

Do we understand nuclear collectivity? Lifetime measurements for sensitive tests of nuclear structure theories

Bo Cederwall KTH - Royal Institute of Technology, Stockholm

"Nuclear quadrupole moments form a horizontal view of nuclear structure which, if not regarded as fundamental, ought to be so regarded."

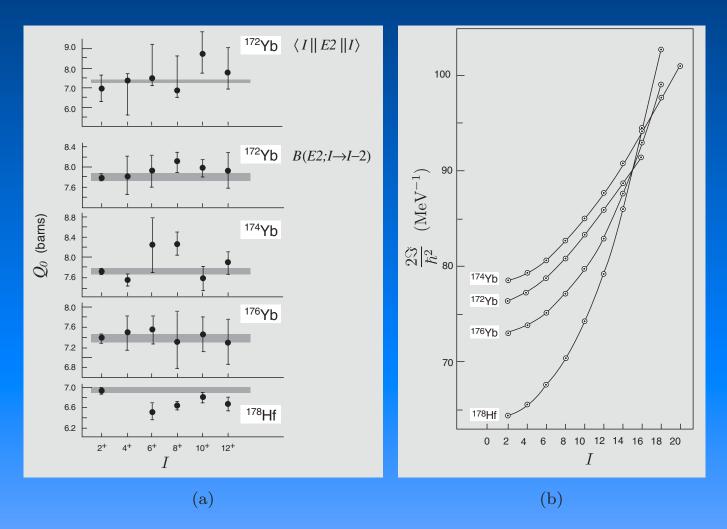
"There is a serious lack of quadrupole moment data. One fundamental difficulty is that 25% of all nuclei (even-even nuclei) have spin-zero ground states and so, for quantum mechanical reasons, their ground-state quadrupole moments are zero. In order to "see" the deformation of such nuclei, either a model-dependent feature such as a rotational band of excited states is needed, or a modelindependent feature such as a quadrupole moment of the 2⁺₁ state is needed. The former is very easy to observe, the latter is extremely difficult to measure."

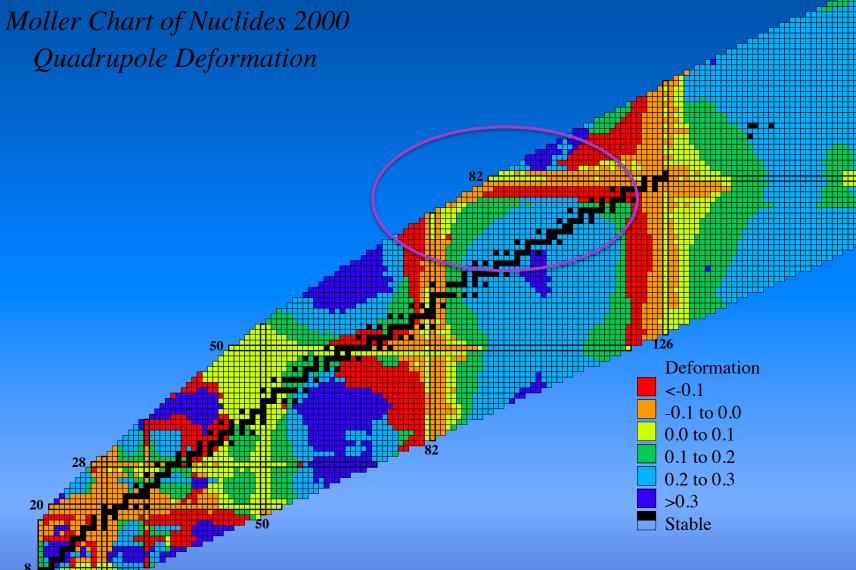
"... some patterns of excitation energies, while they may appear to be near-perfect examples of simple collective dynamics in nuclei, can be very misleading. Detailed maps of E2 matrix elements are vital to the exploration of low-energy quadrupole collectivity in nuclei."

