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Geometry of "flux attachment” in
the fractional quantum Hall effect.
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® Flux attachment as emergent gauge-field with
geometry

® Geometry and energy of the “flux attachment” that
forms “composite particles”
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® |andau level geometry
® |aughlin state, unsolved problems

® why is QHE (gapped 2+1) well represented
by 2d cft?

® status of projector models with conformal
block ground states
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® The quantum Hall fluid in a Landau level on
the flat plane

H= Y ep) + Y Vi) ;

1< €s
. . €1
® Put it on the flat Euclidean plane

representing a lattice plane in a crystal

1 2 _a using covariant/contravariant spatial
r — T 61 _I_ X 62 —— ea indices with summation convention
to make any metrics explicit
. 0 A, () y p
=e, p=—1th— —cA,(x
a a a
Ox?®

. . ea * eb — 5ab
® time-reversal symmetry is broken by a /

if tic flux density th h plane:
HNITOrM MagnELIc TIX density Throtgh Plane. £ clidean metric of the plane

EabﬁaAb (a’,‘) =5 antisymmetric 2d Levi-Civita symbol

® Define orientation of plane so eB > 0 €y X €p = €qpM
(so €4 is odd under time-reversal)
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z°, fl?‘b] =0 x pp| = 1hdy Pa,DPv| = theBegy

Kronecker symbol
(not metric)

® symmetries: spatial translation symmetry

® spatial inversion symmetry plays a fundamental
role in the QHE: we will impose

® full O(2) rotational symmetry defined by a metric is hot a
fundamental symmetry of the QHE, and will not be required.
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z°, Ib] =0 % pp| = 1hdy Pa, Dv| = theBegp

® spatial translation and
Inversion symmetries

Landau orbit radius vector 2% is the
RY — (eB)~ 1€abpb area per
quantum of
Landau orbit guiding center magnetic flux
RG’ZZL‘CL—RG’ <I>0:h/e
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® will also specify that e(p) = e(p1,p2) is an_entire

function of each component of p (e.g.a polynomial)
and

® has a unique minimum at p = 0 with no other

stationary points (this ensures a simple Landau-level
structure)



® semiclassical Landau quantization

like phase space
D, Pyl = theB

i There is no reason that

Landau orbits with different

-y > D, index n should be congruent
L (have the same shape)

semiclassical Landau levels are localised on
contours of constant &(p)

that enclose momentum-space area 2mwheB(n + %)

(analog of Bohr-Sommerfeld quantization)
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® Quantum treatment: Pz, Py| = iheB

1
usual model h = - ((p2)? + (py)?)

(harmonic oscillator, separable)

generic model h = &(pz, py)

(bivariate non-separable function
of non-commuting coordinates)

® TJo be well-defined, 8(p) must have an absolutely convergent expansion in p -

Po for all (c-number) po, so must be an entire function of both px and py, e.g.a
polynomial,
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® macroscopic degeneracy of Landau levels

[Ra7 g(p)] =0

e@)|Vna) = En|¥na)
/

basis within degenerate Landau level

® one independent state for each quantum of
magnetic flux through the plane
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® (Coherent states of a Landau orbit are
defined by a guiding-center metric

® The coherent state centered at the origin is
defined by

e(P)|¥n(0,9)) = E,|¥,(0,9))
§abRaRb v,,(0,9)) = /(det g)(gB)Q‘\Ijn(Oa§)>

® we can always choose the metric to be
unimodular (determinant = 1),as it just

defines a complex structure z(x,y)

coherent states minimize the '
uncertainty of the guiding center
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® factorization of a metric to define a
complex structure

% (gab -+ ZG@,b) — 6265 detg — 1

-

\_

example
éab — 5ab

~N

= \/2 (1,4)

(Euclidean metric)

J

N

a complex vector

z25(x,y) = e,z /lp

a unimodular metric defines a

(dimensionless) complex structure
(up to a U(I) ambiguity)
z > ez




® The Schrodinger wavefunction of a Landau
level coherent state defined by a metric has

the form

o\ — L ¥
n (2, y)rz fn(275g)e 27 7

a holomorphic function of z* that depends

of the choice of guiding-center metric to

define the coherent state

® so far, we have complete freedom of choice
to choose this metric: is there a “natural

choice”?
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® Yes, the natural choice of metric is provided
by the “Hall viscosity tensor” of the Landau
orbit:

< na‘Q{paapb}|ana> — ZWhn(n)

® viscosity is the linear relation between stress and
flow-velocity gradient. Stress is a mixed-index
tensor (momentum current density) which is
traceless in gapped incompressible quantum fluids

a acC p— bf _
Op — nbd Cvd nbd Eaee n{be}{df} 77?5 o _ng(g

stress velocity gradient  Traceless condition dissipationless

Uﬁb}{cd} 5 (Nac€bd + Nad€e + Mbc€ad + Md€ac)

rank-2 symmetricZ—lall- \
rank-4 tensor

viscosity tensor odd under time-

odd under time- .
even under time-reversal reversal

reversal
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® every Landau level has a “natural metric”
proportional to its Hall viscosity tensor,
which characterises its shape

® |t also has a natural effective mass tensor
defined by its reponse to polarization:

L(v)=v-p—e(p) Lagrangian operator

L(0)|Vpa(v)) = Lp(v)|¥ha(v))

L,(v)=—-F,+ m( )va’vb+0(v4)

® finally, it also has a topological spin
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® special case, rotationally invariant Landau
levels:

-*z general n, coherent state
2"z n=0, coherent state

<
S
—~
j‘%
~—
R K
QD —~
N
x
~
S
C.Dl
N

V(z,y) = f(z)e—%Z*z n=0, general state

This structure is non-generic, only applies to
case where ¢(p) has rotational symmetry.
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® Filled LLL (rotational symmetry)

U =]](zi —2z) [Je 25>

1<J

inspiration for Laughlin

TN | (L

i<
conformal block
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® quartic polynomial case

1.0 c|a§s | 10 c|a§s Il
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& 00} z 00
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Figure 2.7: Contour plots in the momentum space of a typical member in each class
of the quartic term. The quartic terms are 1) {5p? + p2, p? + 5p3}, 1) {p?,p? + p3},
II1) {p?,p3} and IV) pi. Notice that only the contours for class I are closed.

Thursday, August 3, 17



Thursday, August 3, 17

’ 2

Figure 3.5: Contour plots of In |WUyy(z, 2*)|* where Wig(z, 2*) is the coherent state in
the 10th Landau level for class I quartic term (2.45) with ¢ — 1 =4 > 2 (top) and
c—1=1< 2 (bottom). Both plots show piece-wise contours with the four spikes
and the line charges as branch cuts. Another common feature is the existence of four
maxima along the directions of the central cross and four saddle points along those
of the spikes. Despite the similarities, the two plots also show qualitatively different
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Figure 3.6: A “ridge” (dashed) defined as the boundary between two regions where
the gradient field flows to the origin (inside) or infinity (outside). The roots are those
of the coherent state in the 10th Landau level for class I quartic term with ¢ —1 = 2.
Contours are also shown. Notice that the local maxima and the saddle points are all
right on the ridge. The area enclosed by the ridge is mn, corresponding to an area
of 2rheB on the momentum plane, which is consistent with (shifted) semiclassical
quantization.



