

SHAPES & SYMMETRIES IN NUCLEI: FROM EXPERIMENT TO THEORY

6 – 10 NOVEMBER 2017 GIF-SUR-VYETTE, FRANCE

SOME SPECTROSCOPIC PROPERTIES OF WELL-DEFORMED ODD NUCLEI IN THE RARE-EARTH REGION

Nurhafiza M. Nor & Meng-Hock Koh (UTM, Johor, Malaysia)

P. Quentin & L. Bonneau (CENBG, Bordeaux, France)

INTRODUCTION (I)

The present study is the first step, towards a microscopic description of time-odd nuclear states in (axially symmetrical) well-deformed nuclei encountered in

Odd, Odd-Odd, Even-Even (as in High-K isomeric states)

This description will make use of the particle number conserving Highly Truncated Diagonalization Approach (HTDA) A configuration mixing of particle - hole states over a vacuum based on the canonical basis of an as good as possible self-consistent mean field Hamiltonian using a delta or (separable in p) ersatz of gaussian residual force

INTRODUCTION (II)

To advance in this direction, we merely perform here self-consistent blocked HF + BCS (with Cooper quasi-pairs) calculations for well-deformed odd nuclei in the rare earth region (and around)

The Skyrme SIII interaction is used for p-h h-p channels (in view of its well-established spectroscopic quality) A crude seniority force is used for the pp hh channels ($|T_z| = 1$ only) A fit of the latter is made from explicit calculations of odd even mass differences

PART I. FITTING THE STRENGTH OF THE RESIDUAL INTERACTIONS (I)

The three-point mass differences

$$\Delta_n(N,Z) = \frac{(-1)^N}{2} [E(N+1,Z) - 2E(N,Z) + E(N-1,Z)]$$

depend mostly on pair
breaking energies
around odd N / Z
$$\Delta_n(N,Z) = \frac{(-1)^N}{2} [S_n(N,Z) - S_n(N+1,Z)]$$
$$\Delta_p(N,Z) = \frac{(-1)^Z}{2} [E(N,Z+1) - 2E(N,Z) + E(N,Z-1)]$$
$$= \frac{(-1)^Z}{2} [S_p(N,Z) - S_p(N,Z+1)]$$

The pairing matrix elements are parametrized as

$$\langle i\,\overline{i}\,|\tilde{v}_{residual}\,|\,j\,\overline{j}\,\rangle = \frac{G_q}{11 + N_q}$$

FITTING THE STRENGTH OF THE RESIDUAL INTERACTIONS (II)

To get the separation energies of e.g. the (N,Z) nucleus Hartree-Fock plus BCS calculations have been performed for both the (N,Z) and (N – 1,Z) or (N,Z) and (N,Z - 1) nuclei and not through some lowest qp energies in the (N,Z) nucleus as usually performed

This implies calculating odd-even or even-odd nuclei through self-consistent blocked Hartree-Fock plus BCS calculations

where time-odd effects have been taken into account

SAMPLE OF NUCLEI FOR THE FIT

For even-even nuclei, the ratio of $\frac{E_{4^{+}}}{E_{2^{+}}} > 3.28$

Condition 2:

Condition I:

Experimental 3-points energy differences of odd nuclei $\Delta > 0.50 \text{ MeV}$

110	Ν	F	or t	he fit	t							Hf-182	
109		F	von 7	7_0/0	n N		2					Hf-181	
108		L				. 4				Yb-178	Lu-179	Hf-180	
107		C	odd ∠	2-eve	n N	:	3			Yb-177		Hf-179	
106		Ε	ven Z	Z-Od	d N	:	7			Yb-176	Lu-177	Hf-178	
105		_					E 2			Yb-175		Hf-177	
104			otai			•	55	Er-172	Tm-173	Yb-174		h f -176	
103								Er-171		Yb-173			
102				Gd-166	Tb-167	Dy-168	Ho-169	Er-170	Tm-171	Yb-172			
101				Gd-165		Dy-167		Er-179		Yb-171			
100				Gd-164	Tb-165	Dy-166	Ho-167	Er-168	Tm-169	Yb-170			
99				Gd-163		Dy-165							1
98	Sm-1	L60	Eu-161	Gd-162	Tb-163	Dy-164				Foc	us of		
97	Sm-1	L59		Gd-161		Dy-163	1		is	omer	ric sta	tes	
96	Sm-1	L58	Eu-159	Gd-160	Tb-161	Dy-162	1		st	udies	to co	ome	
95	Sm-1	157										7	1
94	Sm-1	L 5 6											►
	62		63	64	65	66	67	68	69	70	71	72	

