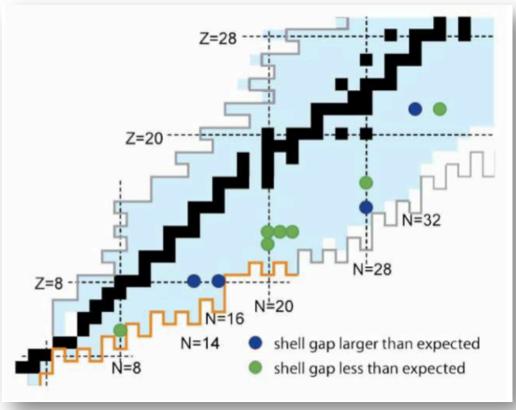
Spectroscopic Factors in the Islands of Inversion: The Nilsson Strong Coupling Limit

Heather L. Crawford

Nuclear Science Division Lawrence Berkeley National Laboratory

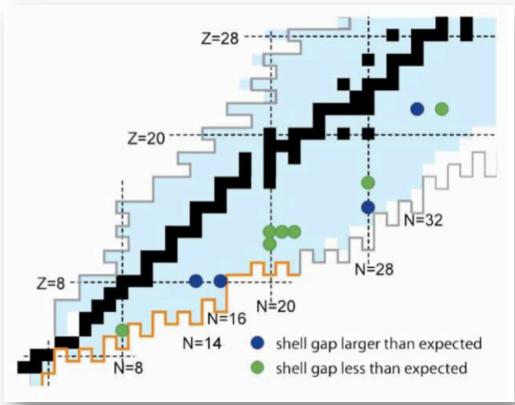
Outline


- The 'Islands of Inversion' what we know
- Spectroscopic Factors in the Nilsson Strong Coupling Limit
 - N=20 Island of Inversion
 - *N*=8 ¹²Be
- Structure of ²⁹F
- Summary

Evolution of Shell Structure and Collectivity

"Classic" magic numbers are generally correct only for stable and near stable isotopes.

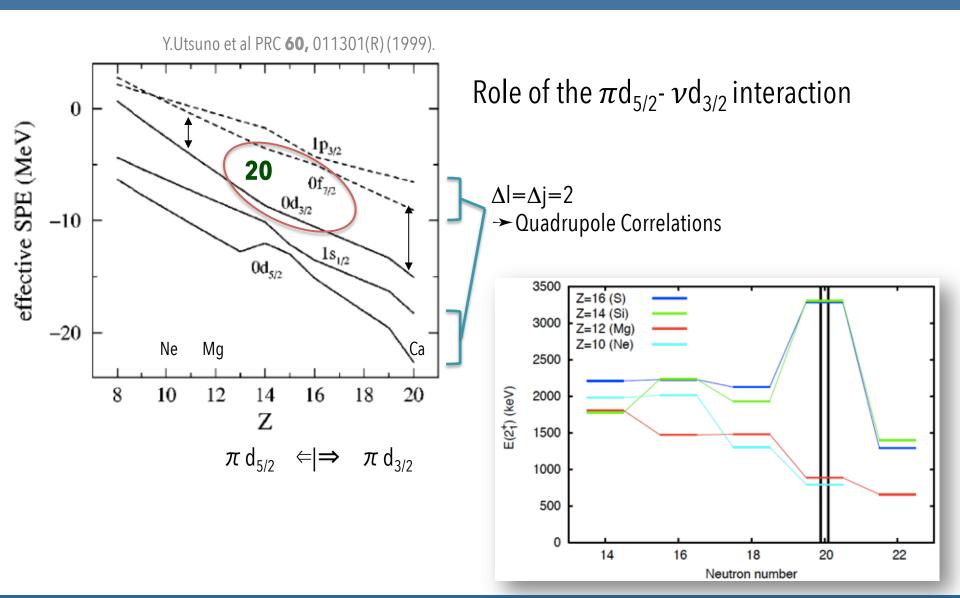
Experimental studies of new exotic isotopes revealed changes in shell structure and collectivity, and provided insight on the important role played by the tensor (and 3N) in these changes.


R.V.F Janssens, Nature 435 (2005).

Evolution of Shell Structure and Collectivity

"Classic" magic numbers are generally correct only for stable and near stable isotopes.

Experimental studies of new exotic isotopes revealed changes in shell structure and collectivity, and provided insight on the important role played by the tensor (and 3N) in these changes.


R.V.F Janssens, Nature 435 (2005).

A delicate balance between the monopole field and correlations.

$$H = E_{sp} + GP^+P + xQ \cdot Q$$

N=20 Shell Gap

Evolution of Shell Structure and Collectivity

Z=28 Z=20 N=20 Island of Inversion N=28 Z=8 N=20 N=16 shell gap larger than expected N=14 shell gap less than expected

R.V.F Janssens, Nature 435 (2005).

"Classic" magic numbers are generally correct only for stable and near stable isotopes.

Experimental studies of new exotic isotopes revealed changes in shell structure and collectivity, and provided insight on the important role played by the tensor (and 3N) in these changes.

³²Mg, at the center of this region, has been a subject of intense work for many years, both experimental and theoretical.

 \Rightarrow Much evidence has been obtained for the existence of deformed ground states.

H.L.C. et al., Phys. Rev. C **93**, 031303(R) (2016). A. L. Richard. et al., Phys. Rev. C **96**, 011303(R) (2017).

