SSNET'16 International Workshop on Shapes and Symmetries in Nuclei: from Experiment to Theory, Gif sur Yvette, Nov. 7-11, 2017

DECAY CHAINS OF FEW SUPERHEAVY NUCLEI WITH ATOMIC NUMBERS 119 AND 120

D.N. Poenaru R.A. Gherghescu

Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest-Magurele, Romania

Frankfurt Institute for Advanced Studies (FIAS), J W Goethe University, Frankfurt am Main, Germany

November 14, 2017

OUTLINE

Theoretical Models for α - and cluster decay

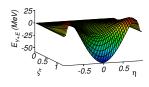
Half-life, AKRA, UNIV, ASAF, semFIS

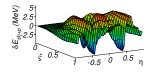
Theoretical Models for Spontaneous Fission

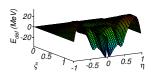
Inertia Tensor, Least action, Fission Dynamics

Results

 α - and Cluster Decay, Spontaneous Fission

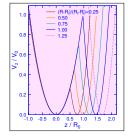

MACROSCOPIC-MICROSCOPIC MODEL


The asymmetric mass distributions of fission fragments and the spontaneously fissioning shape isomers, discovered by S.M. Polikanov *et al.* in 1962, could not be explained until 1967, when V.M. Strutinsky reported his macroscopic-microscopic method. He obtained a two hump potential barrier for heavy nuclei. Shape isomers occupied the second minimum. He added to the phenomenological deformation energy, E_{def} , the shell plus pairing correction energy,


$$\delta E = \delta U + \delta P = (\delta U + \delta P)_p + (\delta U + \delta P)_n$$
$$E_{def} = E_{LD} + \delta E$$

We use the Yukawa-plus-exponential model (Y+EM) to calculate $E_{def}=E_{Y+E}$, and R.A. Gherghescu's asymmetric two center shell model (ATCSM) Phys. Rev, C **67** (2003) 014309 to calculate δE . The BCS (Bardeen, Cooper, Schrieffer) system of two eqs. allows us to find the Fermi energy, λ , and the gap parameter, Δ , the pairing correction and the cranking inertia tensor needed to study Dynamics and calculate the half-life along the least action trajectory.

Potential Energy Surface of 294120



INTERSECTED SPHERES

Two intersected spheres. Volume conservation and $R_2 = \text{constant}$ or $R_2 = f(R)$. One or two deformation parameters: separation distance R and R_2 . Surface equation $\rho = \rho(z)$. Initial $R_i = R_0 - R_2$. Touching point $R_t = R_1 + R_2$. Normalized variable $x = (R - R_i)/(R_t - R_i)$

Example: $^{232}U \rightarrow ^{24}Ne + ^{208}Pb$

By assuming R_2 = constant we get one deformation parameter: the separation distance of the fragments, R.

HALF-LIFE

A parent nucleus AZ decays into a light fragment A_eZ_e and a heavy one A_dZ_d :

$$^{A}Z \rightarrow ^{A_{e}}Z_{e} + ^{A_{d}}Z_{d}$$

The half-life is calculated within quassiclassical WKB (Wentzel-Kramers- Brillouin) approximation:

$$T = [(h \ln 2)/(2E_v)] exp(K_{ov} + K_s)$$

with $B = \mu$ — the nuclear inertia (often taken as a reduced mass), $K = K_{ov} + K_s$ the action integral (for overlapping and separated fragments), and E(R) is the total deformation energy. R_a , R_b are the turning points, defined by $E(R_a) - Q = E(R_b) - Q = 0$. Q is the released energy.

AKRA model

AKRA — from the name of the first author Akrawy D.T. The AKRA model DTA and DNP, J. Phys. G 44 (2017) 105105 was obtained by adding 2 parameters (d and e) and the quantity I = (N - Z)/A to the G. Royer formula published in 2010:

$$T_{1/2} = a + bA^{1/6}\sqrt{Z} + \frac{cZ}{\sqrt{Q_{\alpha}}} + dI + eI^{2}$$

with initial parameters

$$a = -27.657$$
; -28.408 ; -27.408 , $and - 24.763$, $b = -0.966$; -0.920 ; -1.038 , $and - 0.907$, and $c = 1.522$; 1.519 ; 1.581 , $and 1.410$ for e-e, e-o, o-e, and o-o, respectively.

ASAF model

Analytical Super-Asymmetric Fission Model.

For $ASAF E(R) - Q = E(R) - E_{corr}] - Q$ with E_{corr} a correction energy.