® The effective continuum Hamiltonian is

H = ng@ +ZV i — ;)

1<

® The model has 2D inversion symmetry if
e(p) = e(—p)

® The only role played by the Euclidean metric of the inertial
background frame is the non-relativistic criterion

Oc

00?2 v (p) = a—pa
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Generic model with translation and inversion
symmetry only, no rotational symmetry

H=Y clp)+)» Vizi—=) e(p) = e(—p)

affected by elastic / 1<J

degrees of freedom

® twol|distinct unrelated\sources of geometry

€ -
Sox ©)
shape of Landau orbit around equipotentials around point charge

guiding center (from 3D dielectric tensor)
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® The “holomorphic lowest Landau level
wavefunction” is a property of a SO(2)
rotationally-invariant system:

r=R+R R*, R®] = —il%e%
[Ra, Rb] — (%€
R*, R’] =0

angular momentum

il .
L — —25ab(RaRb — RaRb)
202
= 2h(a'a — b'D)

guiding center Landau level

Two sets of ladder operators:
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® Now write the Laughlin state as a
Heisenberg state, not a Schrodinger
wavefunction:

. R" +iRY

W) o< [[(al —al)™0) a0y =0 o

1<

/205

b;|0) = 0 lowest Landau level condition

In the Heisenberg form, we see that the LLL
condition is quite incidental to the Laughlin
state, which involves guiding-center correlations
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® The fundamental form of the Laughlin state
does not reference the details of the
Landau level in any way:

Wy R
W (g)) H a, — a, )m|0> a;|0) =0 a' = /205
1<9
Wy = % (Gab + P€ap) detg =1

a unimodular Euclidean-signature metric that
parameterizes the Laughlin state

® The historical identification of this metric
with the Euclidean metric is unnecessary
unless there is SO(2) symmetry.
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® TJopological states of matter have been a
major theme in the recent developments in
understanding novel quantum effects.

® key questions are: why do they occur,what
features of materials favor such states, and
how can we understand the energetics that
drives their emergence.

® | will principally discuss the fractional
quantum Hall effect, but this is a general
question
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® thirty years after its experimental discovery and
theoretical description in terms of the Laughlin
state, the fractional quantum Hall effect remains a
rich source of new ideas in condensed matter
physics.

® The key concept is “flux attachment” that
forms “composite particles” and leads to
topological order.

® Recently, it has been realized that flux attachment
also has interesting geometric properties
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® | will talk about what has been interesting me
for the last few years:

® What is an “incompressible quantum fluid”
such as the one described by Laughlins
wavefunction.

® What “fluid dynamics’ describes it?
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H=3clp) + [ G2V (@ e

1<]

® [ andau level form-factor
This is a rapidly-decreasing

fn(Q) — <¢na ‘eiq.(m_R) |¢na> (Gaussian) functicy:n of g

® After projection into (any) single Landau level

: '
H=) Vi(Ri—R)j)  viw= [ L0

= 27 \
1<.J
Fourier transform of bare
V\:‘ v (e.g. Coulomb) interaction
a very smooth function:

in fact it is an entire function
of both x! and x?

I~ The“entire” property is needed
because (R} — R!) and (R} — R}) do not
commute
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® Girvin-Macdonald-Platzman Lie algebra
N

plg) =) Tt

0(2), p(a)] = 2isin(iq x q')p(q + )

® g = 0 generator = N, is in kernel.

i [Ta Tqy, n 2)(2p(@)p(—q))

rapidly- decreasmg (Gaussian) function at large ¢g
(Fourier transform of an entire function)
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® “compactification” on the torus
L c{mL;+nLy} L1 x Ly = 2r Nol%

Bravais Lattice of periodic translations

® reciprocal lattice (discrete set of allowed wavevectors)

6iq'L =1 L = Laea €q " €Ep — 5ab
Euclidean metric
b Y
GabL
QagB c { >
Nolp

® reciprocal vectors @i and g2 are equivalent if

1 — q2 = Nag
9 1@ 9
® There are (Ns)“distinct reciprocal
vectors in a “Brillouin zone” g = Ot i
® a reciprocal vector qis even if g is
. . r .
also an allowed reciprocal vector
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® the Inversion-symmetric pbc Is
(e 1) 0 W) = n(q)™ | @)

n(q) = 1 if q is even, —1 if not.

® why is there a Brillouin zone!

® The pbc means the allowed translations
compatible with the pbc are L /N

® In fact, we can with full generality work only on
this lattice.
< naive formula based in the

<wl‘w2> — dZQ/\WCiZ* (fl (Z))*fQ(Z)e_Z © idea that these are

Schrodinger wavefunctions

1
N<I>

/

sum over € = L/Ng in the unit cell

(fl( ))* fa(z)e™* 7
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® for N =pN, Ng=¢gN ged(p, q) =1

1=1
many-body translation quantum () number takes (N)2 distinct values

If N is even (odd), one (four) of these have inversion symmetry

« 1s a g-fold exact topological degeneracy

Thursday, August 3, 17



many-body Q lives in a “Brillouin zone” of N = ged(N, Ng) points

OTITO
® [ 1d @

NN YRET)

N even N odd

® quantum Hall states always have inversion-
symmetric Q).

o [f they occur only at () =0, the elementary
droplet has p particles with flux attachment ¢

® |f they occur on the zone boundary, p and q
must be doubled and N halved (e. g., Moore-

Read state) p/q=1/2 — 2/4
The physical FQH (as opposed to algebraic) p, ¢ obey

gcd(p, q) < 2
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0.9 M ' ' ' %ﬁ%ﬂ%@%oﬁ Lt
. t 08 I ﬂ I E&ﬁﬁ¢+#¢ i
oes INTto ¢ el t e A
g . 4_/ % \ |
continuum 5 . .
o | Y (2 quasiparticle -
= + 2 quasiholes) .
T ¢ Wﬂwﬁ% B fermionic
0s | roton | “roton” ¥
il | . Moore-Read
01 ]
I 0 0
lp

gap «<— incompressibility

Collective mode with short-range three-body
pseudopotential, |/2 filling (Moore-Read state is
exact ground state in that case)

Collective mode with short-range V+
pseudopotential, 1/3 filling (Laughlin state is
exact ground state in that case)

® momentum 7k of a quasiparticle-quasihole pair is
proportional to its electric dipole moment pe

hk, = e, B pg

gap for electric dipole excitations is a MUCH stronger
condition than charge gap: doesn’t transmit pressure!

(origin of Virasoro algebra in FQHE ?)
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<p(q)> — Nn(q)NcI) 5(];0 expectation with a

translationally- invariant

_ Ng P inversion-symmetric densit
- VN(I)n(q) 5q,0 matrix ’ !
!/ .
5P — 1 equ(ql_qQ) . .
qdi.,qg2 N 2 =1 is g1 and @ are equivalent,
(Ne) q = 0 if not

dp(q) = p(g) — Nn(q)"*65 0

® Guiding-center structure function (2-point
function)

(0p(q)0p(—q)) = NoSgc(q) Seo = V(1 +&v)

+1 for fermions/bosons

® for an uncorrelated state
SgC(Q) — Soo =0 (5(1;0 — O)
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® for an completely uncorrelated (mixed) state
SgC(Q) — Soo =0 (5(1;0 — O)

® for a correlated pure state g, (q) — S, isa

rapidly-decreasing function away from the center of
the (geometric) Brillouin zone (defined by a metric)

® for gapped FQH state (topologically degenerate

multiplet)
limy_,0 Sgc(Ag) — AT UHPHtedb g g,q.qqal%

First discovered by GMP

[Habhicd}l} §g positive,
[{ab},{cd}]

satisfies a bound involving the Hall viscosity tensor v

This bound seems to be saturated in contformal-block models
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® For a (commutative) 2D liquid with density no
1