"The most conservative statement that can be made about nuclear moments of inertia is that we do not understand them"

John L Wood

Emergent Phenomena in Atomic Nuclei from Large-Scale Modeling World Scientific, 2017




Fig. 7. (a) Intrinsic quadrupole moments, Q_0 , for 172,174,176 Yb and 178 Hf extracted using rotor-model relationships for E2 matrix elements. The figure is taken from Ref. [17]. (b) Moments of inertia for 172,174,176 Yb and 178 Hf extracted using rotor-model relationships for the energies. The figure is taken from Ref. [17].

D. J. Rowe and J. L. Wood, Fundamentals of nuclear models: Foundational models. Chapter 6, World Scientific, Singapore (2010)

20

Part I: B(E2:2⁺ -> 0⁺) in ^{162,164}W and evolution of collectivity in the rare earth region

- Plunger measurements using JurogamII+RITU+DPUNS @ JYFL
- Theoretical predictions using various theoretical approaches:

TRS-Woods-Saxon

Z.X.Xu and C.Qi, Phys. Lett. B 724, 247 (2013).

Z. Wu et al., Phys. Rev. C 92, 024306 (2015).

FRDM

P. Möller et al., At. Data Nucl. Data Tables 109-110, 1-204 (2016).

Skyrme Hartree-Fock-Bogoliubov

E. Chabanat, H. Bonche et al., Nucl. Phys. A, 635, 231 (1998).

M. Kortelainen et al., Phys. Rev. C 82, 024313 (2010); Phys. Rev. C 85, 024304 (2012); Phys. Rev. C 89, 054314 (2014)

M. V. Stoitsov et al., Comput. Phys. Commun. 184, 1592 (2013).

Skyrme HFB24 mass model

S. Goriely et al., Phys Rev C 88, 0243080 (2013).

Relativistic Mean Field

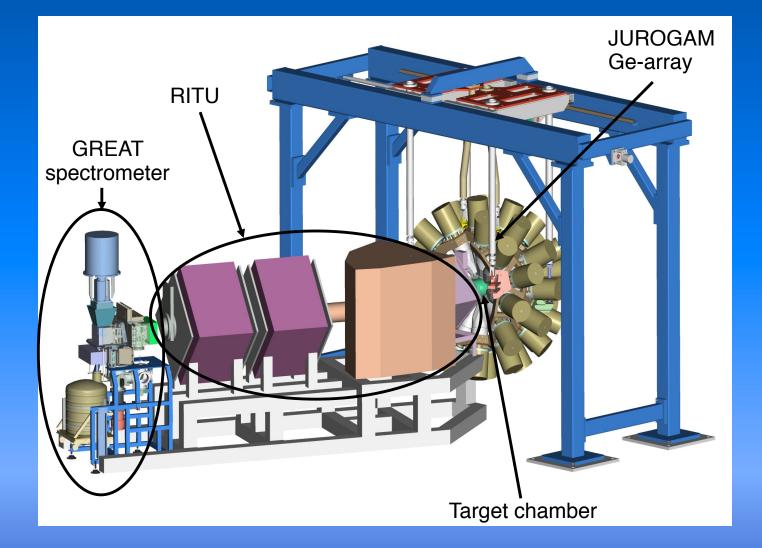
T. Niksic et al., Comput. Phys. Commun. 185, 1808 (2014).

G.A. Lalazissis et al., Phys. Rev. C 71, 024312 (2005).

Gogny Hartree-Fock-Bogoliubov + GCM (BMF)