A two parameters fit (G_n , G_p) on two sets of data (Δ_n , Δ_p)

Independence of the results on G_p for reasonable values of G_n and similarly for G_p on G_n

G _n	G _p	χ _p		
14	15	186		
15	15	187		
16	15	191		

 $(\mathbf{G}_{n}, \mathbf{G}_{p} \text{ in MeV and } \mathbf{\chi}_{n}, \mathbf{\chi}_{p} \text{ in keV})$

G _n	Xn	G _p
12	383	14
14	287	14
15	197	14
15.5	134	14
15.5	134	14
16	89	14
16.5	129	14
17	221	14
18	449	14

G _n	Xn	G _p	χ _p	
14	287	14	291	
14		14.5	226	
14		15	186	
14		15.5	207	
14		16	288	
14		18	771	

 $G_n = 16 \text{ MeV}$ and $G_p = 15 \text{ MeV}$

PART 2. MOMENTS OF INERTIA OF EVEN-EVEN NUCLEI (I)

QUESTION

How the above fit is consistent with a fit on quantities strongly varying with pairing correlations: Moments of inertia

CALCULATIONS

Use the non-self consistent ATDHFB approach of Inglis Belyaev

$$\mathscr{I}_{\rm cr} = \sum_{kl}' \frac{|\langle k|j_+|l\rangle|^2}{E_k + E_l} (u_k v_l - u_l v_k)^2$$

$$+ \frac{1}{2} \sum_{kl}^{\prime\prime} \frac{|\langle k|j_{+}|l\rangle|^{2}}{E_{k} + E_{l}} (u_{k}v_{l} - u_{l}v_{k})^{2},$$

Correct approximatelty for non-self-consistency the so-called Thouless-Valatin terms see E. Kh. Yuldasbhbaeva et al., Phys. Lett. B461, (1999)1 performed as in J. Libert et al., Phys. Rev. C60 (1999) 054301 by an enhancement factor of 1.32

MOMENTS OF INERTIA OF EVEN-EVEN NUCLEI (II)

DATA

Should be closest to adiabaticy: the first 2⁺ state Avoid coupling with other modes: in very well deformed nuclei Sample: 19 rare-earth nuclei

most of them with $E(4^+)/E(2^+)$ equal or larger than 3.3

SIDE TEST

Compare Moments of inertia obtained for the first 2⁺ state in recent Bohr Hamiltonian calculations by the Algiers group (M. Rebhaoui, M. Imadalou, D.E. Medjadi, P. Q., to be pub.) corresponding to different but close pairing properties with the value obtained in static calculations at ground state

BOHR HAMILTONIAN RESULTS AS A CONSISTENCY TEST

M. Rebhaoui, M. Imadalou, D.E. Medjadi, P. Q.)

PAIRING STRENGTH FIT FROM MOMENTS OF INERTIA (I)

Some fits of moments of inertia on G_n (at fixed G_p)

<G_n> = 16.2 MeV with a r.m.s. deviation of 0.3 MeV for 19 nuclei

PAIRING STRENGTH FIT FROM MOMENTS OF INERTIA (II)

r.m.s. differences on moments of inertia (h² MeV⁻¹)

CONCLUSION

The two fits on Odd-Even Mass Differences and on Moments of inertia of very well-deformed nuclei yield consistent results