- iq-(ri—7;)
(o) = 5 e
sy
1 d*q .
1 = __TeWdT(g — 1
gjr) Sy 5 € ( i‘I) )
pair correlation standard structure

function factor

® For the guiding-center liquid, there is a self-duality
d2 /62 . o /
Sgc(Q) _Soo :€/ gﬂ_Beququ (Sgc(Q) _Soo)

/ P = b /eiq-(Ri—Rj)

+1 (fermion/boson) a
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® rotationally-invariant states have a global
metric, are eigenstates of

1 ~ a
L= 5fa ) RIR;
B i

2:~ab

® 5.c(q)is afunction of ¢° = g"quq

analytic on real-¢* axis

® conjecture: for conformal block states Sqc(q) is
an entire function of ¢
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1
1 12
H =3l (Zﬂnb.zﬁ;m )

1<J

(2

® Laughlin state and 2D OCP (log plasma)

WP o | [] 12— 2P e 2™
)

1<J

1
s

Boltzmann factor of Plasma has no branch
cuts when 1 is an even integer

entire

S(q) — 1 qg 1 4 6
Debye-Huckel pole near ¢° = =7 (small T')
1
S(g)=1-e 217" (1 -v7155(q)) S:im
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® conjecture: The OCP at even integer  has
a pair correlation function that decays more
rapidly that any exponential, (e..g as a
Gaussian) and hence hs a structure factor
that is and entire function of |q|?.

® This implies that the guiding-center structure
factor of the Laughlin states are also entire
functions of |q|*

® |n turn, this suggests that the guiding-center
structure factors of all conformal-block
model FQH states are entire functions of |q|*

However, “generic” rotationally-invariant FQH states
may be expected to have singularities in the structure

factor off the real -positive |q|? axis
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Becomes a
“fuzzy object”
after kinetic

| — . energy is quantized
cyclotron ...e- magnetic flux

orbit ; * density B normal
' X : — X

\\ to 2D surface ==
< >

guiding center

® clectron in 2D Landau orbit
(bound to 2D surface)

non-commutative geometry
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U — H(Zz _ Zj)?’ H o~ 3% %  Laughlin 1983
1

1<J
® clegant wavefunction, describes topologically-
ordered fluid with fractional charge fractional
statistics excitations

® exact ground state of modified model keeping
only short range part of coulomb repulsion

® Validity confirmed by numerical exact diagonalization

30 years later: my answer:

unanswered question: hidden geometry
we know it works, but why!?

Thursday, August 3, 17



some widespread misconceptions about the Laughlin state

No Landau level was specified: all

® “‘it describes Particles in thespecifics of the Landau level are
lowest Landau level” hidden in the form of U(712)

Non-commutative geometry has no
L Schrodinger representation (this
wavefunction requires classical locality); it only has
a Heisenberg representation.

® “It is a Schrodinger

® “|ts shape is determined by

the shape of the Landau The interaction potential U(7i2)
orbit” determines its geometry (shape)

® “|t has no continuously-

tunable variational Its geometry is a continuously-
parameter” variable variational parameter
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a b b Inverse
RY), (R — R) W)

i _

metric

Fundamental symmetries of the
incompressible quantum fluid

RY, Rj] = ie"lp

® Particle-number conservation
® translations R - R+ a
® spatial inversion R+ _ R

® Nothing else! (no rotation or Galilean symmetry)
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® Anatomy of Laughlin state

| ith “fl - ith chi
electron with “Tlux Chiral edge mode with chiral anomaly

attachment” .
to form a “composite and Virasoro anomaly

boson”

geometric
edge dipole moment
determined by Hall
viscosity

------
-
- RS

~ g
~ -
------

fractionally-charged

e/3 quasiholes obeying

(Abelian) fractional
statistics

Topological and geometric bulk properties
revealed by entanglement spectrum of cut
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® the essential unit of the |/3 Laughlin state is the
electron bound to a correlation hole corresponding
to “units of flux”, or three of the available single-
particle states which are exclusively occupied by the
particle to which they are “attached”

® |n general, the elementary unit of the FQHE fluid is

a ““‘composite boson” of p particles with q “attached
flux quanta”

® This is the analog of a unit cell in a solid....
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® The Laughlin state is parametrized by a unimodular metric:
what is its physical meaning?

correlation holes
in two states with
different metrics

® Inthe v =1/3 Laughlin state, each electron sits in a

correlation hole with an area containing 3 flux quanta.
The metric controls the shape of the correlation hole.

® |nhthev =1 filled LL Slater-determinant state, there is no

correlation hole (just an exchange hole), and this state
does hot depend on a metric
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® quantum solid

® unit cell is
correlation hole

® defines geometry

® repulsion of other particles make an attractive

potential well strong enough to bind particle

solid melts if well is not strong enough to contain
zero-point motion (Helium liquids)
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® similar story in