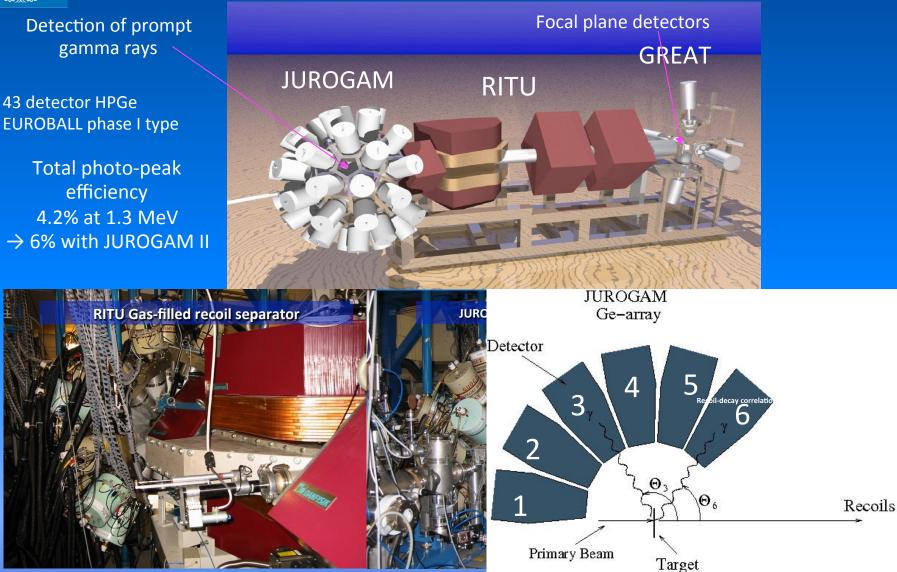
G.F. Bertsch et al., Phys Rev Lett 99, 032502 (2007).

Deformed QRPA

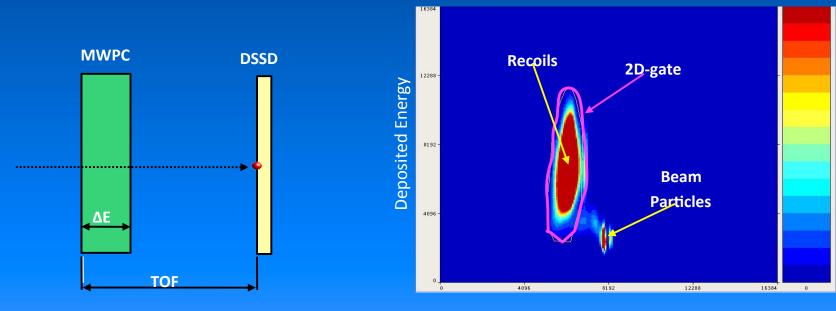

D.S. Delion and J. Suhonen, Phys. Rev. C 87, 024309 (2013)

Coherent State Model

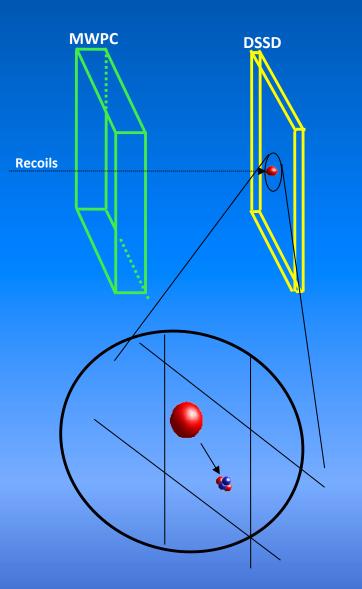
D.S. Delion and A. Dumitrescu, At. Data Nucl. Data Tables 101, 1 (2016) P.O. Lipas, P. Haapakoski, T. Honkaranta, Phys. Scripta 13, 339 (1976)

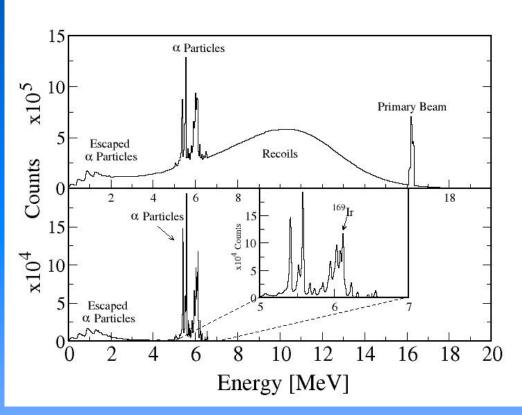


Experimental set-up at JYFL Univ. of Jyväskylä Cyclotron Laboratory


Recoil-decay tagging at JYFL – JUROGAM-RITU

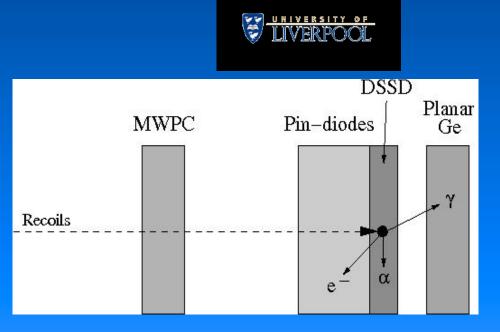
Recoil selection




Time of Flight (TOF)