The turning points of the WKB integral are:

$$R_a=R_i+(R_t-R_i)[(E_v+E^*)/E_b^0]^{1/2}$$
 and $R_b=R_tE_c\{1/2+[1/4+(Q+E_v+E^*)E_l/E_c^2]^{1/2}\}/(Q+E_v+E^*)$ where E^* is the excitation energy concentrated in the separation degree of freedom, $R_i=R_0-R_e$ is the initial separation distance, $R_t=R_e+R_d$ is the touching point separation distance, $R_j=r_0A_j^{1/3}$ ($j=0,e,d;\ r_0=1.2249$ fm) are the radii of parent, emitted and daughter nuclei, and $E_b^0=E_i-Q$ is the barrier height before correction.

The two terms of the action integral K, corresponding to the overlapping (K_{ov}) and separated (K_s) fragments, are calculated by analytical formulas (approximated for K_{ov} and exact for K_s).

UNIV model

Universal Formula is obtained from

$$\lambda = \ln 2/T = \nu SP_s$$

with ν — the frequency of assaults on the barrier per second, S is the preformation probability of the cluster at the nuclear surface, and P_s is the quantum penetrability of the external potential barrier.

Assuming $S = S(A_e)$ and $\nu(A_e, Z_e, A_d, Z_d) = \text{constant}$, we get a straight line *universal curve* on a double logarithmic scale

$$\log T = -\log P_s - 22.169 + 0.598(A_e - 1)$$

semFIS model

Semi-emirical formula based on a fission theory of α -decay, was introduced by one of us (DNP) in 1980 to improve the behaviour in the neighborhood of the magic numbers of nucleons.

$$\log T = 0.43429 K_s \chi - 20.446$$

where

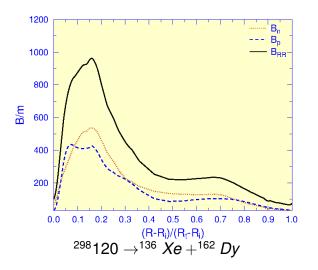
$$K_s = 2.52956 Z_{da} [A_{da}/(AQ_{\alpha})]^{1/2} [\arccos \sqrt{x} - \sqrt{x(1-x)}];$$

$$x = 0.423 Q_{\alpha} (1.5874 + A_{da}^{1/3})/Z_{da}$$
 (1)

and the numerical coefficient χ , close to unity, is a second-order polynomial $\chi = B_1 + B_2 y + B_3 z + B_4 y^2 + B_5 yz + B_6 z^2$ in the reduced variables y and z, expressing the distance from the closest magic-plus-one neutron and proton numbers N_i and Z_i :

$$y \equiv (N-N_i)/(N_{i+1}-N_i)$$
; $N_i < N \le N_{i+1}$ and $z \equiv (Z-Z_i)/(Z_{i+1}-Z_i)$; $Z_i < Z \le Z_{i+1}$ with $N_i =, 51, 83, 127, 185, 229,, $Z_i =, 29, 51, 83, 115,$, and $Z_{da} = Z-2$, $A_{da} = A-4$. The coefficients B_i are obtained by fit with experimental data, using a computer program making automatically the best fit, DNP, MI, DM, Comp. Phys. Comm. **25** (1982) 297.$

FISSION DYNAMICS


The inertia tensor, B, is calculated using the cranking model introduced by Inglis, M. Brack et al, Rev. Mod. Phys. 44 (1972) 320

$$B_{ij} = 2\hbar^2 \sum_{
u\mu} rac{\langle
u | \partial H / \partial eta_i | \mu
angle \langle \mu | \partial H / \partial eta_j |
u
angle}{(E_
u + E_\mu)^3} (u_
u v_\mu + u_\mu v_
u)^2 + P_{ij}$$

with H the single-particle Hamiltonian used to determine the energy levels and the wave functions $|\nu\rangle$, u_{ν} , v_{ν} are the BCS occupation probabilities, E_{ν} is the quasiparticle energy, and P_{ii} gives the contribution of the occupation number variation when the deformation is changed (terms including variation of the gap parameter, Δ , and Fermi energy, λ , $\partial \Delta/\partial \beta_i$ and $\partial \lambda/\partial \beta_i$).

In the present work, in order to get a first order estimation of the half-life, we use one deformation parameter, R, instead of 5 from RAG, Phys. Rev. C 67 (2003) 014309. Only the parameter B_{RR} is calculated; the dimensionless quantity B_{RR}/m , where m is the nucleon mass.