-- -
- L

-
-
- ] ~
~
PR

-
~~~~~
______

- - .
.- S
-

-
~~. -
------

S -7
.......

- . . oy
—"‘ i
.

-
-~ -
i R

-- -y
"’ -.
‘f ~

"
-
.......

® continuum model, but | | |
similar physics to Hubbard ® new physics: Hall viscosity,

model
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but no broken symmetry

® “flux attachment’” creates

correlation hole

® defines an emergent
geometry

® potential well must be
strong enough to bind
electron

geometry............



3
® composite boson: if the central P2 ) = H (ag — aT-) 0)
orbital of a basis of eigenstates of i<
L(g) is filled, the next two are empty

® this correlation hole is equivalent to
“attachment of three flux quanta” or
vortices that travel with the particle,
generating a Berry phase that cancels
the Bohm-Aharonov phase and
transmutes Fermi to Bose exchange

statistics.
different
e this shape of the corelation hole - and metrics
hence its correlation energy - varies T

with the metric g
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® Origin of FQHE incompressibility is analogous to origin
of Mott-Hubbard gap in lattice systems.

® There is an energy gap for putting an extra particle
in a quantized region that is already occupied

® On the lattice the “quantized
region” is an atomic orbital with a % ---- .

fixed shape e ‘
® In the FQHE only the area of e
the “quantized region” is fixed. egz{'gy galp |'i)revents
. t t
The shape must ad]USt to additional electrons

.. . from entering the
minimize the correlation energy. region covered by the

composite boson
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1/3 Laughlin state If the central orbital is filled,
the next two are empty

The composite boson
e, has inversion symmetry
TR about its center

-~ »
------

It has a “spin”

1 3 5
2 2 2
1 ()‘() ..... L=1
_ 3
- |4 %H ..... - L=23
s =—1

the electron excludes other particles from a
region containing 3 flux quanta, creating a
potential well in which it is bound
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2/5 state

1 3 5
2 2 2
1 1‘0 0l0 |-~ 7 -9
| 2 z‘z 2 [2]... —L=5
5} D 515 5]
s = -3

Q@ = [ drititiotr) = st

second moment of neutral
composite boson
charge distribution



hopping of a “composite fermion” (electron + 2 flux quanta)
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2/5 boson is quasiparticle of /3 state 1/3 boson is quaS|hoIeof 2/5 state

Jain’s “pseudo Landau levels”
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® The composite boson behaves as a neutral
particle because the Berry phase (from the
disturbance of the the other particles as its
“exclusion zone” moves with it) cancels the
Bohm-Aharonov phase

® |t behaves as a boson provided its statistical spin
cancels the particle exchange factor when two
composite bosons are exchanged

p particles

(—1)P? = (—1)P fermions
gorbitals (—1)PY1=1

bosons
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W= =
PR e LN

.

P

® The metric (shape of the composite boson) has a
preferred shape that minimizes the correlation energy, .= \

but fluctuates around that shape _ .9
0F o (distortion)

® The zero-point fluctuations of the metric are seen as
the O(¢*) behavior of the “guiding-center structure

factor” (Girvin et al, (GMP), 1985)

® |ong-wavelength limit of GMP collective mode is
fluctuations of (spatial) metric (analog of “graviton™)

FDMH, Phys. Rev. Lett. 107, 116801 (201 1)
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® An “intrinsic metric’ measures lengths in
dimensionless units, like unit cells in a solid

® to describe the “intrinsic metric tensor’” we
need a coordinate system

® |t could be the Euclidean Laboratory frame,
but doesn’t have to be!

[
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Laughlin’s model wavefunction has provided the inspiration for the
modern understanding of the fractional quantum Hall effect

Thursday, August 3, 17

\Ifocl_[(z—zij 177 /45

1<J
It has a striking holomorphic form that is generally attributed
to “Lowest Landau Level physics”

It has a natural interpretation in terms of “flux attachment”

It involves a “complex structure” z = x+iy that defines a
unimodular metric on a Riemann surface

It has the rotational symmetry of this metric, and has been
recognized to be mathematically equivalent to a “conformal
block™ of a 2D conformal field theory



| will give a somewhat heretical reinterpretation of the Laughlin state

® Despite what Laughlin told us, its holomorphic
structure has nothing to do with the electrons
being in the "l owest Landau Level”

® |t should not be regarded as a “wavefunction”,
but as a Heisenberg state of guiding centers,
which obey a “quantum geometry”

® |t was proposed as a “‘trial wavefunction” with
no apparent variational parameter: it does in
fact have such a parameter:its metric.
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Perhaps one of the most surprising (and very
fruitful) aspects of the Laughlin state is its
connection to conformal field theory.

Its “conformal block™ property was noticed as
an empirical observation, but has never really
been explained.

Incompressible (bulk) FQHE states are
essentially unlike gapless cft’s (the

conformal group here is the “(2+0)d”
conformal orthogonal group, not the “(1+1)d”
Lorentz variant)



® The conformal orthogonal group CO(2) is a profound local

Thursday, August 3, 17

extension of the global SO(2) rotation group (that can be
regarded as “the rotation group on steroids” !)

non-generic “Toy models” with CFT properties are
particularly simple to treat, because the CFT makes their
generic topological properties easy to expose, but the
topological properties do not require conformal invariance

| will argue that SO(2) rotational invariance is a “toy
model” feature that should not be part of a fundamental
theory of the FQHE, just as the SO(3) and Galilean
invariance of the free electron gas should not be part of
the theory of metals.



® The “standard model” for the QHE is
usually taken to be the Galileian-invariant

Newtonian-dynamics model ,, - _mai — eAy(z)
aj(l
2 : b E : 2 1
H 50’ 1ar-t
PiaPib dmege d(x;, ;)

1<

d(@1,x2)" = dap(2] — 25)(2] — 23)

\

Euclidean metric of 2D plane

(derived from the spatial metric of an inertial frame in which the
plane on which the electrons move non-relativistically is embedded)

Cartesian coordinates g — x%¢, e, e, = 04}
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® However, the continuous translational symmetry
“plane” on which the electrons move is an
emergent symmetry of a low-density of electrons
moving on a crystal lattice plane, and generically
does NOT have the rotational invariance of
Newtonian dynamics

® The only generic point symmetry of a crystal
plane is 2D inversion (180° rotation in plane)

= 2D plane of epitaxial quantum well
embedded in 3D crystal
L
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® The effective continuum Hamiltonian is

H = ng@ +ZV i — ;)

1<

® The model has 2D inversion symmetry if
e(p) = e(—p)

® The only role played by the Euclidean metric of the inertial
background frame is the non-relativistic criterion

Oc

00?2 v (p) = a—pa
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Generic model with translation and inversion
symmetry only, no rotational symmetry

H=Y clp)+)» Vizi—=) e(p) = e(—p)

affected by elastic / 1<J

degrees of freedom

® twol|distinct unrelated\sources of geometry

€ -
Sox ©)
shape of Landau orbit around equipotentials around point charge

guiding center (from 3D dielectric tensor)
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® The “holomorphic lowest Landau level
wavefunction” is a property of a SO(2)
rotationally-invariant system:

r=R+R R*, R®] = —il%e%
[Ra, Rb] — (%€
R*, R’] =0

angular momentum

il .
L — —25ab(RaRb — RaRb)
202
= 2h(a'a — b'D)

guiding center Landau level

Two sets of ladder operators:
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® Now write the Laughlin state as a
Heisenberg state, not a Schrodinger