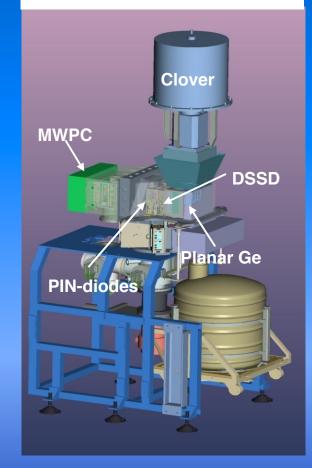
Recoil identification by means of energy loss (ΔE) and time-of-flight consideration Anything not passing the 2D TOF-DE gate is vetoed

Charged particle detection and recoil identification

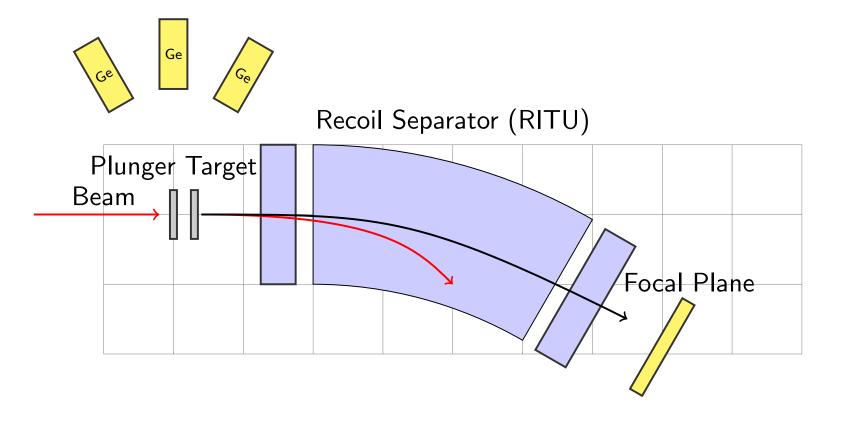


The MWPC acts as a veto detector for identification of recoildecay products

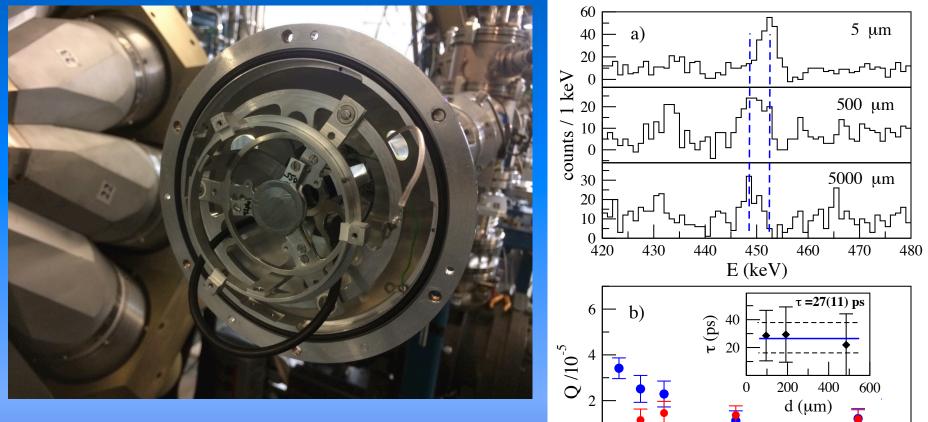
Anything NOT passing the MWPC is a delayed decay event identifying the recoil