EXAMPLE of INERTIA for 298120

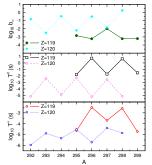
EXAMPLE of INERTIA for 296120

Prediction of heavy ion radioactivity

The New Encyclopaedia Britannica: "**Heavy-ion radioactivity.** In 1980 A. Sandulescu, D.N. Poenaru, and W. Greiner described calculations indicating the possibility of a new type of decay of heavy nuclei intermediate between alpha decay and spontaneous fission. The

first observation of heavy-ion radioactivity was that of a 30-MeV carbon-14 emission from radium-223 by H.J. Rose and G.A.

Jones in 1984." The following cluster decay modes have been experimentally confirmed: ¹⁴C, ²⁰O, ²³F, ^{22,24–26}Ne, ^{28,30}Mg, ^{32,34}Si with half-lives in good agreement with predicted values within our analytical superasymmetric fission model.


http://www.britannica.com/EBchecked/topic/465998/

ALPHA DECAY AND CLUSTER RADIOACTIVITY

In figure and table we compare the half-lives for $\alpha {\rm D}$ and CR, and the branching ratio relative to α decay

 $b_{\alpha} = \log_{10} T_{\alpha}(s) - \log_{10} T_{c}(s)$ for the examples we took.

Since 2011 we saw that for Z > 121 cluster decay may compete with α decay: DNP, RAG, WG, Phys. Rev. Lett. 107 (2011) 062503.

ALPHA DECAY AND CLUSTER RADIOACTIVITY 2

Parent	Emitted	$Q_c(MEV)$	$\log_{10} T_{\alpha}(s)$	b_{lpha}
²⁹⁵ 119	⁸⁷ Rb	312.61	-1.80	-2.84
²⁹⁶ 119	⁸⁸ Rb	312.13	0.73	-3.23
²⁹⁷ 119	⁸⁹ Rb	311.65	-1.71	-1.99
²⁹⁸ 119	⁹⁰ Rb	311.36	0.64	-3.22
²⁹⁹ 119	⁹¹ Rb	310.63	-1.52	-3.21
²⁹² 120	⁸⁸ Sr	323.83	-5.14	-0.82
²⁹³ 120	⁸⁸ Sr	323.43	-2.39	-2.50
²⁹⁴ 120	⁸⁸ Sr	323.02	-4.88	-0.46
²⁹⁵ 120	⁸⁹ Sr	322.62	-2.32	-2.21
²⁹⁶ 120	⁹⁰ Sr	322.38	-5.20	-0.50
²⁹⁷ 120	⁹⁰ Sr	322.08	-2.55	-1.84
²⁹⁸ 120	⁹⁰ Sr	321.73	-5.11	0.25

SPONTANEOUS FISSION HALF-LIVES

Parent	WAR	STA	XU	SAN	REN
²⁹⁵ 119				9.52	9.98
²⁹⁶ 119				12.15	8.93
²⁹⁷ 119					0.79
²⁹⁸ 119					-1.75
²⁹⁹ 119				6.70	-11.38
²⁹² 120	12.15	0.14	16.00	8.65	26.18
²⁹³ 120				11.72	21.49
²⁹⁴ 120	15.82	1.23	16.22		24.45
²⁹⁵ 120					18.31
²⁹⁶ 120	19.57	2.89	15.7	7.99	19.26
²⁹⁷ 120				10.60	11.93
²⁹⁸ 120	24.62	4.28	14.5		10.70

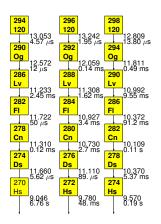
For ²⁹²120 the half-lives may differ by 26 orders of magnitude!

WAR STA XU SAN REN

- M. Warda and J.L. Egido, Phys. Rev. C 86 (2012) 014322.
- A. Staszczak, A. Baran and W. Nazarewicz, Phys. Rev. C 87 (2013) 024320.
 Chang Xu, Zhongzhou Ren and Yanqing Guo, Phys. Rev. C 78 (2008) 044329.
- K.P. Santhosh, R.K. Biju and S. Sahadevan, Nucl. Phys. A 832 (2010) 220-232.
- Zhongzhou Ren and Chang Xu, Nucl. Phys. A 759 (2005) 64-78.