wavefunction:

. R" +iRY

W) o< [[(al —al)™0) a0y =0 o

1<

/205

b;|0) = 0 lowest Landau level condition

In the Heisenberg form, we see that the LLL
condition is quite incidental to the Laughlin
state, which involves guiding-center correlations
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® The fundamental form of the Laughlin state
does not reference the details of the
Landau level in any way:

Wy R
W (g)) H a, — a, )m|0> a;|0) =0 a' = /205
1<9
Wy = % (Gab + P€ap) detg =1

a unimodular Euclidean-signature metric that
parameterizes the Laughlin state

® The historical identification of this metric
with the Euclidean metric is unnecessary
unless there is SO(2) symmetry.
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® The original form of the Laughlin state is a finite-size droplet of N
particles on the infinite plane.

® Somewhat confusingly, in this droplet state the metric parameter
fixes both the shape of the droplet state and the shape of the
correlation hole around each particle formed by “flux attachment”:

------
----------------
- -y
- b B
- ~
- -~
- ~
- ~ o~
” ~

P &
] correlation !
' [ ]
3 hole '

-
o -
~ s
~ -
~ -
-, -
.....
-------
-------------

edge of droplet
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® to remove the edge, compactify on the
torus with Ng flux quanta:

® An unnormalized holomorphic single-

particle state has the form
No

) = f@r — w)o), Zw 0

Weierstrass sigma function
o(z) =z [ (1 - ) exp(f + 3(£)*)

L#£0

Filled Landau level N = Ng

WalledLL) = 0(D_.a; HU a, —CL )10)
1<J
independent of choice of metric, after normalization
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® |aughlin state on torus (v =1/m, m > 1)

(@) o | [[oCal —wy) | []otal =)o)

1<

Topological degeneracy parametrized by wj ij =0

® Unlike the filled LL state, the Laughlin state
does depend on the metric, which characterizes

the shape of the correlation hole (flux
attachment).
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® The Laughlin state is indeed a variational
trial state, we must choose its metric to
minimize the correlation energy

H |fn zq (R RJ)
27752
z<j
rec procal vector
Fourier transform Landau-level compatible with

of interaction tormofactor pbc

® Note that the residual two-body interaction
between guiding centers always has 2D
Inversion symmetry.
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® The Laughlin states are also the exact zero-
energy ground states of the metric-
dependent “pseudopotential” interaction

H(j) = Z ( 2 VoL (@*65)e 5q2€23) D et
m’<m 1<

C]2 — gabQCLQb
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® Degenerate (flat) Landau levels

H=) U(R; - R))

empty/ i< 7

oo o partially occupied

000000020 filled

R*, RY] = —il%

U(R; — Ry;) | quantum dynamics comes
t from non-commutativity

effective Coulomb
repulsion is analytic at

origin because of
smoothing by Landau-

orbit form factor
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This is the entire problem~—__
nothing other than this matters! //\

® H has translation and H = Z U(R; — R;)

inversion symmetry t<J ,
R* RY| = —u/

(BT + R3),(R] — R;)] =0 | f | B

like phase-space,
has Heisenberg
uncertainty principle

[H7 ZZRZ] =0

® genefator of translations and want to avoid
electric dipole moment! this state
NN .
(R — R3), (RY — RY)| = —2il};, [ > / N \8 P

® relative coordinate of a pair of

particles behaves like a single .
particle two-particle energy levels
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A
® Solvable model! (“short-range pseudopotential”) E2 symmetric %(A—i—B)
( )2 o (r19)2 antisymmetric %B
L 7“12 202
U(’r12)— (A‘I_B( B ))6 B OJ— rest all 0

® m=2:(bosons): all pairs
avoid the symmetric state

m
T CLT ‘O> E, = '2(A+B)
2 J
¢+ RY4+1RY
@i = V205 ® m=3: (fermions): all pairs
avoid the antisymmetric
[a“ ] — 5,” state E; = 2B

maximum density null state
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® Furthermore, the local electric charge
density of the fluid with v = p/q is

determined by a combination of the
magnetic flux density and the Gaussian
curvature of the metric

Jo(z) = — (peB sKg(:c)>

" 2ng h/

Topologically quantized “guiding center spin” Gaussian curvature of the metric
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In fact, it is locally determined, if there is an
inhomogeneous slowly-varying substrate
potential

H=% v,(Ri)+» Vu(R; — R;)

1<

d .
] E|O| mation
1 o ! LI “ " s" . . S
1 1 ' ' 1 V4 1
S LR S LA DO
l" . IR . 4 . 4 V2
v ‘: \‘l \." -=’ -=’ Yeu?
o 7% -~ A
[] ! A W4 LR PRk .=
g1 v ' St R >
1 1 ! ! L4
1 1 1
1
l" . [ D O A PO, S Y
v ‘.. ‘f" ‘~' ''''''''' -
n ST s L -
I' 1, '4 ~ '4 ~ -=-
ot L ) Soe A -
1t ) v 1
P! . 1 2t =" '
A 'l"l“ 2R TN JOR O v » :l:
P V2R S " Yan’ ‘e’ Yaa?
n
- » - -" -
A S . -

[ ~
1 l“‘ -

4 4
4
''''''''''''




® “skyrmion”-like “cone”-like structure
moves charge away from quasihole by
introducing negative Gaussian curvature

-
- "-!
-, = 1

L § -
~\' 1 “.ﬂ' ¢
1 P 1 1
1 ., A 1
\ . (W ] , ° °
1 S0 ’ LN L4
] - (TR P ot
- id .5‘ ' S Sar 1
| SNet= + ¢ "o L SN
1 - 4 . 4 ~ ]
" - ' ! =
B Voot y A
e N
- 4-.5

‘
1
L4 x4
- [
1
. o - .
Y o
V4 -
1 24
L v ! e
» 1, ‘.
< 1 Y
LN 1
. 1 ps L4
\‘I' ] - e™s ]l v s s s s s s s s s sEsss.
.’
~.., ~. 1, |
-.~ '—--N ----- 1y
*  Samm” -« Ymm=” ‘ / ARN ° .
: S T : dist
e T AN R . istance
- L 1 ;‘\\ f) P -~ 4 )
-

P St PR A 1Y \ from center
TAlemd T in an effective theory,
Lo core of quasihole may collapse

into a cone singularity of the metric.

Ny w
-------
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One final result

I”

® In the “trivial” non-topologically-ordered
integer QHE (due to the Pauli principle)

¢ = 1 = Chern number

c—1v=>0

® the (guiding-center) “orbital entanglement
spectrum’ of Li and Haldane is insensitive to
filled (or empty) Landau levels or bands, and
allows direct determination of non-zero ¢ — p/

previous methods used the onerous calculation of
the"real-space” entanglement spectrum to find ¢C
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signed conformal
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R MOMENTUM” term

(NOT “real-space cut” which requires
the Landau orbit degrees of freedom and their
form factor to be included

virasoro level

of sector

0
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® Hall viscosity gives “thermally excited”
momentum density on entanglement cut,
relative to “vacuum”, at von Neumann

temperature T = 1



Yeje Park, Z Papic, N Regnault

Loy Ltgonyo L
217V = 54 (1-3) =5

| | | | | | |
L_A =148, plevel =12, +1/6 .
O 0.08 + LA =149, plevel =12 . —
o P
s . L_A =150, plevel =12, +1/6
Q  0.06 =, L_A =149, plevel = 11 o -
x ‘ 1/36 -------- 1
1 004 B “ —
F) -—-——-—“;3@00000000*0;.@-0 A R SR A IR B B A
3 002f o S N
O O b e ° o
(V)] s o)
© . e
< -0.02 E o T
S .
D> -0.04 o -
- ° .
-0.06 i
°° | | | | | | | |

O 100 200 300 400 500 600 700 800 900
LA2

Matrix-product state calculation on cylinder with circumference L
(“plevel” is Virasoro level at which the auxialliary space is truncated)
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® |n a 2D Landau level, we apparently start
from a Schrodinger picture, but end with a
“quantum geometry”’ which is no longer
correctly described by Schrodinger
wavefunctions in real space because of
“quantum fuzziness” (non-locality)

® |t remains correctly described by the
Heisenberg formalism in Hilbert space.
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® the essential unit of the |/3 Laughlin state is the
electron bound to a correlation hole corresponding
to “units of flux”, or three of the available single-
particle states which are exclusively occupied by the
particle to which they are “attached”

® |n general, the elementary unit of the FQHE fluid is

a ““‘composite boson” of p particles with q “attached
flux quanta”

® This is the analog of a unit cell in a solid....
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® The Laughlin state is parametrized by a unimodular metric:
what is its physical meaning?

correlation holes
in two states with
different metrics

® Inthe v =1/3 Laughlin state, each electron sits in a

correlation hole with an area containing 3 flux quanta.
The metric controls the shape of the correlation hole.

® |nhthev =1 filled LL Slater-determinant state, there is no

correlation hole (just an exchange hole), and this state
does hot depend on a metric
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® quantum solid

® unit cell is
correlation hole

® defines geometry

® repulsion of other particles make an attractive

potential well strong enough to bind particle

solid melts if well is not strong enough to contain
zero-point motion (Helium liquids)
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® similar story in

-- -
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® continuum model, but | | |
similar physics to Hubbard ® new physics: Hall viscosity,

model
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but no broken symmetry

® “flux attachment’” creates

correlation hole

® defines an emergent
geometry

® potential well must be
strong enough to bind
electron

geometry............



® The composite boson fluid covers the plane,
and provide an intrinsic dimensionless spatial
distance measure on the plane, analogous to
measuring distances in lattice units in the solid.

® The effective field theory should only involve
a connection compatible with the intrinsic
spatial metric, not the connection compatible
with the Euclidean metric.

Thursday, August 3, 17



® space-time connection compatible with a time-
dependent intrinsic spatial metric gq(x,?)

v,ufa =0 fa _Fb b
Zb 29 (ngbc + 5@ (abgcd — 6)cgbd))

® unusual feature, connection |-form carries only
spatial indices I' =I'},da"

® Geometric Chern-Simons 3-form is analog of gravitational
CS form, but trace is over spatial indices
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20% AT® AT,

— 2w N dw

spin connection



® conserved Gaussian curvature current of
INtrinsic metric:
Gab — \/ggab

N
unimodular part

Jh = 1 (610, — 650a) (06G°" + §*° 0y In \/g)

g
—I—%EUV)‘eacgbd (8,,5}“5) (8)\§Cd) (Brioschi formula)

® any non-singular time-dependent symmetric spatial tensor field
can define a conserved Gaussian curvature current

Thursday, August 3, 17



® three dynamical ingredients g.», v%, P

® a “dynamic emergent 2D spatial metric”
gar(x,t) with g = det g, and Gaussian
curvature current J!' = "0, wy (x, t)

e a flow velocity field v%(x,?)
® an electric polarization field P(x,t?)

® a composite boson current
Jy = Vg(x,t) (65 + v (2, t)0y)

here ais a 2D spatial index,and p is a (2+1D) space-time index. The fluid

motion is non-relativistic relative to the preferred inertial rest frame of the crystal
background
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(pe)?

® cffective bulk action: ¢r = DI

U(1) Chern-Simons field

q — /d%dt Lo—H U(1) condensate field

¢¢

7 . spin connection”
Ly = 4—€'W/>\ (/b,0,b ﬂwa the metric
7

+J; (R0, = b, — Sw,,) + peA,)

H=+/g(e(v,B) —U(g, B, P) — (E, + €av"B)P%)
] !
kinetic energy metric-dependent
of flow correlation energy
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® shape of correlation hole (flux attachment) fluctuates,
adapts to environment (electric field gradients)

-
-
- RS

g . New property:
' /e_\ i “spin” couples ,
. \\ S - tocurvature [ @ geometric distortion

RS (preserving inversion symmetry)
shape=metric creates “curvature”
of metric

® polarizable, B x electric dipole = momentum,
origin of “inertial mass”

-- -y
- -~
-

e electric polarizability
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1/3 Laughlin state If the central orbital is filled,
the next two are empty

The composite boson
e, has inversion symmetry
TR about its center

-~ »
------

It has a “spin”

1 3 5
2 2 2
1 ()‘() ..... L=1
_ 3
- |4 %H ..... - L=23
s =—1

the electron excludes other particles from a
region containing 3 flux quanta, creating a
potential well in which it is bound
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2/5 state

1 3 5
2 2 2
1 1‘0 0l0 |-~ 7 -9
| 2 z‘z 2 [2]... —L=5
5} D 515 5]
s = -3

Q@ = [ drititiotr) = st

second moment of neutral
composite boson
charge distribution



® Furthermore, the local electric charge
density of the fluid with v = p/q is

determined by a combination of the
magnetic flux density and the Gaussian
curvature of the metric

Jo(z) = — (peB sKg(:c)>

" 2ng h/

Topologically quantized “guiding center spin” Gaussian curvature of the metric

Thursday, August 3, 17



Thursday, August 3, 17

In fact, it is locally determined, if there is an
inhomogeneous slowly-varying substrate
potential

H=% v,(Ri)+» Vu(R; — R;)

1<
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® “skyrmion”-like “cone”-like structure
moves charge away from quasihole by
introducing negative Gaussian curvature
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One final result

I”

® In the “trivial” non-topologically-ordered
integer QHE (due to the Pauli principle)

¢ = 1 = Chern number

c—1v=>0

® the (guiding-center) “orbital entanglement
spectrum’ of Li and Haldane is insensitive to
filled (or empty) Landau levels or bands, and
allows direct determination of non-zero ¢ — p/

previous methods used the onerous calculation of
the"real-space” entanglement spectrum to find ¢C
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® Hall viscosity gives “thermally excited”
momentum density on entanglement cut,
relative to “vacuum”, at von Neumann

temperature T = 1
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® |n a 2D Landau level, we apparently start
from a Schrodinger picture, but end with a
“quantum geometry”’ which is no longer
correctly described by Schrodinger
wavefunctions in real space because of
“quantum fuzziness” (non-locality)

® |t remains correctly described by the
Heisenberg formalism in Hilbert space.
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quarks
leptons 1— [ atomic nuclei
Higgs electrons
photons

crystalline (rigid) continuum description

—| condensed matter [—>| ©n lengthscales
larger than atoms

Broken Lorentz,
Galileian,and continuous
rotational invariances

A very effective approach for understanding the essential
physics is to remove all unnecessary non-generic ingredients
from the description.

¢ Only translation and (possibly) inversion symmetries
are generic in a continuum description of phenomena in

homogeneous crystalline condensed matter on a larger-than-
atomic scale
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® The essential property of the uniform
incompressible FQHE fluids is unbroken
spatial inversion symmetry and a gap for
excitations that carry an electric dipole
moment (= momentum)

® The momentum gap means that these fluids
do not transmit forces through their bulk,
unlike “classical incompressible fluids”
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® TJop-level model (Schrodinger):

p; = —ithV, — eA(r)

H = ng@ +ZVO ri —T;) Vrx A(r) =B

1<

1 bare Coulomb interaction

not necessarily quadratic controlled by (possibly anisotropic)
(no Galilean invariance dielectric tensor of medium
should be assumed) (no rotational invariance should be
assumed)

® model has inversion symmetry if <(p)=c(-p)
but even this heed not be assumed
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r =1, ?a'eb:iab P = P
T orthonormal basis Euclidean metric dynamical momentum

of tangent vectors of 2D plane (covariant index)
of 2D plane:

a=1,2

displacement
(contravariant index)

antisymmetric (2D
Levi-Civita) symbol

® [wo independent Heisenberg algebras:/

:paapb] = 1heBegp | :Raﬁ Rb: — M2B€ab
o py) = ihop | S| (R R =0
-'rajf]“b- — 0 :Ra,Rb: _ _,L[ZBEGJD

R® = h_léabpbKZB R* =r*— R" 2l = iLBh > ()
Landau orbit Landau orbit guiding- quantum area
radius vector center displacement (per h/e flux quantum)

® Note: origin of guiding-center displacement has a
gauge ambiguity under A(r) = A(7) + constant