Gamma Recoil Electron Alpha Tagging - GREAT


MWPC - Multi Wire Proportional Counter: Recoil discriminator
 PIN-diodes: Detection of β-particles and conversion e⁻
 DSSD - Double-sided Silicon Strip Detector:
 Charged particle detection (alpha, proton)
 Planar Ge and Clover: Detection of delayed gamma rays
 following radioactive decays or from isomeric states

Recoil Decay Tagging combined with a differential plunger



PHYSICAL REVIEW C 95, 044321 (2017)

Lifetime measurements of excited states in ¹⁶²W and ¹⁶⁴W and the evolution of collectivity in rare-earth nuclei

M. Doncel,^{1,2} B. Cederwall,¹ C. Qi,¹ H. Li,^{1,3} U. Jakobsson,^{1,4} K. Auranen,^{5,6} S. Bönig,⁷ M. C. Drummond,² T. Grahn,⁵ P. T. Greenlees,⁵ A. Herzan,^{2,5} D. T. Joss,² R. Julin,⁵ S. Juutinen,⁵ J. Konki,⁵ T. Kröll,⁷ M. Leino,⁵ C. McPeake,² D. O'Donnell,² R. D. Page,² J. Pakarinen,⁵ J. Partanen,⁵ P. Peura,^{5,8} P. Rahkila,⁵ P. Ruotsalainen,⁵ M. Sandzelius,⁵ J. Sarén,⁵ B. Sayğı,^{2,9} C. Scholey,⁵ J. Sorri,⁵ S. Stolze,⁵ M. J. Taylor,¹⁰ A. Thornthwaite,² and J. Uusitalo⁵