³³Mg -1n KO

	Contents lists available at ScienceDirect	LETTERS B
5-52 5-9	Physics Letters B	
ELSEVIER	www.elsevier.com/locate/physletb	evenue analitavet analita os
Structure o	f ³³ Mg sheds new light on the $N = 20$ island of inversion	

- Longitudinal momentum distribution from the one-neutron removal reaction on a C target at 898 MeV/A.
- Experiment performed at the FRS, GSI.

\Rightarrow An increased contribution from the $2p_{3/2}$ orbital is required to explain the observation showing its lowering compared to existing model predictions.

³³Mg – Coulomb breakup

PHYSICAL REVIEW C 94, 034304 (2016)

Direct experimental evidence for a multiparticle-hole ground state configuration of deformed ³³Mg

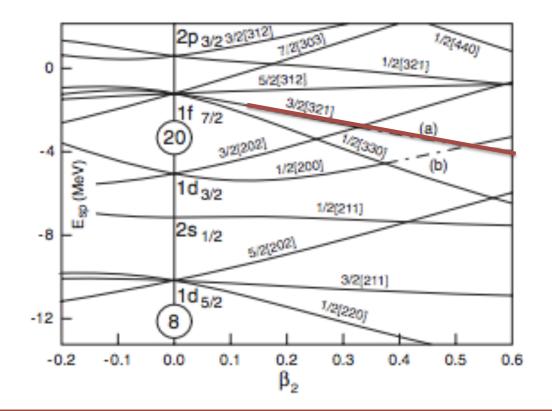
Ushasi Datta,^{1,2,*} A. Rahaman,¹ T. Aumann,^{2,3} S. Beceiro-Novo,⁴ K. Boretzky,² C. Caesar,² B. V. Carlson,⁵ W. N. Catford,⁶ S. Chakraborty,¹ M. Chartier,⁷ D. Cortina-Gil,⁴ G. de Angelis,⁸ P. Diaz Fernandez,⁴ H. Emling,² O. Ershova,² L. M. Fraile,⁹ H. Geissel,^{2,10} D. Gonzalez-Diaz,² B. Jonson,¹¹ H. Johansson,¹¹ N. Kalantar-Nayestanaki,¹² T. Kröll,³ R. Krücken,¹³ J. Kurcewicz,² C. Langer,² T. Le Bleis,¹² Y. Leifels,² J. Marganiec,^{2,14} G. Münzenberg,² M. A. Najafi,¹² T. Nilsson,¹¹ C. Nociforo,² V. Panin,² S. Paschalis,³ R. Plag,² R. Reifarth,² V. Ricciardi,² D. Rossi,² H. Scheit,³ C. Scheidenberger,^{2,10} H. Simon,² J. T. Taylor,⁷ Y. Togano,² S. Typel,² V. Volkov,³ A. Wagner,¹⁵ F. Wamers,² H. Weick,² M. Weigand,² J. S. Winfield,² D. Yakorev,¹⁵ and M. Zoric²

 Coulomb Dissociation at 400 MeV/A – experimental evidence of a multiparticle-hole ground state configuration in ³³Mg

³³Mg – Coulomb breakup

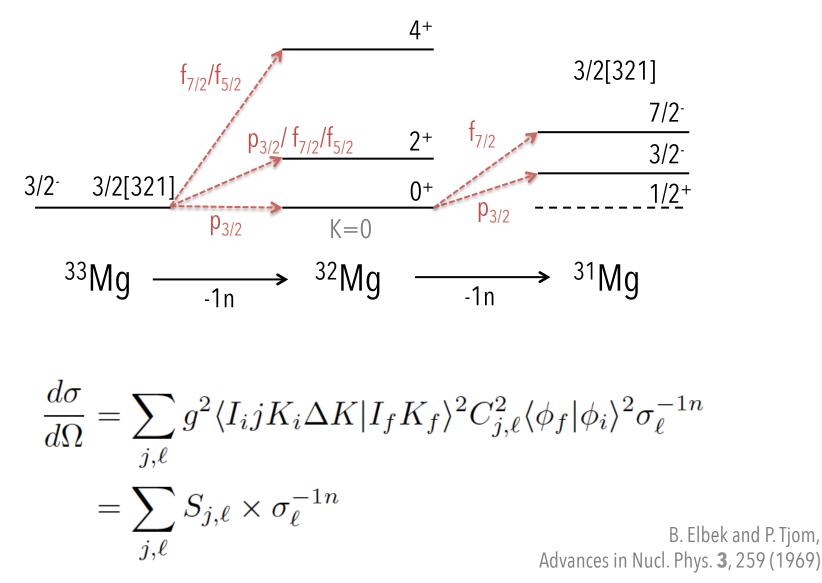
PHYSICAL REVIEW C 94, 034304 (2016)

Direct experimental evidence for a multiparticle-hole ground state configuration of deformed ³³Mg