SPONTANEOUS FISSION HALF-LIVES, our results

Parent	Channel	E _b (MeV)	$\log_{10} T_f(s)$
²⁹⁶ 120	$^{138}Ba + ^{158}Gd$	4.83	2.732
²⁹⁶ 120	136 Xe $+^{160}$ Dy	4.76	1.583
²⁹⁶ 120	134 Xe $+^{162}$ Dy	4.97	0.932
²⁹⁸ 120	$^{138}Ba + ^{160}Gd$	7.22	10.76
²⁹⁸ 120	136 Xe $+^{162}$ Dy	7.23	8.581
²⁹⁸ 120	134 Xe $+^{164}$ Dy	5.14	1.250



THREE ALPHA DECAY CHAINS

To identify the superheavy nuclei ^{294,296,298}120 one can use the decay chains from the figure, with calculated kinetic energy and half-lives

CONCLUSIONS

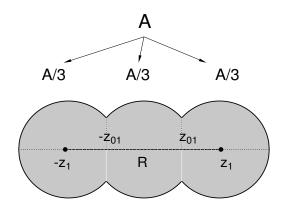
- We studied decay chains useful to guide experiments of producing superheavy nuclei ^{292,294,296,298}120.
- For α and cluster decay the half-lives are of the orders of about 10 μ s with branching ratios $b_{\alpha}=-0.8,-0.4,-0.5,0.25!$ It make sense to search for cluster decay modes: emission of ^{88,90}Sr with large kinetic energy, Q>300 MeV.
- Spontaneous fission half-lives are longer, at least with 6 orders of magnitude larger than for α -decay.
- There is a need to improve the accuracy of calculating spontaneous fission half-lives, because one can meet large dicrepancies from model to model, e.g. 26 orders of magnitude!

SSNET'16 International Workshop on Shapes and Symmetries in Nuclei: from Experiment to Theory, Gif sur Yvette, Nov. 7-11, 2017 THREE CENTER SHELL MODEL

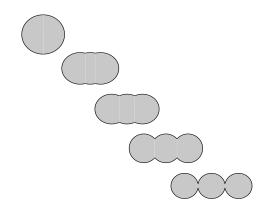
R. A. Gherghescu^{1,2}, D.N. Poenaru^{1,2}

¹ Horia Hulubei National Institute of Physics and Nuclear Engineering (IFIN-HH), Bucharest-Magurele, Romania
² Frankfurt Institute for Advanced Studies (FIAS), J W Goethe University, Frankfurt am Main, Germany

November 14, 2017


OUTLINE

- Three-center model
- Barriers for ternary fission


THREE CENTER SHELL MODEL

THREE CENTER SHELL MODEL- SHAPE EVOLUTION

THE THREE CENTER POTENTIAL

$$V(\rho, z, \phi) = V(\rho) + V_3(z)$$

where the ρ -axis term is:

$$V(\rho) = \frac{1}{2} m_0 \omega_\rho^2 \rho^2$$

and the z-axis term:

$$V_3(z) = \begin{cases} \frac{1}{2} m_o \omega_z^2 (z - z_1)^2 &, \mathbf{z} > z_{01} \\ \frac{1}{2} m_o \omega_z^2 z^2 &, -z_{01} < z < z_{01} \\ \frac{1}{2} m_o \omega_z^2 (z + z_1)^2 &, \mathbf{z} < -z_{01} \end{cases}$$

centered in the middle of every fragment.

THE THREE CENTER HAMILTONIAN

$$H = H_{3osc} + V_{\hat{l}\hat{s}} + V_{\hat{l}\hat{s}}$$

where

$$H_{3osc} = -\frac{\hbar^2}{2m_0} \left[\frac{\partial^2}{\partial \rho^2} + \frac{1}{\rho} \frac{\partial}{\partial \rho} + \frac{1}{\rho^2} \frac{\partial^2}{\partial \phi^2} + \frac{\partial^2}{\partial z^2} \right] + V(\rho) + V_3(z)$$

Total wave function:

$$\Psi(\rho, z, \phi) = \Phi_m(\phi) R_{n_\rho}^{|m|}(\rho) Z_{\nu}(z)$$

where

$$\Phi_m(\phi) = \frac{1}{\sqrt{2\pi}} \exp(im\phi)$$

$$R_{n_{\rho}}^{|m|}(\rho) = \left(\frac{2\Gamma(n_{\rho}+1)\alpha_{1}^{2}}{\Gamma(n_{\rho}+|m|+1)}\right)^{\frac{1}{2}} \exp\left(-\frac{\alpha_{1}^{2}\rho^{2}}{2}\right) (\alpha_{1}^{2}\rho^{2})^{\frac{|m|}{2}} L_{n_{\rho}}^{|m|}(\alpha_{1}^{2}\rho^{2})$$