JR109: ⁹²Mo(⁷⁸Kr,2α)¹⁶²W @ 380 MeV **18 neutrons away from stability**

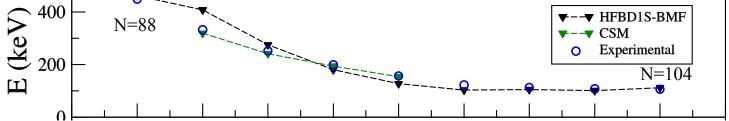
200

0

400

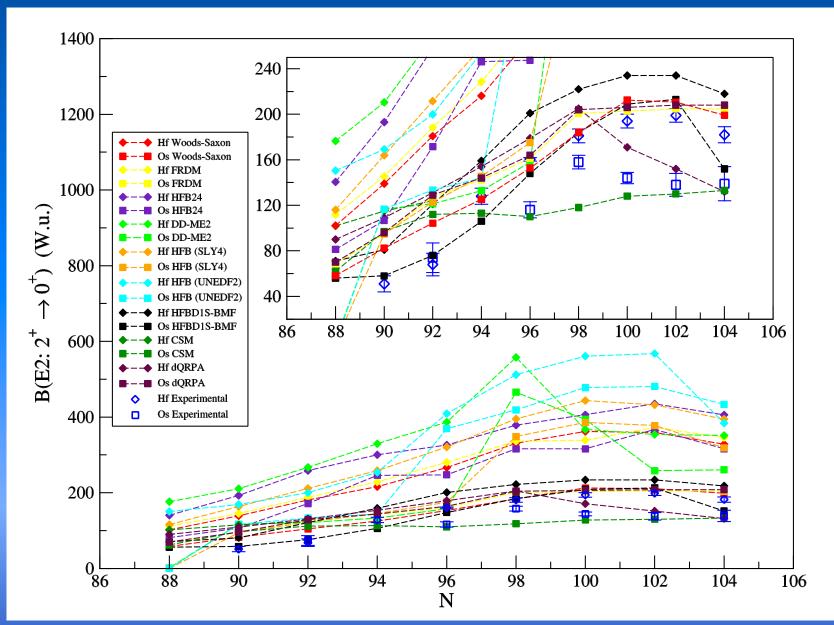
600

 $d(\mu m)$

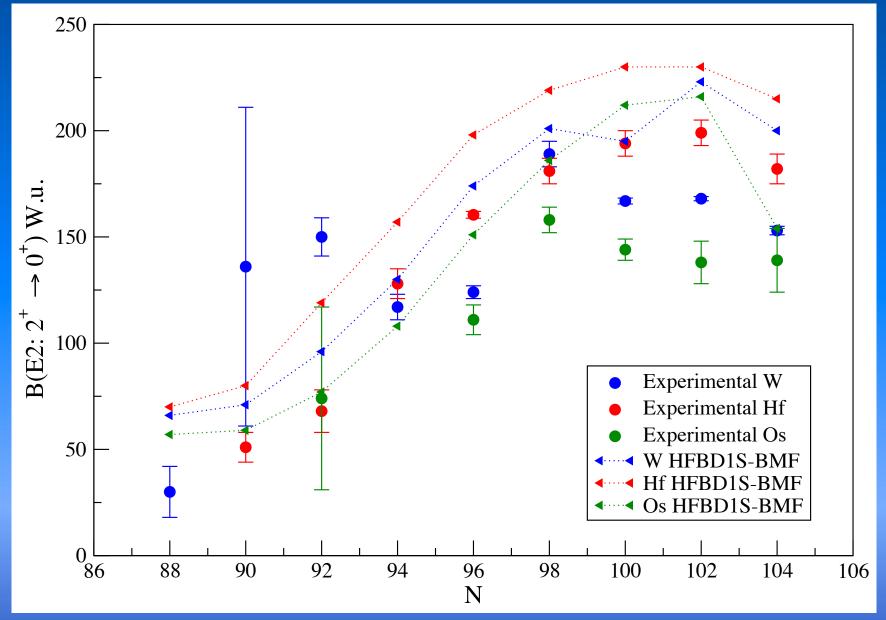

800

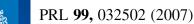
1000

1200

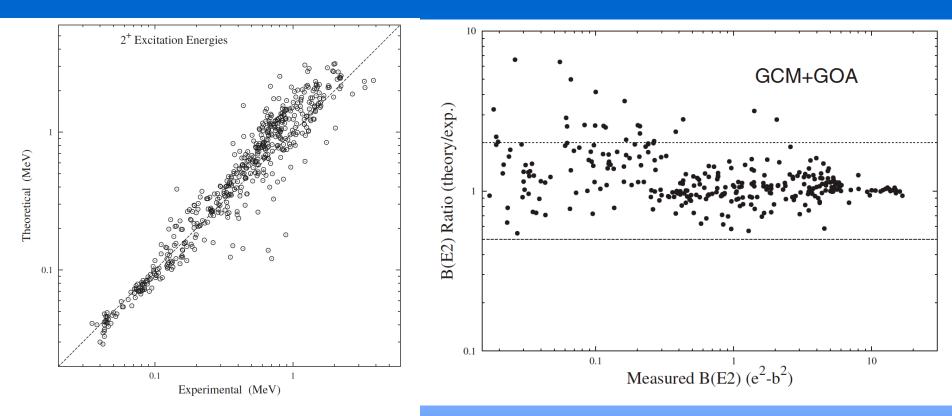


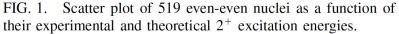
Predictions of B(E2:2⁺ \rightarrow 0⁺) in W vs expt