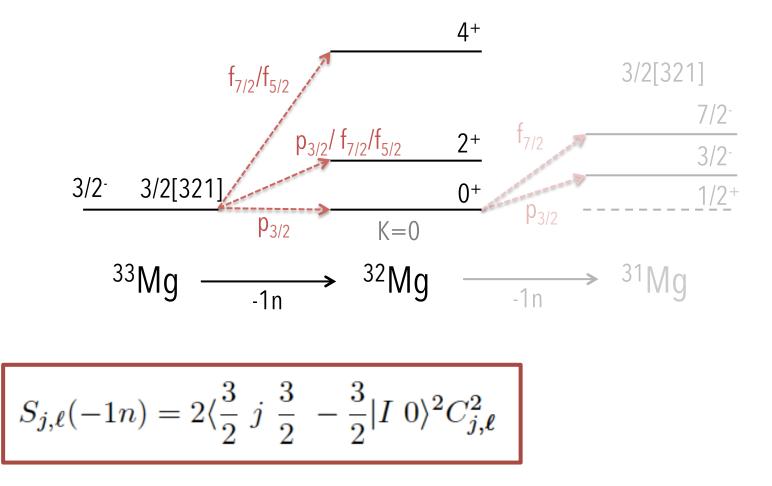

Ushasi Datta,^{1,2,*} A. Rahaman,¹ T. Aumann,^{2,3} S. Beceiro-Novo,⁴ K. Boretzky,² C. Caesar,² B. V. Carlson,⁵ W. N. Catford,⁶ S. Chakraborty,¹ M. Chartier,⁷ D. Cortina-Gil,⁴ G. de Angelis,⁸ P. Diaz Fernandez,⁴ H. Emling,² O. Ershova,² L. M. Fraile,⁹ H. Geissel,^{2,10} D. Gonzalez-Diaz,² B. Jonson,¹¹ H. Johansson,¹¹ N. Kalantar-Nayestanaki,¹² T. Kröll,³ R. Krücken,¹³ J. Kurcewicz,² C. Langer,² T. Le Bleis,¹² Y. Leifels,² J. Marganiec,^{2,14} G. Münzenberg,² M. A. Najafi,¹² T. Nilsson,¹¹ C. Nociforo,² V. Panin,² S. Paschalis,³ R. Plag,² R. Reifarth,² V. Ricciardi,² D. Rossi,² H. Scheit,³ C. Scheidenberger,^{2,10} H. Simon,² J. T. Taylor,⁷ Y. Togano,² S. Typel,² V. Volkov,³ A. Wagner,¹⁵ F. Wamers,² H. Weick,² M. Weigand,² J. S. Winfield,² D. Yakorev,¹⁵ and M. Zoric²

 Coulomb Dissociation at 400 MeV/A – experimental evidence of a multiparticle-hole ground state configuration in ³³Mg

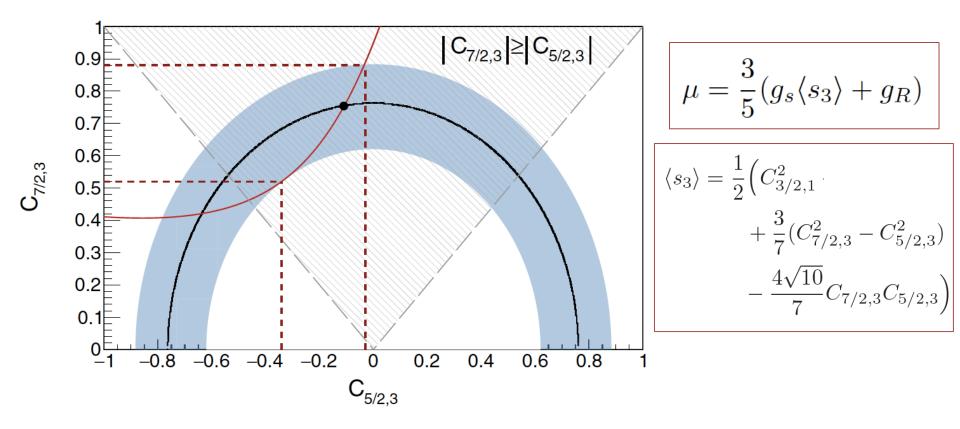
⇒ Based on the fact that nuclei inside the islands are well deformed, we consider the description of these reactions in a rotational framework.

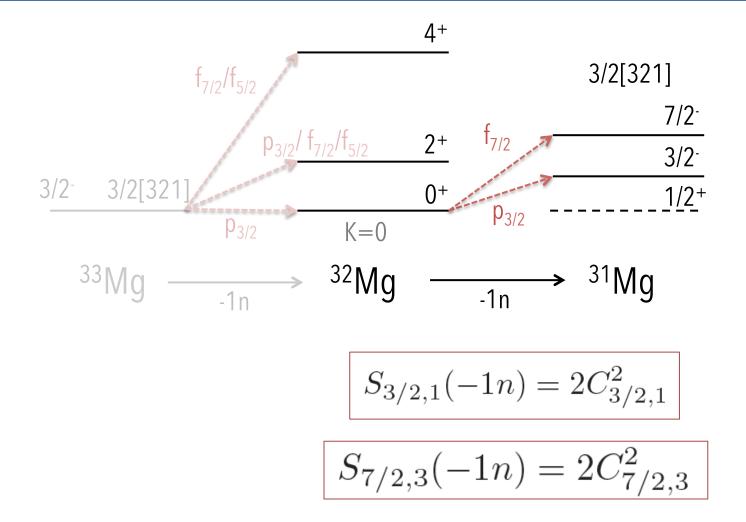


Assume ground state of ³³Mg is the 3/2[321] neutron Nilsson level



$$\left|\frac{3}{2}[321]\right\rangle = C_{3/2,1}|p_{3/2}\rangle + C_{5/2,3}|f_{5/2}\rangle + C_{7/2,3}|f_{7/2}\rangle$$




³³Mg Magnetic Moment

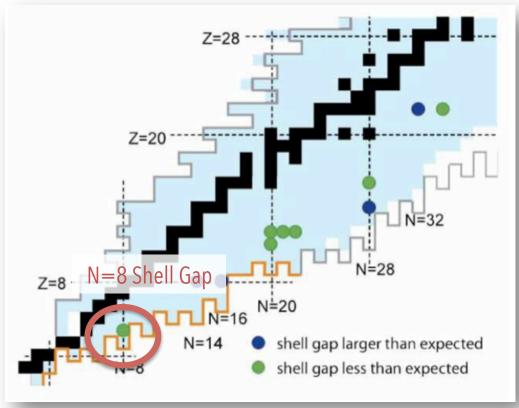
⇒ Fully constrain amplitudes based on measured spectroscopic factors, magnetic moment and wavefunction normalization condition

