k+2 (θ̄0+iπ, θ0, θ1, . . . , θk) = −i

k∏
j=1

Sµ̂µj (θ0j)F
T |µ1...µk
k (θ1, . . . , θk)

...

kµk0!0! µ

"i+

T(0)

...

µ 0! µ

T(0)

!kµkµ+10!

"i+

!

The bound state residue equations remain unchanged.
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20. Properties

Other properties of the twist field form factors, such as in-
variance under global rapidity shifts or large rapidity asymp-
totics are the same as for other local fields.

For diagonal theories, the solution procedure is also similar
as for other local fields.

It is possible to make a general ansatz based on a minimal
form factor satisfying:

F
T |µ1µ2
min (θ1, θ2) = Sµ1µ2(θ1−θ2)F

T |µ2µ1
min (θ2, θ1) = F

T |µ2µ̂1
min (θ2, θ1−2πi, )

F
T |µ1µ2

min (θ1, θ2) is a (minimal) two-particle form factor with-
out poles in the (extended) physical sheet Im(θ1 − θ2) ∈
[0, 2πn) and µ̂ = (a, j + 1) if µ = (a, j).

A special feature of the twist field form factors is that they
must all vanish at n = 1 (except for 〈T 〉n).
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21. Two-Particle Form Factor

In the absence of bound state poles, it is possible to write
a general expression for the two particle form factor, which
follows directly from this ansatz:

Two Particle Form Factor

F
T |µ1µ2
2 (θ1, θ2) =

〈T 〉n sin π
n

(
F
T |µ1µ2
min

(θ1,θ2)

F
T |µ1µ2
min

(iπ,0)

)
2n sinh

(
θ1−θ2+iπ(2(j1−j2)−1)

2n

)
sinh

(
iπ(2(j2−j1)−1)−θ1+θ2

2n

)

where µ1 = (a1, j1) and µ2 = (a2, j2).

The sin π
n term guarantees that the FF is zero at n = 1.

Repeated use of the FF equations shows that every FF may
be expressed in terms of FFs of particles in the same copy.

Also, all FFs of T̃ can be expressed in terms of FFs of T .
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22. Some Useful Identities

Due to the relationship between branch point twist fields and
cyclic permutations there are many symmetries that may be
used to related FFs of different copies to each other as well
as those of T and T̃ . Here are some examples (we use the
fact that the FFs only depend on rapidity differences):

Form Factor Properties

F
T |(a,i)(b,j)
2 (θ) = F

T̃ |(a,n−i)(b,n−j)
2 (θ)

F
T |(a,i)(b,i+k)
2 (θ) = F

T |(a,j)(b,j+k)
2 (θ)

F
T |(a,1)(b,j)
2 (θ) = F

T |(a,1)(b,1)
2 (2π(j − 1)i− θ) for j > 1

F
T̃ |(a,1)(b,j)
2 (θ) = F

T |(a,1)(b,1)
2 (2π(j − 1)i+ θ)
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23. Two-Point Functions

The computation of measures of entanglement is reduced to
the computation of multi-point functions of twist fields and
of their analytic continuation in n.

The two-point function of branch-point twist fields can be
decomposed as follows, giving a large-distance expansion:

〈T (0)T̃ (r)〉n = 〈0|T (0)T̃ (r)|0〉
=

∑
state k

〈0|T (0)|k〉〈k|T̃ (r)|0〉

where
∑
k

|k〉〈k| is a sum over a complete set of states and

|0〉 is the ground state

The matrix elements 〈0|T (0)|k〉 are the form factors

In 1+1 dimensions∑
k

|k〉〈k| 7→
∫ ∞
−∞

dθ1

2π
· · ·
∫ ∞
−∞

dθk
2π
|θ1, . . . , θk〉〈θk, · · · , θ1|
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24. Application: Exponential Corrections to EE

Recall that

S(`) = − lim
n→1

∂h(n)

∂n
with h(n) = ε4∆n〈T (0)T̃ (`)〉n

So the basic object we need to compute is the two-point
function:

〈T (0)T̃ (`)〉n = 〈T 〉2n +
∑
µ

∫ ∞
−∞

dθ

2π
(F
T |µ
1 (θ))∗(F

T̃ |µ
1 (θ))e−`mµ cosh θ

+
1

2

∑
µ1µ2

∫ ∞
−∞

dθ1

2π

∫ ∞
−∞

dθ2

2π
(F
T |µ1µ2
2 (θ1, θ2))∗(F

T̃ |µ1µ2
2 (θ1, θ2))e−`mµ1

cosh θ1−`mµ2
cosh θ2

+ · · ·
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25. Some Simplifications

Let us consider now a simple case: a theory with a single
particle in the spectrum.