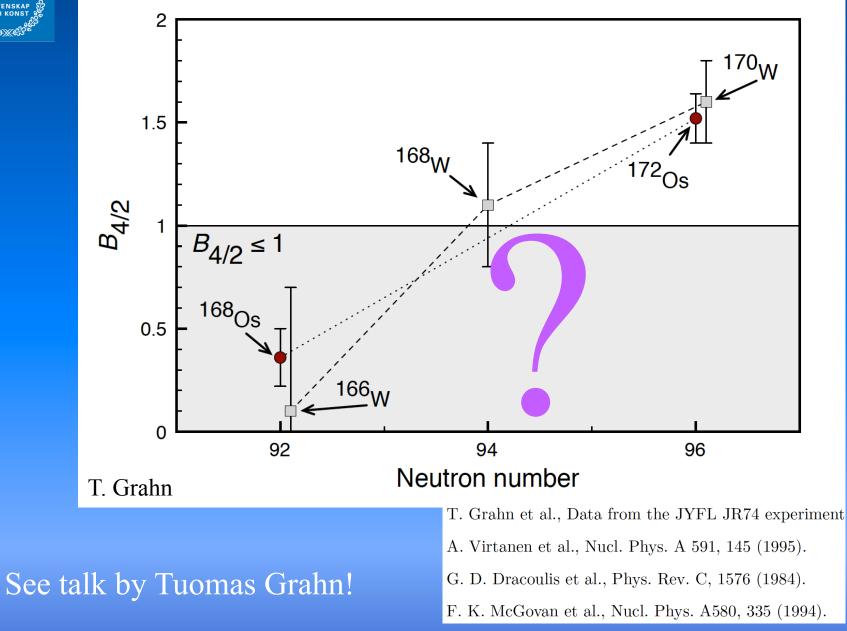


Predictions of B(E2:2⁺ \rightarrow 0⁺) in Hf, Os vs expt

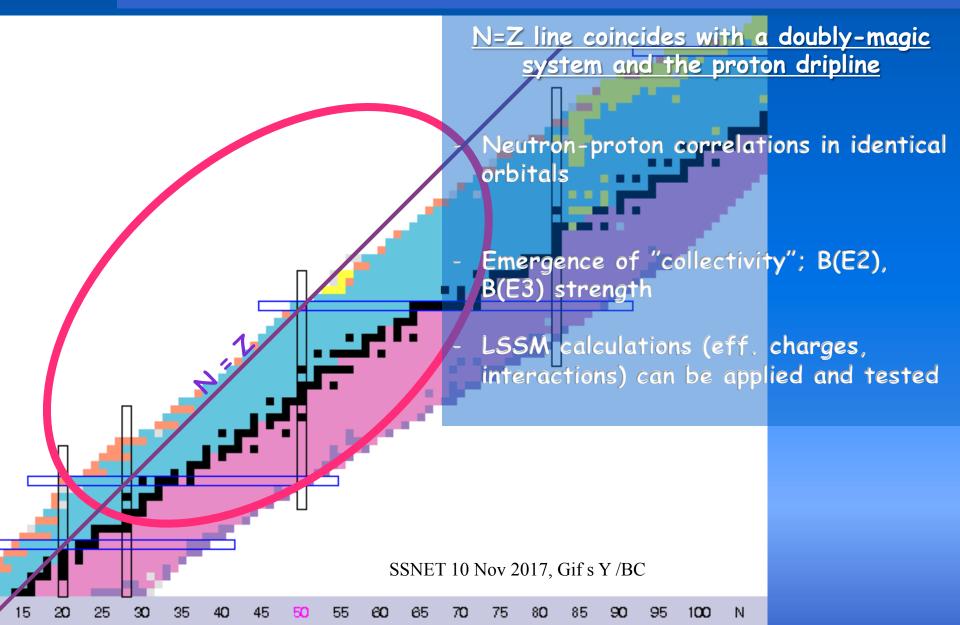




Systematics of the First 2⁺ Excitation with the Gogny Interaction


G. F. Bertsch,¹ M. Girod,² S. Hilaire,² J.-P. Delaroche,² H. Goutte,² and S. Péru²

¹Department of Physics and Institute of Nuclear Theory, Box 351560, University of Washington, Seattle, Washington 98915, USA ²CEA/DAM Ile de France, DPTA/Service de Physique Nucléaire, BP 12, 91680 Bruyères-le-Chatel, France (Received 18 February 2007; published 18 July 2007)



Do we understand nuclear collectivity?

State-of-the art models show striking deficiencies

Ab initio? EFT?