Final	Energy		Experi	mental $S_{j,\ell}$	Calculated $S_{j,\ell}$		
state	[MeV]	l	[21]	[22]	Nilsson	Empirical	
0+	0.00	1	$0.6^{+0.3}_{-0.5}$	0.19 ± 0.1	0.05	0.24	
2+	0.89	1	$\begin{array}{c} 0.6\substack{+0.3\\-0.5}\\ 0.5\substack{+0.7\\-0.3}\\ 0.5\substack{+0.2\\-0.5}\end{array}$		0.05	0.24	
		3	$0.5^{+0.2}_{-0.5}$		0.34	0.18	
4+	2.32	3			0.55	0.33	
						₩	
	$\frac{3}{2}[321]$	$ \rangle =$	(-0.65)	$\pm 0.15) p_{3/2}$	(0.75)	$(f_{-0.23}^{+0.13}) f_{7/2}$	
			+(-0)	$(12^{+0.08}_{-0.22}) f_5 $	/2)		

Final	Energy		$S_{j\ell}$	Calcu	Calculated $S_{j\ell}$		
state	[MeV]	l	[26]	Nilsson	Empirical		
3/2 ⁻ 7/2 ⁻	0.22 0.46	1 3	$\begin{array}{c} 0.59\substack{+0.11\\-0.11}\\ 1.24\substack{+0.4\\-0.4}\end{array}$	0.2 1.7	0.59 1.2		
$\frac{3}{2}[3]$	$21]\rangle \approx (-0)$).54 ±	$= 0.05) p_{3/2}\rangle$	$+(0.79 \pm$	$ \downarrow 0.13) f_{7/2}\rangle $		

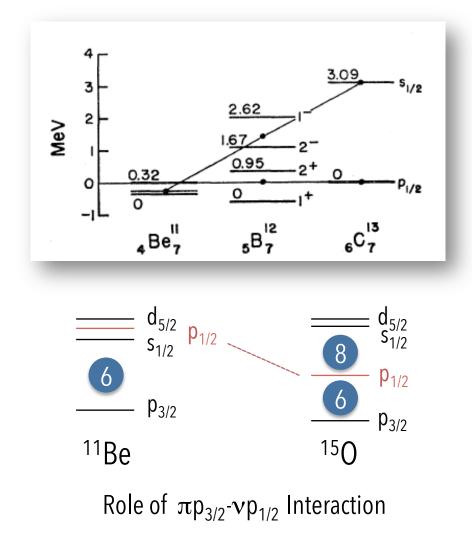
+ $(-0.29 \pm 0.36)|f_{5/2}\rangle$.

J. R. Terry *et al.*, Phys. Rev. C **77**, 014316 (2008).


A.O. Macchiavelli, HLC et al., Phys. Rev. C 96, 054302 (2017).

Evolution of Shell Structure and Collectivity

"Classic" magic numbers are generally correct only for stable and near stable isotopes.


Experimental studies of new exotic isotopes revealed changes in shell structure and collectivity, and provided insight on the important role played by the tensor (and 3N) in these changes.

R.V.F Janssens, Nature 435 (2005).

The "First" Island of Inversion: N=8

I. Talmi and I. Unna, Phys. Rev. Lett. 4 469 (1960)

12

10

8 Neutron number

N=8 Shell Closure

14C

6000

4000

2000

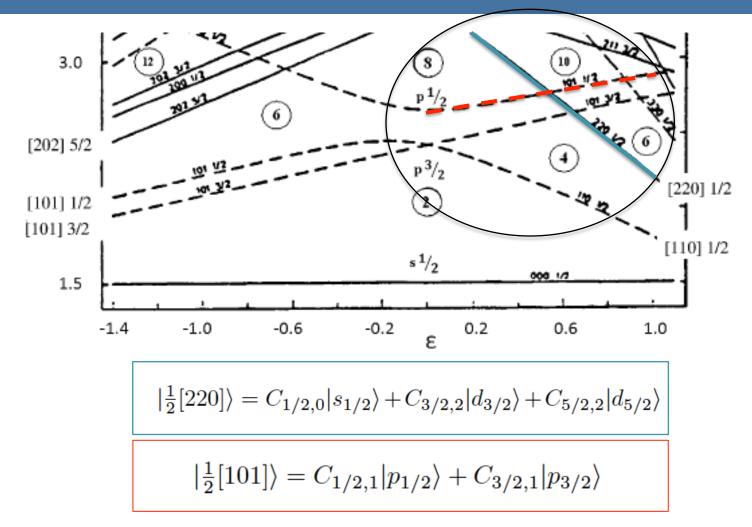
0

°6

₄Be

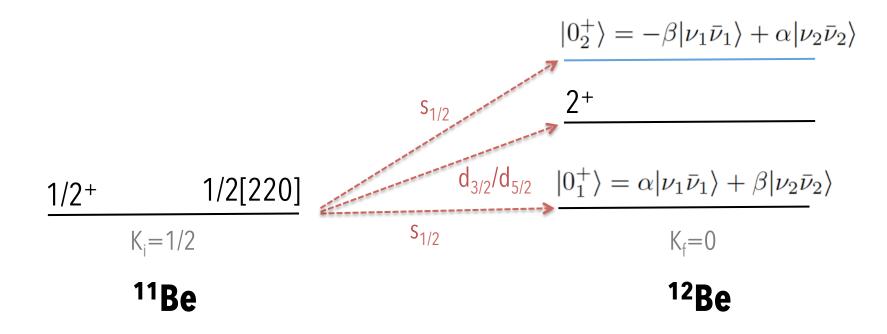
4

6


E (2⁺) [keV]