In that case we can label particles just by the copy number
j = 1 . . . n.

We also know the twist field is a spinless field: one-particle
form factors are rapidity-independent and they are all equal

because all copies are identical: F
T |µ
1 (θ) := F1(n).

Two-particle form factors only depend on rapidity differ-

ences: F
T |µ1µ2

2 (θ1, θ2) := F ij2 (θ, n) and F
T̃ |µ1µ2

2 (θ1, θ2) :=

F̃ ij2 (θ, n) with θ = θ1 − θ2.

Finally, recall that all form factors are zero at n = 1.
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26. First Term: Saturation

The first term in the expansion of the two-point function is
the expectation value of twist fields. This is a function of n
which is only known for free theories.

This term characterizes saturation of EE for large sub-systems:

lim
`→∞

S(`) = − lim
n→1

∂

∂n

(
ε4∆n〈T 〉2n

)
= − c

3
log ε− 2 lim

n→1

∂〈T 〉n
∂n

= − c
3

log(εm)− U with 〈T 〉n = m2∆nUn

and U = 2 limn→1
∂Un
∂n . Note that U is a universal constant

in the sense that it does not depend on the cut-off ε, hence
can be uniquely determined for each QFT.
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27. Second Term: One-Particle Form Factor

For a theory with a single particle the one-particle form fac-
tor contribution can be written simply as

n |F1(n)|2
∫ ∞
−∞

dθ

2π
e−`m cosh θ =

n

π
|F1(n)|2K0(m`).

This provides the leading correction to saturation of the
two-point function, however it vanishes under differentiation
w.r.t. n and limit n→ 1.

This is because F1(1) = F1(1)∗ = 0.

This means that the one-particle form factors (if they are
non-vanishing) will provide the leading correction to the
Rényi entropies but no contribution to the EE.
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28. Third Term: Two-Particle Form Factor

For a theory with a single particle two-particle form factor
sum can be simplified as:

n∑
i=1

n∑
j=1

(F ij2 (θ, n))∗(F̃ ij2 (θ, n)) = n

n∑
j=1

(F 1j
2 (θ, n))∗(F̃ 1j

2 (θ, n))

because all copies are identical. Using the identities we saw
in the previous lecture:

n
n∑
j=1

(F 1j
2 (θ, n))∗(F̃ 1j

2 (θ, n)) = n
∣∣F 11

2 (θ, n)
∣∣2+n

n∑
j=2

∣∣F 11
2 (−θ + 2πi(j − 1), n)

∣∣2

= n(
∣∣F 11

2 (θ, n)
∣∣2 − ∣∣F 11

2 (−θ, n)
∣∣2) + n

n−1∑
j=0

∣∣F 11
2 (−θ + 2πij, n)

∣∣2

The derivative at n = 1 of the first term will be zero because
F 11

2 (θ, 1) = F 11
2 (θ, 1)∗ = 0. So it will contribute to the Rényi

entropies but not to the EE.
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29. In Summary: Leading Correction to EE

In summary, we need to compute

−
1

4
lim
n→1

∂

∂n

∫ ∞
−∞

dθ

2π

∫ ∞
−∞

dβ

2π
n

n−1∑
j=0

∣∣F 11
2 (−θ + 2πij, n)

∣∣2 e−2m` cosh θ
2

cosh β
2


with θ = θ1 − θ2 and β = θ1 + θ2.