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® | andau quantization e(p)|Vn) = lin|‘l’n>

discrete spectrum of macroscopically-
degenerate Landau levels

® Project residual interaction in a single partially
occupied “active” Landau level, all other dynamics
is frozen by Pauli principle when gap between
Landau levels dominates interaction potential

residual problem is non-
commutative quantum
geometry!
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original 1/, (a;)
‘/(not smooth)

I 1

1 1

1 1
’ | )

ldentical quantum particles J
(fermions or bosons ) | =

We now have the final form of the problem:

The potential V,(x) is a very smooth (in fact entire)

function that depends on the form- factor of the partially-
occupied Landau level

The essential clean-limit symmetries are translation and

inversion:

R, — a=+ R,
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The quadratic expansion of this even function around

I“

the origin defines a natural “interaction metric”

The problem is often simplified by giving it a continuous
rotation symmetry that respects this metric, but this is
non-generic, and not necessary.

This metric and a rotation symmetry are important in
model FQH wavefunctions based on cft, which have a
stronger conformal invariance property.



® |t is straightforward to solve the two-body
Hamiltonian: Ri> = R — R»

E
a b 1_ o:p2 _ab
Ry, Ris] = 2ilze / E
equivalent to a one- Es E,
particle problem H = Vn (R12) eflc.

® |f there is a rotational symmetry, the energy
levels (called “pseudopotentials™) completely
characterize the interaction potential.

® a large gap between energy levels favors flux

attachment with a shape close to that of
the “interaction metric”
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® The non-commutative quantum geometry does not
have a Schrodinger representation because there is no
orthogonal local basis within its Hilbert space

® We can create an unfaithful Schrodinger representation
by adding back a now-unphysical copy of the Landau
orbit-degrees of freedom:

(R}, R} = —ie®™l  [Rf,RY| =0 [R, R =ie®t3,
physical unphysical

iqcai basis | Projection into physical basis of
et (RHR) ) — othT ) holomorphic states

k- (R+R) _ik'-(R+R) Po(g) = quEQBe—%(gabqaqz,)f%eiq-R
[e% €' ] =0 ’ 2T
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® This looks like just mapping the quantum
geometry back into a “lowest-Landau-level
problem”

® But important new features appear when
the problem is “compactified on the torus’
by imposing (quasi)periodic boundary
conditions

’
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® Guiding-center translation operator
t(d) = ¢4 B/ts  t(d)R = (R+ d)t(d)

® Periodic Boundary Conditions on a primitive region
with flux Ng in units h/e:

t(L)|T) =n(L)Ne|w) 1D GEeE
(L), ¢(L")] = 0

/

smallest translation L =mLi+ nkL-
compatible with pbc

L Bravais lattice of periodic translations
o
N =
T-:-I---’.-:'-.j--.'.j
' ' ' . o
LR e NOTE: choice of a basis L1, L
I - Ledaoadf . )
Lof-i-r-u-! L £2 is a “modular choice”
e L LR P
! b,
--'--r ------ ‘--'--\
o iaaa ]
AN
L,
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® On the Torus (pbc) there are two distinct
type of bases:

(a). Geometry-independent, orthonormal
bases that depend on a modular choice:

This is a standard ““Landau basis’



® The other type of basis is a non-orthogonal

basis of modular-invariant geometry-
dependent holomorphic states:

) = F(ahjo)  al0)=0

Ng
F(z):HEi(z—wz-) Zwiz()
i=1 i
ZEroes

~ Lo, 22
0(z) =e22% o(z)
\ \ Weierstrass sigma function

“almost holomorphic modular invariant” (modular invariant)
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® Holomorphic Laughlin states

k=1 k

{zz (H o ) H 5(2:22% — wk) Z’wk =

® Also get very useable forms for other states
(composite fermion Fermi liquid states)

® A surprise:only need to T
evaluate holomorphic stateson  j
the lattice z € = of (Ng)? SR
points in the primitive region of I N
the torus! L
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® On the torus, the Heisenberg algebra is
compactified to the unitaries

U (q) — eiq.R, eiq'L p— 1 (discrete set of reciprocal vectors g)

® TJo construct the unfaithful Schrodinger

representation, we now use compactified

dual variables: U(q) = eiqR,

U(q)U(q),U(q")U(q")] =0
x)

_ezqw|m> CL'E{N%}

® We get a modular-invariant lattice-based Schrodinger representation
n (Ng)? sites (square of one-particle Hilbert space dimension)
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® A corollary: based on the naive lowest-Landau-level
interpretation, one expects that the overlap between two
holomorphic states must be calculated as

(V1| ¥y) =/ Az Nz f1(2)* fa(2)e %

271
N primitive region of torus
® |n fact
Wq|Wa) = Z 1 ( e *
(10) = - D hile

~

primitive lattice sum

This allows a lattice-based Monte Carlo evaluation
of model state properties on the torus, which
would not have been guessed in the LLL picture
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® Furthermore, the projections of the lattice sites into
the physical (holomorphic) space is essentially a
coherent state representation, and all operators
have a diagonal representation on the lattice.

® A very economical Monte-Carlo method for model
wavefunction properties (with huge speed-ups
compared to previous continuum methods) is
obtained and has been tested! (with Ed Rezayi, Scott
Geraedts, |ie VWang)
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summary

® While the “lowest Landau level wavefunction” (LLLVVF)
interpretation of model FQH and CFL states is entrenched in
the “common wisdom” it is misleading. The system
projected into a Landau level is a “quantum geometry” with
no faithful Schrodinger representation.

® modular-invariant holomorphic model states have an intrinsic
metric that is the shape of “flux attachment”, fixed by the
interaction in translationally-invariant systems

® A new lattice-based approach to systems on the torus is
obtained after discarding the LLLVVF interpretation.
Modular invariance is a key property.
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Flux attachment is a gauge condensation that removes
the gauge ambiguity of the guiding centers, giving each
one a “natural” origin, so they define a physical electric
dipole moment of the “composite particle” in which they

are bound by the “attached flux”.

® This is analogous to how the “the vector potential

Thursday, August 3, 17

becomes an observable” (in a hand-waving way) in the

London equations for a superconductor.

)@ <~ (fuzzy) region from which
= particles other that those making
up the “composite particle” are
center of flux-attachment excluded




® quantum solid

® unit cell is
correlation hole

® defines geometry

® repulsion of other particles make an attractive

potential well strong enough to bind particle

solid melts if well is not strong enough to contain
zero-point motion (Helium liquids)
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® |n Maxwell’s equations, the momentum
density is

mi = epD’B, D' =€dVEj+ P

® [The momentum of the condensed matter is

p=dx B
\

electric dipole moment

® in 2D the guiding-center momentum then is
Pa — 6B€ab5Rb

® The electrical polarization energy of the dielectric
composite particle then gives its energy-momentum
dispersion relation, with no involvement of any
“Newtonian inertia” involving an effective mass
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® The Berry phase generated by
motion of the “other particles”
that “get out of the way” as the
vortex-like “flux-attachment”
moves with the particle(s) it
encloses can be formally-
described as a Chern-Simons
gauge field that cancels the
Bohm-Aharonov phase, so that

the composite object propagates
like a neutral particle.




® |[f the composite particle is a boson, it condenses into the

Thursday, August 3, 17

zero-momentum_(zero electric dipole-moment)
inversion-symmetric state, giving an incompressible-fluid
Fractional Quantum Hall state, with an energy gap for