Direct Reactions Studies

	1			1				
Initial	Final	Energy	l		Experimen	tal $S_{i,f}$		
State	State	[MeV]	¢.	[16]	[22]	[23, 24]	[15]	
¹¹ Be	¹² Be							
$\frac{1}{2}^{+}$	01+	0.00	0	1				
	2_{1}^{+}	2.11	2	0.36 ± 0.29				R. Kanungo <i>et al.</i> , PLB 682 , 391 (2010).
	0_{2}^{+}	2.24	0	$2.61{\pm}1.34$				
¹⁰ Be	¹¹ Be							
0+	$\frac{1}{2}^{+}$	0.00	0		1			K. T. Schmitt <i>et al.,</i> PRL 108 , 192701 (2012).
	$\frac{1}{2}^{-}$	0.32	1	(0.87 ± 0.08			
$^{12}\mathrm{Be}$	¹¹ Be							
0+	$\frac{1}{2}^{+}$	0.00	0			1		A. Navin, et al., PRL 85 , 266 (2000).
	$\frac{1}{2}^{-}$	0.32	1			0.82 ± 0.22		
	$\frac{5}{2}^{+}$	1.78	2			$0.86 {\pm} 0.29$		S. Pain, et al. PRL 96 , 032502 (2006).
	$\frac{3}{2}$ -	2.69	1			$0.71 {\pm} 0.26$		
¹¹ Be	¹⁰ Be							LC Winfield at al
$\frac{1}{2}^{+}$	01+	0.00	0				1	J.S. Winfield <i>et al</i> ., Nucl. Phys. A 683 , 48 (2001)
	2_{1}^{+}	3.4	2				1 ± 0.38	Nucl. 1 Hys. A U03 , 40 (2001)


The Nilsson Picture

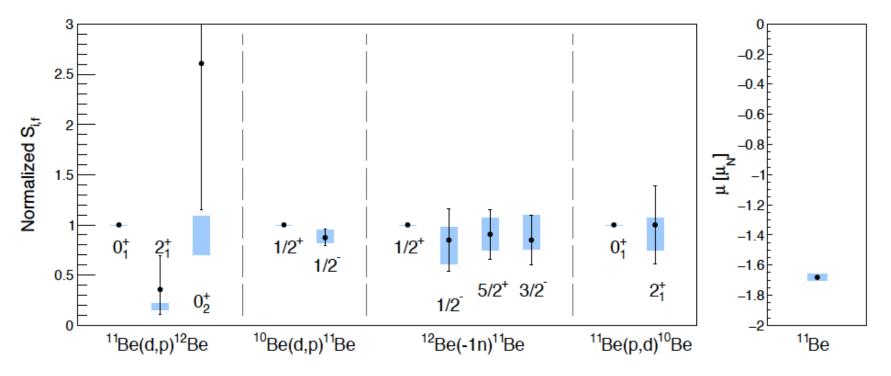
A. Bohr and B. R. Mottelson, Nuclear Structure Volume II
W. Von Oertzen, M. Freer, and Y. Kanada-En'yo Physics Reports 432, 43 (2006).
I. Hamamoto and S. Shimoura J. Phys. G: Nucl. Part. Phys. 34, 2715 (2007).

¹¹Be(d,p)¹²Be à la Nilsson

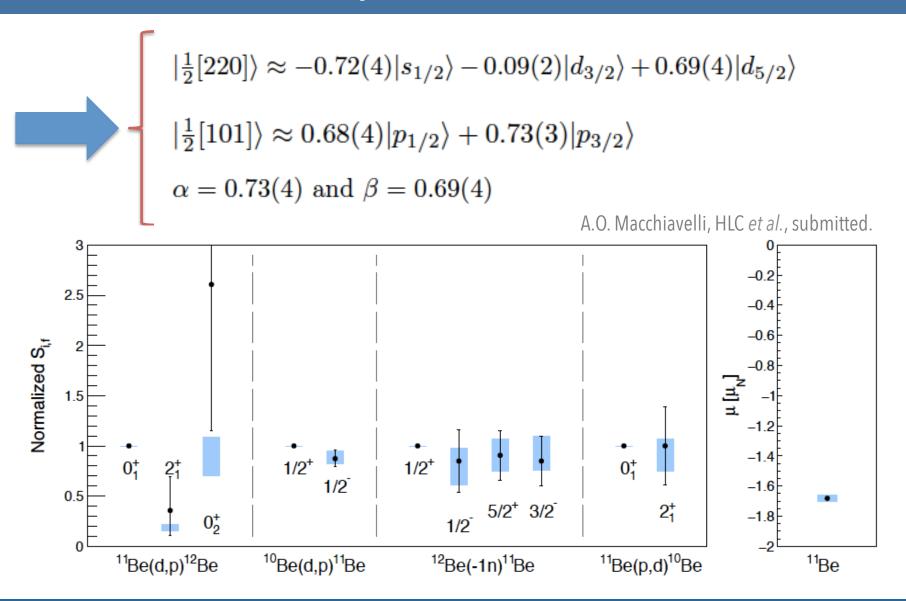
$$S_{i,f} = \frac{(2I_i + 1)}{(2I_f + 1)} g^2 \langle I_i j K_i \Delta K | I_f K_f \rangle^2 C_{j,\ell}^2 \langle \phi_f | \phi_i \rangle^2$$

Analysis

- Total of 15 relations (11 direct reaction spectroscopic factors + magnetic moment of ¹¹Be + 3 wavefunction normalizations) connect the experimental data to 7 unknown amplitudes
- Determine amplitudes from a χ^2 -minimization procedure.