The integral in β can be carried out giving a Bessel function.
So, we end up with:

− lim
n→1

∂

∂n

∫ ∞
−∞

dθ

(2π)2
n

n−1∑
j=0

∣∣F 11
2 (−θ + 2πij, n)

∣∣2K0(2m` cosh
θ

2
)


In order to take the derivative, we need to somehow get rid
of the sum up to n− 1.

A well-known way of doing this is to use the cotangent trick.
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30.Cotangent Trick I

The idea is that the sum may be replaced by a contour in-
tegral

1

2πi

∮
dzπ cot(πz)s(z, θ, n)

with s(z, θ, n) =
∣∣F 11

2 (−θ + 2πiz, n)
∣∣2, in such a way that the

sum of the residues of poles of the cotangent enclosed by
contour reproduces the original sum.

Here the red crosses represent the poles of the cotangent at
z = 1, 2, . . . , n− 1 and the blue crosses represent other poles
in the contour due to the kinematic poles of the function
s(z, θ, n) at z = 1

2 ±
θ

2πi and z = n− 1
2 ±

θ
2πi .

We shift iL → iL − ε so as to avoid the pole at z = n. It
includes z = 0 but this does not affect the result.
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31.Cotangent Trick II

Since s(z, θ, n) decays exponentially as Im(z) → ±∞ so we
can show that the contributions to the contour integral of
the horizontal segments vanish.

The contribution of the vertical segments can be written as:

− 1

4πi

∫ ∞
−∞

(S(θ − β)S(θ + β)− 1) coth
β

2
s(β, θ, n)dβ

where β = 2πiz and S(θ) is the S-matrix. Here we used the
property s(z + n, θ, n) = S(θ − 2πiz)S(θ + 2πiz)s(z, θ, n).

Note that this is zero for free theories. Its derivative at n = 1
is zero for similar reasons as before.

Finally we are left with the contributions from the residues
of the kinematic poles. They give:

tanh
θ

2
Im
(
F 11

2 (−2θ + iπ, n)− F 11
2 (−2θ + 2πin− iπ, n)

)
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32. Derivative

The only two-particle contribution to the derivative comes
from:

Im
(
F 11

2 (−2θ + iπ, n)− F 11
2 (−2θ + 2πin− iπ, n)

)
tanh

θ

2

Based on previous observations, it would seem that this
should be zero as F 11

2 (θ, 1) = 0. However, something special
happens to this function as n→ 1 and θ → 0 simultaneously.

This can be best understood by doing some simple numerics
...
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33. Ising & Sinh-Gordon Models

The sum n
∑n−1

j=0

∣∣F 11
2 (−θ + 2πij, n)

∣∣2 for θ = 0 in the Ising
model (blue) and the sinh-Gordon model (red).
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34. Delta Function

Near θ = 0 and n = 1:

Im
(
F 11

2 (−2θ + iπ, n)− F 11
2 (−2θ + 2πin− iπ, n)

)
tanh

θ

2

∼ −
1

2

(
iπ(n− 1)

2(θ + iπ(n− 1))
−

iπ(n− 1)

2(θ − iπ(n− 1))

)
∼
π2(n− 1)

2
δ(θ).

Putting this result back into the θ integral and differentiating
w.r.t. n we obtain the two-particle form factor contribution:

−1

8
K0(2m`)

The result is striking for its simplicity. From the derivation
we see that it follows from the pole structure of the FFs,
which is universal.

For this reason the same result can even be found for non-
integrable 1+1 dimensional models [Doyon’09].
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Conclusions & Open Problems

Branch point twist fields provide a powerful approach to the
computation of partition functions in non-trivial geometries,
which are related to measures of entanglement in QFT.
There are many interesting open problems to be addressed
within this approach:
◦ Measures of entanglement in higher dimensions: can one

define twist fields?
◦ Measures of entanglement in excited states: more generic

matrix elements of twist fields
◦ Generic understanding of analytic continuations of replica

partition functions: analytic structure of form factors and
correlation functions

◦ A more complete set of form factor solutions for integrable
models: computation of higher-particle form factors for
diagonal theories

◦ The study of multi-point functions: are there any simple
universal features?

◦ Other twist fields: pentagonal amplitudes? [Basso, Sever &
Vieira’14]
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