THREE CENTER WAVE FUNCTION

The ternary character of the process is given by the z - axis wave equation:

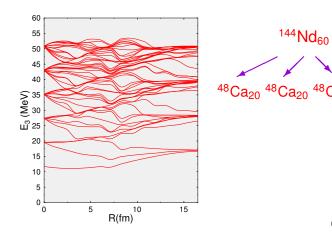
$$\left[\frac{\partial^{2}}{\partial z^{2}} + \frac{2m_{0}E_{z}}{\hbar^{2}} - \frac{2m_{0}}{\hbar^{2}}V_{3}(z)\right]Z_{\nu}(z) = 0$$

where:

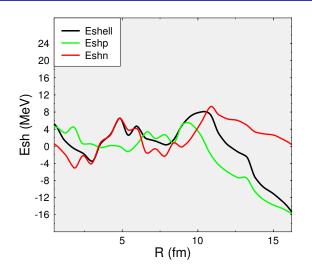
$$Z_{\nu}(z) = \begin{cases} C_{1n} \exp\left[-\frac{\alpha^{2}(z-z_{1})^{2}}{2}\right] \mathcal{H}_{\nu}[\alpha(z-z_{1})] &, \quad z \geq z_{01} \\ C_{0n} \exp\left(-\frac{\alpha^{2}z^{2}}{2}\right) [\mathcal{H}_{\nu}(z) + (-1)^{n} \mathcal{H}_{\nu}(-z)] &, \quad -z_{01} < z < z_{01} \\ (-1)^{n} C_{1n} \exp\left[-\frac{\alpha^{2}(z+z_{1})^{2}}{2}\right] \mathcal{H}_{\nu}[-\alpha(z+z_{1})] &, \quad z \leq -z_{01} \end{cases}$$

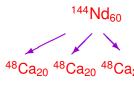
SPIN-ORBIT IS AND P OPERATORS

$$V_{ls} = \left\{ \begin{array}{ll} -\left\{\frac{\hbar}{m_0\omega_{01}}\kappa_1(\rho,z), (\nabla V(z>z_{01})\times p)s\right\} &, \textit{A}_1 - \textit{region} \\ -\left\{\frac{\hbar}{m_0\omega_{02}}\kappa_2(\rho,z), (\nabla V(-z_{01}< z< z_{01})\times p)s\right\} &, \textit{A}_2 - \textit{region} \\ -\left\{\frac{\hbar}{m_0\omega_{03}}\kappa_3(\rho,z), (\nabla V(z<-z_{01})\times p)s\right\} &, \textit{A}_3 - \textit{region} \end{array} \right.$$


and

$$\begin{split} V_{/\!\!\!\!2} = \left\{ \begin{array}{ll} & -\left\{\frac{\hbar}{m_0^2 \omega_{01}^3} \kappa_1 \mu_1(\rho,z), (\nabla V(z>z_{01}) \times p)^2\right\} &, \textit{A}_1 - \textit{region} \\ & -\left\{\frac{\hbar}{m_0^2 \omega_{02}^3} \kappa_2 \mu_2(\rho,z), (\nabla V(-z_{01} < z < z_{01}) \times p)^2\right\} &, \textit{A}_2 - \textit{region} \\ & -\left\{\frac{\hbar}{m_0^2 \omega_{03}^3} \kappa_3 \mu_3(\rho,z), (\nabla V(z<-z_{01}) \times p)^2\right\} &, \textit{A}_3 - \textit{region} \\ \end{array} \right. \end{split}$$




THREE CENTER LEVEL SCHEME FOR

SHELL CORRECTIONS FOR 144Nd

CONCLUSIONS

- The three-center shell model describes the transition of the parent neutron and proton level scheme to the three partially overlapped and finally separated fragment level schemes.
- Minima in the shell correction energy could lower the macroscopic barrier and decide which parent nucleus can be chosen as favourable for ternary fission studies.
- Minima in the shell correction calculated with the three-center shell model level scheme could influence the stability of an elongated, linear 3-body type system.
- Total minima obtained within the tripartition of an initial level scheme can emphasize the
 existence of quasi-stable deformed isomeric states due to the formation of partially
 overlapped three shell closures of an elongated, linear 3-body type system.

THANK YOU