 \Rightarrow Weighted fit of the relative spectroscopic factor values with respect to the ground state transition for each of the data sets, and of the absolute value of the ¹¹Be ground-state magnetic moment.

Analysis and Results


- Total of 15 relations (11 direct reaction spectroscopic factors + magnetic moment of ¹¹Be + 3 wavefunction normalizations) connect the experimental data to 7 unknown amplitudes
- Determine amplitudes from a χ^2 -minimization procedure.

 \Rightarrow Weighted fit of the relative spectroscopic factor values with respect to the ground state transition for each of the data sets, and of the absolute value of the ¹¹Be ground-state magnetic moment.

Analysis and Results

Summary I

- Description of nucleon knockout and transfer reactions in the deformed 'Islands of Inversion' at N=8 and N=20 allows a straightforward analysis of results
- Nilsson wavefunction amplitudes are directly related to the spectroscopic factors
- N=20 adjusted wavefunction for 3/2[321] level is consistent with reduced $1f_{7/2}$ - $2p_{3/2}$ gap, consistent with other approaches
- N=8 minimization of wavefunctions to all available data provides excellent agreement; predictions for other reactions are possible

Manifestation of the Baader-Meinhof Phenomenon in AOM

West German police search for nine members of the Red Army Faction (also known as the Baader-Meinhof Group) in 1976. The terrorist group unwittingly gave its name to the phenomenon of a thing you've just noticed or experienced suddenly cropping up constantly

Structure of ²⁹F

PHYSICAL REVIEW C 95, 041301(R) (2017)

Low-Z shore of the "island of inversion" and the reduced neutron magicity toward ²⁸O

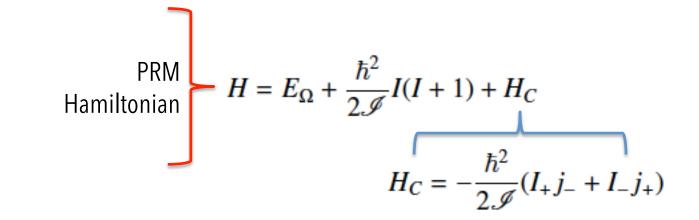
P. Doornenbal,^{1,*} H. Scheit,^{1,2,†} S. Takeuchi (武内 聡),^{1,‡} Y. Utsuno (宇都野 穣),³ N. Aoi (青井 考),^{1,§} K. Li (李 闊昂),^{1,2} M. Matsushita (松下 昌史),^{1,4,∥} D. Steppenbeck,¹ H. Wang (王 赫),^{1,2} H. Baba (馬場 秀忠),¹ E. Ideguchi (井手口 栄治),^{5,§} N. Kobayashi (小林 信之),^{6,§} Y. Kondo (近藤 洋介),⁶ J. Lee (李曉菁),^{1,¶} S. Michimasa (道正 新一郎),⁵ T. Motobayashi (本林 透),¹ T. Otsuka (大塚 孝治),^{5,7} H. Sakurai (櫻井 博儀),¹ M. Takechi (武智 麻耶),^{1,#} Y. Togano (栂野 泰宏),^{1,‡} and K. Yoneda (米田健一郎)¹ ¹*RIKEN Nishina Center, Wako, Saitama 351-0198, Japan* ²*Peking University, Beijing 100871, People's Republic of China* ³*Advanced Science Research Center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195, Japan* ⁴*Department of Physics, Rikkyo University, Toshima, Tokyo 172-8501, Japan* ⁶*Center for Nuclear Study, University of Tokyo, RIKEN Campus, Wako, Saitama 351-0198, Japan* ⁷*Department of Physics, University of Tokyo, Bunkyo, Tokyo 113-0033, Japan* ⁷*Department of Physics, University of Tokyo, Bunkyo, Tokyo 113-0033, Japan* (Received 11 February 2015; revised manuscript received 20 February 2017; published 13 April 2017)

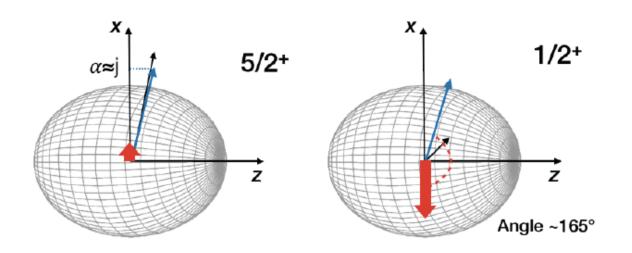
- 1/2⁺ in ²⁹F identified; shell model calculations using effective interactions indicate that the N=20 gap is quenched in ²⁹F, and the "Island of Inversion" extends to proton number Z=9.
- Strong correlation of 1/2⁺ energy to the N=20 gap, observed energy suggests persistent reduced neutron gap for ²⁸O.