(Practical note: the latter is much easier than the former)

PART 3. EXAMPLES OF STATIC PROPERTIES

I. INTRINSIC QUADRUPOLE MOMENTS, EVEN-EVEN NUCLEI

EXAMPLES OF STATIC PROPERTIES 2. MAGNETIC MOMENTS (NEAR ¹⁷⁸HF)

Nuclei	Кп	µ int	g _R (Z/A)	₽ _{theor}	<mark>Р</mark> ехр
¹⁷⁷ Hf	7/2 -	0.88	0.242 (0.407)	1.07	0.7935 (7)
¹⁷⁹ Hf	9/2+	-1.00	0.427 (0.402)	-0.65	-0.6409 (13)
¹⁷⁷ Lu	7/2+	1.48	0.487 (0.401)	1.85	2.239 (7)
¹⁷⁹ Ta	7/2+	1.47	0.271 (0.408)	1.68	2.289 (9)

(All quantities in μ_N)

Core polarization effects are included mostly affecting μ_{int} and much less g_R For ¹⁷⁹Hf, L. Bonneau et al., Phys. Rev. C91 (2015) 054307 have estimated that the core polarization contribution could be mocked up by a quenching factor of 0.734 for g_s

PART 4. BAND HEAD SPECTRA (FOR PARTICLE MODES ONLY)

Preliminary results* for the 4 odd nuclei neighbouring ¹⁷⁸Hf

* preliminary: no rotational effects included, see below

Restriction:

Only « seniority » 1 (1 broken pair) states in the calculations

- comparison with data only credible for E_{excitation} < Gap
- BCS over-emphasizes the pairing quenching due to blocking Must use a particle number conserving approach (as HTDA) !

Comparison between HF+BCS and Nuclear energies:

- Remove spurious rotational energy content (~ à la Lipkin)
- Dress the intrinsic solution for core (rotational) modes

(~ à la Bohr-Mottelson)

(At this stage Coriolis mixing is ignored

excepted for the self coupling of |K| = 1/2 s.p. configurations)

BAND HEAD ENERGIES (PARTICLE MODES)

In Meng-Hock Koh et al., Eur. Phys. J. A 52 (2016) 3 one has found including the above rotational effects, that the band head energies are given by

$$E_{K\pi\alpha} = \langle \Psi_{K\pi}^{\alpha} | \hat{H}_{\text{eff}} | \Psi_{K\pi}^{\alpha} \rangle + \frac{\hbar^2}{2\mathcal{J}} \left(2K - \delta_{K,\frac{1}{2}} a \right) - \frac{\langle \mathbf{J}^2 \rangle_{\text{core}}}{2\mathcal{J}}$$

The above expectation value $\langle \hat{J}^2 \rangle_{core}$ and the moment of inertia J are calculated for each polarized (configuration-dependent) core

They may often correspond thus to low pairing regimes and thus may not be well described by BCS. This is why here, we present non corrected values

DATA from A.K. Jain et al., Rev. Mod. Phys. C 62 (1990) 2 Selecting states of particle nature and such that $E_{exc} < \sim 0.5$ MeV

RESULTS

CONCLUSIONS (I)

1) We probably have reached our goal of providing a good starting point for a pairing description better than HF+BCS or HFB necessary for T-odd (as e.g. HTDA)

2) We have shown that consistent fits of the pairing residual interaction over a whole deformation region are possible between odd-even mass differences and moments of inertia

3) We have obtained good reproductions of some moments (electric quadrupole and magnetic dipole)

4) Only qualitative agreement have been yielded yet for band head spectra Some corrections strongly dependent on a good pairing, yet to be established, should be added

CONCLUSIONS (II) PERSPECTIVES

To each our goal of describing T-odd systems (of a non-vanishing seniority character) especially high-K isomers which are our targets moving to a particle number conserving approach is a must

We will do that through an efficient and tractable kind of VAP approach within the so-called HTDA framework

Residual interaction beyond the simplistic seniority force will be considered for that purpose