excitations that carry momentum or electric dipole
moment ("‘quantum incompressibility”, no transmission of
pressure through the bulk).

® AIl FQH states have an elementary unit (analogous to the unit
cell of a crystal) that is a composite boson under exchange.

® [t may be sometimes be useful to describe this boson as a a
bound state of composite fermions (with their own preexisting
flux attachment) bound by extra flux (Jain’s picture)




0.9 T T

++% ﬁ% D%L /% + +

0.8 |

goes Into ?;‘;‘: ; 431 agt+ + o+
/r \ ]
continuum Y \
06 . (2 quasiparticle -
s | + 2 quasiholes) .
E R e -
o « 99 | fermionic
03 [ rOton | “roton” /

=l | Moore-Read

0.1_./'Il'opololgicalIyl-degeljeratelFQH Istate 10 . | . | |
00 0.5 1 1.5 2 2.5 3 7%€ O 1 2 ]{ZB
. T B
gap «<—> incompressibility

Collective mode with short-range V1 Collective mode with short-range three-body
pseudopotential, 1/3 filling (Laughlin state is pseudopotential, 1/2 filling (Moore-Read state is
exact ground state in that case) exact ground state in that case)

® momentum 7k of a quasiparticle-quasihole pair is
proportional to its electric dipole moment pe

hk, = €, B pg

gap for electric dipole excitations is a MUCH stronger
condition than charge gap: fluid does not transmit
pressure through bulk!
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® The composite particle may also be a
fermion. Then one gets a Fermi surface in
momentum-space = electric dipole space,
and a gapless anomalous Hall effect which is

filled

quantized when the Berry phase cancels the
Bohm-aharonov phase. (HLR-type state)

® There must be a distribution of dipole
moments (or momentum) of the composite
fermions, centered at the inversion-symmetric
zero-moment state which has lowest energy.
These are quantized by a pbc, and no two
composite fermions can have the same diople
moment.
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® Fermi surface quasiparticle formulas for
anomalous Hall effect (FDMH 2006)

® in 2D:

Berry phase for
moving a quasiparticle around

Integer determined ,
Fermi surface (arc)

at edge
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® holomorphic representations of guiding-
center states

Ra
/205

= w'a' + w'a a,a"] =1

(wa)*wa — %(gab -+ Z.GGLb) Wq = gabwb detg =1

® This is the Girvin-Jach formalism, except they implicitly assumed the
metric g, was the Euclidean metric of the plane. In fact, it is a

free choice, not fixed by the any physics of the problem.
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® Then, once a metric (i.e.,a complex
structure) has been chosen, a one-particle
state can be described as

U) = f(a")|0) al0) =0

holomorphic

® Both the “vacuum” |0) and the function f(z) vary as the metric is changed
(a Bogoliubov transformation)

® Normalization/overlap:

(W1 [Wg) = / T by fal)e

271
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® When compactified on the torus with flux
No , the modular-invariant formulation is

f(z) x H&(z—wi) sz =0

Bravais lattice in complex plane

/

5(2|{L}) = e2$2 D=6 (2|{L})

AN

“almost holomorphic modular Weierstrass sigma function
invariant” (Eisenstein series)
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® |nh the Heisenberg-algebra reinterpretation

N&

) =[[a(al —wi)jo) > wi=0  one particle
. - N =1
1=1 1

® [he filled Landau level is

filled Level
w) = (Hz‘f(a;f a§>5<zia3>) VN

i< j

® The Laughlin states are v = L Laughlin state
. Nq) = mN

) = (Hf?(ai — a;)m) H 5(27;&;[ — wy)|0) Zwk = 0.

i< j k=1
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® A previously unknown (7) identity that |

recently guessed and found was indeed
true, and which dramatically transforms
calculations on torus (e.g., orders of
magnitude Monte-Carlo speedup)

W) = [ ERE L) e

271

l

1 / = {mL1—|—nL2}
— N_q) Z

(No )? points
replace integral over

fundamental region by a
modular-invariant finite sum
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® with Ed Rezayi, | found a remarkable clean
composite Fermi liquid model state on the flat
torus, inspired by a construction by Jain on the
sphere.

® On the torus, the state is precisely equivalent to
the usual treatments of the Fermi gas with a pbc.

® |t is very accurate as compared to exact
diagonalization of the Coulomb interaction, and
amazingly “almost” (99.99%) particle-hole

symmetric at v = |/2.
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1
® Composite Fermi liquid (HLR-like) at v = —

gives Chern-Simons gives bf? | £2

\
f({z}) HO’ Zi — Zj) (m 2) deth H (D :2i — wk)

1<J k=1 N
Y we=> dj=Nd
a=1 71=1

Fermi (Bose) for m even (odd)

M;; ({2t {di}) = edjzz/mH 6(2i — zj — di + d)
X k1
\

a set Of d|P0|e moments dz - %/(particle number, not flux)
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® There are vastly more possible choices of

dipole “occupations” than independent
states: The “good” ones are clusters that
minimize Y |d; — d|?

Computing ph symmetry

(with Scott Geraedts)

model state is numerically very close

to p-h symmetry when k’s are clustered

# Z_{COM} overlap with PH-conjugate

overlap

0 0.999998870263 1.1297367517e-06

1 0.999999369175 6.3082507884e-07

0.99999860296 1.39704033186e-06

99999860296 1.3970403312e-06

999999369175 6.30825078063e-07
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2

3 0.

4 0.

5 0.999998870263 1.12973675237e-06
6 0.999999369175 6.30825079173e-07
7 0.
8 0.
9 0.

99999860296 1.39704032942e-06
99999860296 1.39704032909e-06
999999369175 6.30825078507e-07



® particle-hole symmetry,and Kramers Z;

structure (Scott Geraedts and |

e

| | | | ll*—* rrrrrrr l rrrrrrrr :l::m; rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr ]
ffffffffffffffffffffffffffffffffff o [ e e e e e
rrrrrrrrrrrr o o o o e o o | e e e | e e e e e @ @
rrrrrrrrrrrr O @@ @ @@ @@ @ @ @ @@
fffffffffffffffffffffff @ @@ @@ @@ @@ @
ED AFE 0.0 | ED AFE 0.000404 | ED AFE 0.000268 | ED AFE 0.005555 | ED AFE 0.0
overlap 0.981955 | overlap 0.736717 | overlap 0.992142 | overlap 0.226429 | overlap 0.276141
AFE 0.000446 | AE 0.001419 | AE 0.000531 | AE 0.009271 | AE 0.011863
(B )—(H)’ 6.81819e-06 | (H2)—(H)’ 6.5675e-06 | (H*)—(H)’ 4.88251e-06 | (g2 )—(H) 1.58755e-05 | (g )—(H)’ 3.72072e-05
PH symmetry 0.993543 | PH symmetry 0.987538 | PH symmetry 0.995312 | PH symmetry 0.856664 | PH symmetry 0.964223
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A many-body
ansatz for

Berry phase \ve confirmed all paths are real, by Kramers

| w SI
rrrrrrrrrrrrr o0 B @ @@
ffffff “ees | dose | glees
i | L AU These are ED
—————— ©o 00 (0000 | é00 0
‘ results on exact
o ° e o e I °-o - Coulomb interaction
e S states, with the exact
e =-1 e =1 e =1 particle hole symmetry,
with occupation
patterns obtained by
finding the model states
a e ST e e e they have high overlap
. . . . . B YA . . B . . . . B . . . . B . . . . . .
OO0+ | OO |+ OO | o R B e e with
T e A2 | /2% S S AN SO T
4000 0000 0000 0000 0000
O e T | I A N [ N
¢000 L0000 b000 t0000 (0000
S R N LY A A N A A R A I [ A
OO | KOO | S OO | OO | OO
R R R Rt F e el Rt S e et B R R et B e R R S
et =—1 et =—1 et =—1 e =1 et =—1
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® is there an analog of Dirac cone point !

State with the quantum numbers of
an inversion symmetric Fermi sea
with a single hole at the center (has
an even number of particles)

A state on the Torus with
these quantum numbers is
a parity doublet

® as a hole is moved into the bulk, the ansatz
must fail as if goes through the inversion-
symmetric point!
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® non-polynomial landau orbit states
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FIG. 7. Black region accounting for 90 percent of the to-
tal weight (probability) of Wyp, the coherent state in the
20th Landau level of the Hamiltonian p> + pz + 2pt + 3p;l +
4{pZ,p:} + {p=,p.}. The annulus is bounded by contours at
the same value of the amplitude |W2o| and cleanly separates
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