Structure of ²⁹F

PHYSICAL REVIEW C 95, 041301(R) (2017)

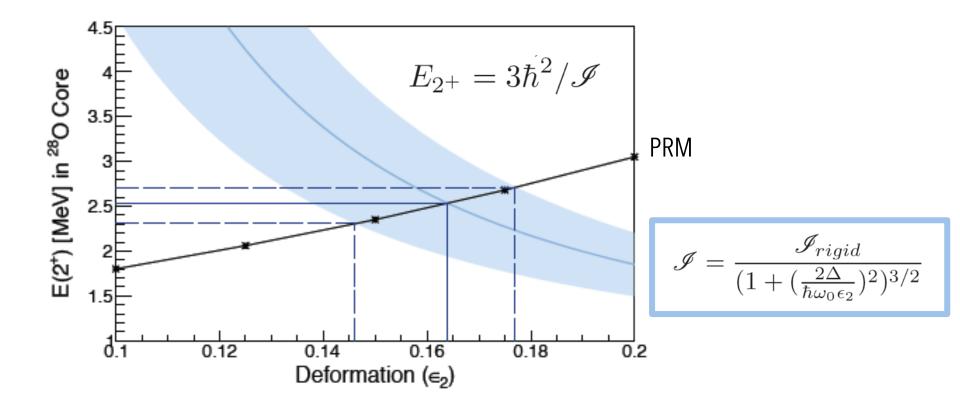
Low-Z shore of the "island of inversion" and the reduced neutron magicity toward ²⁸O


P. Doornenbal,^{1,*} H. Scheit,^{1,2,†} S. Takeuchi (武内 聡),^{1,‡} Y. Utsuno (宇都野 穣),³ N. Aoi (青井 考),^{1,§} K. Li (李 闊昂),^{1,2} M. Matsushita (松下 昌史),^{1,4,∥} D. Steppenbeck,¹ H. Wang (王 赫),^{1,2} H. Baba (馬場 秀忠),¹ E. Ideguchi (井手口 栄治),^{5,§} N. Kobayashi (小林 信之),^{6,§} Y. Kondo (近藤 洋介),⁶ J. Lee (李曉菁),^{1,¶} S. Michimasa (道正 新一郎),⁵ T. Motobayashi (本林 透),¹ T. Otsuka (大塚 孝治),^{5,7} H. Sakurai (櫻井 博儀),¹ M. Takechi (武智 麻耶),^{1,#} Y. Togano (栂野 泰宏),^{1,‡} and K. Yoneda (米田健一郎)¹ ¹*RIKEN Nishina Center, Wako, Saitama 351-0198, Japan* ²*Peking University, Beijing 100871, People's Republic of China* ³*Advanced Science Research Center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195, Japan* ⁴*Department of Physics, Rikkyo University, Toshima, Tokyo 172-8501, Japan* ⁶*Center for Nuclear Study, University of Tokyo, RIKEN Campus, Wako, Saitama 351-0198, Japan* ⁷*Department of Physics, University of Tokyo, Bunkyo, Tokyo 113-0033, Japan* ⁷*Department of Physics, University of Tokyo, Bunkyo, Tokyo 113-0033, Japan* (Received 11 February 2015; revised manuscript received 20 February 2017; published 13 April 2017)

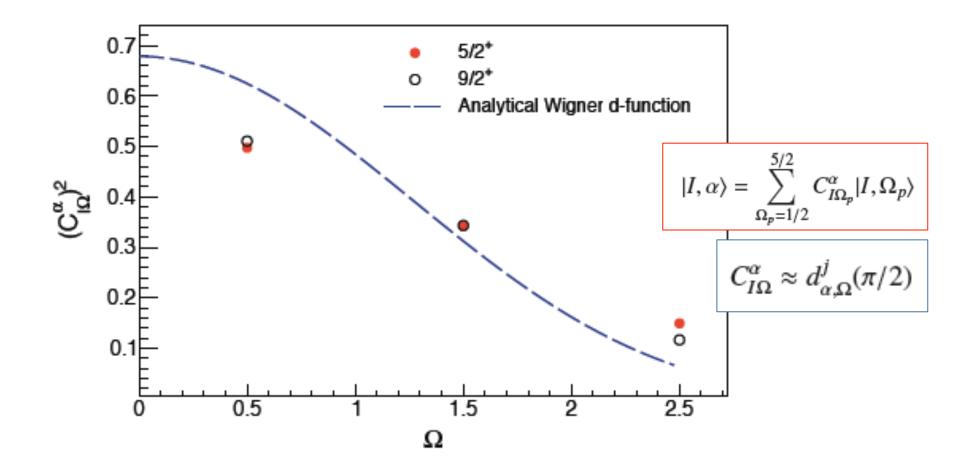

- 1/2⁺ in ²⁹F identified; shell model calculations using effective interactions indicate that the N=20 gap is quenched in ²⁹F, and the "Island of Inversion" extends to proton number Z=9.
- Strong correlation of 1/2⁺ energy to the N=20 gap, observed energy suggests persistent reduced neutron gap for ²⁸O.

 \Rightarrow PRM description – neutron + ²⁸O

Structure of ²⁹F



At small/moderate deformation, Coriolis matrix elements dominate over intrinsic level spacings, and rotation-aligned coupling limit is reached.



Structure of ²⁹F: PRM Solution

Structure of ²⁹F: Decoupled Band

Structure of ²⁹F: PRM Solution

State	Energy	$\langle R \rangle$	Erot	$\langle I_z \rangle$	$\langle \vec{I} \cdot \vec{j} \rangle / I $	$\langle \vec{R} \cdot \vec{j} \rangle / R $	Magnetic Moment	Quadrupole Moment
	[MeV]		[MeV]				$[\mu_N]$	[eb]
5/2+	0	0.53	0.34	0.11	2.78	-0.30	4.6	-0.05
$1/2^{+}$	1.08	1.46	2.00	0.5	1.47	-2.14	2.6	0
3/2+	2.2	2.01	2.54	-1.12	1.58	-2.18	2.4	0.027
9/2+	2.6	2.18	2.91	0.04	2.65	1.76	5.3	-0.09
7/2+	3.2	2.09	2.71	0.60	2.27	0.12	4.2	-0.02

Population in -1p Knockout

$$\frac{\sigma_{1/2^+}^{\ell=0}}{\sigma_{5/2^+}^{\ell=2}} \approx \frac{\sum_{i=1}^3 C_{1/2,1/2_i} \cdot c_{s_{1/2},1/2_i} \cdot u_{1/2_i}}{\sum_{\Omega_p=1/2}^{5/2} C_{5/2,\Omega_p} \cdot c_{d_{5/2},\Omega_p} \cdot u_{\Omega_p}} \approx 13\%$$

Structure of ²⁹F: PRM Solution

State	Energy	$\langle R \rangle$	Erot	$\langle I_z \rangle$	$\langle \vec{I} \cdot \vec{j} \rangle / I $	$\langle \vec{R} \cdot \vec{j} \rangle / R $	Magnetic Moment	Quadrupole Moment
	[MeV]		[MeV]				$[\mu_N]$	[eb]
5/2+	0	0.53	0.34	0.11	2.78	-0.30	4.6	-0.05
$1/2^{+}$	1.08	1.46	2.00	0.5	1.47	-2.14	2.6	0
3/2+	2.2	2.01	2.54	-1.12	1.58	-2.18	2.4	0.027
9/2+	2.6	2.18	2.91	0.04	2.65	1.76	5.3	-0.09
7/2+	3.2	2.09	2.71	0.60	2.27	0.12	4.2	-0.02

Population in -1p Knockout

$$\frac{\sigma_{1/2^{+}}^{\ell=0}}{\sigma_{5/2^{+}}^{\ell=2}} \approx \frac{\sum_{i=1}^{3} C_{1/2,1/2_{i}} \cdot c_{s_{1/2},1/2_{i}} \cdot u_{1/2_{i}}}{\sum_{\Omega_{p}=1/2}^{5/2} C_{5/2,\Omega_{p}} \cdot c_{d_{5/2},\Omega_{p}} \cdot u_{\Omega_{p}}} \approx 13\%$$

 \Rightarrow Measured 11(3)% !!

A.O. Macchiavelli, HLC et al., Phys. Lett. B (2017) – in press.

Summary II

- The low-lying structure of ²⁹F (1/2⁺ state at 1.08 MeV) can be understood in terms of the rotation-aligned coupling limit of the PRM
- Coriolis coupling on the d_{5/2} proton Nilsson multiplet gives rise to a decoupled band with 5/2⁺ bandhead and1/2⁺ with energy depending on core (²⁸O) 2⁺ energy
- Consistent solution with moderate deformation ($\varepsilon \sim 0.16$) and E(2⁺) in ²⁸O = 2.5(2) MeV, in line with large scale shell model
- Predictions for double-decoupled band in ${}^{30}F 6^{-}$ ground state?

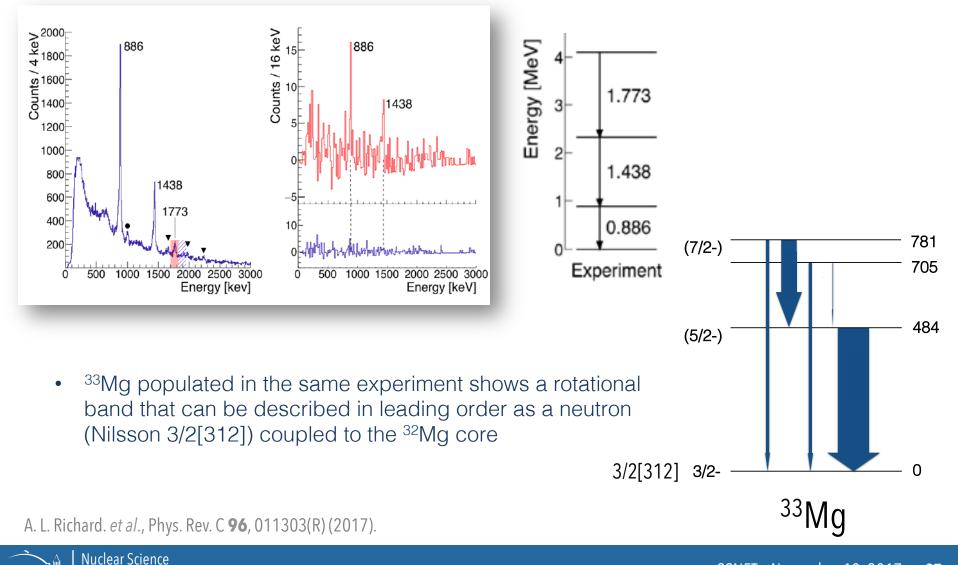
Acknowledgements

Thanks to the LBNL Nuclear Structure Group:

<u>A. O. Macchiavelli</u>, P. Fallon, C. M. Campbell, R. M. Clark, M. Cromaz, I. Y. Lee, M. D. Jones, and M. Salathe

Thank you!

Backup



Rotational Band Structure in ^{32,33}Mg

H.L.C. et al., Phys. Rev. C 93, 031303(R) (2016).

Division

BERKELEY LAB