Overview of lifetime measurements of low-spin states SW of ¹⁰⁰Sn 94**Ag** ⁹⁶Ag ⁹³Ag ⁹⁵Ag ⁹⁸Ag ⁹⁹Ag ⁹⁷Ag ⁹³Pd ⁹⁴Pd ⁹⁵Pd 98PC ^{91}Pd 96Pd 97Pd 92.Pd 90Rh 95Rh ⁹²Rh ⁹³Rh ⁹⁴Rh ⁹⁶Rh ⁸⁹Rh ⁹¹Rh ⁹⁷Rh 95Ru ⁸⁹Ru ⁹⁰Ru ⁹²Ru ⁹³Ru ⁹⁴Ru 88Ru 91 Ru 96Ru Fast timing FT **RDDS** ⁹⁶Pd: limit 2⁺, value 4⁺,6⁺,8 ⁹⁸Pd: limit 2⁺, value 4⁺,6⁺,8⁺ RDDS

Ge timing

⁹⁵Rh: 7 limits, value 9 states ⁹²Ru: 9 limits, value 8 states ⁹⁴Ru: 7 limits, value 10 states ⁹⁵Ru: 15 limits, value 11 states ⁹⁶Ru: 2 limits, value 11 states

B(E2) measurements provide critical tests of theory in the N \approx 50, A \approx 90 region

Data from H. Mach et al. (GANIL data, unpub.) and ENSDEF) Calculations by H. Grawe (A. Korgul et al, PRC 2017.)

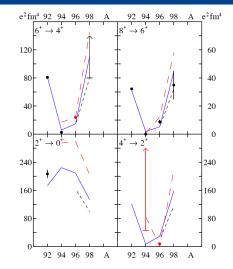


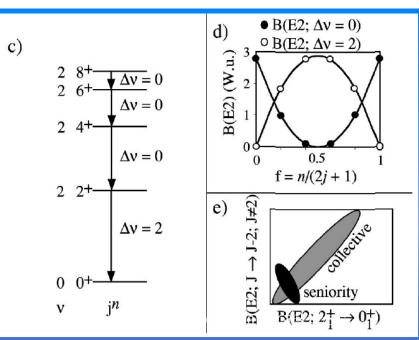
FIG. 4: Experimental B(E2) strengths for yrast transitions in even N=50 isotones in comparison to shell model predictions in the proton $(f_{5/2}, p, g_{9/2})$ model space for the approaches SMLB (full line) and SMCC (short dashed). The calculation including excitations of the ¹⁰⁰Sn is shown as long dashed line. Data are from present work and [23]

Nucleus	$\mathbf{I}_i^{\pi} \rightarrow \mathbf{I}_f^{\pi}$	$T_{1/2}$ [ns]	$\frac{B_{EX}(E2)}{[e^2 fm^4]}$	$\frac{\mathrm{B}_{SMCC}(\mathrm{E2})}{[e^2 fm^4]}$	$\begin{array}{c} \mathbf{B}_{SMLB}(\mathrm{E2})\\ [e^2 fm^4] \end{array}$	$\frac{\mathrm{B}_{SDGN}(\mathrm{E2})}{[e^2 fm^4]}$	
^{94}Ru	$2^+ \rightarrow 0^+$ $4^+ \rightarrow 2^+$ $6^+ \rightarrow 4^+$ $8^+ \rightarrow 6^+$			184 2.6 1.7 0.68	225 6.8 6.1 2.0	295 85.2 17.3 0.77	
^{95}Rh	$21/2^+ \rightarrow 17/2^+_1$ $21/2^+ \rightarrow 17/2^+_2$	2.1(3)	29(4) 136(20)	1.3 120	0.74 188	25.7 212.8	
^{96}Pd	$2^+ \rightarrow 0^+$ $4^+ \rightarrow 2^+$ $6^+ \rightarrow 4^+$ $8^+ \rightarrow 6^+$	≤ 0.017 1.0(1) 6.3(6) 2200(300)	$ \begin{array}{c} \geq 6 \\ 3.8(4) \\ 24(2) \\ 8.9(13) \end{array} $	157 20 14 5.4	209 30 14.8 5.25	$300 \\ 1.4 \\ 24.5 \\ 12.3$	
⁹⁸ Cd	$2^+ \rightarrow 0^+$ $4^+ \rightarrow 2^+$ $6^+ \rightarrow 4^+$ $8^+ \rightarrow 6^+$	$\leq 20 \\ 170(50)$	≥ 80 35(10)	97 112 79 32	134 158 110 44	$205 \\ 217 \\ 145 \\ 57.5$	

TABLE I: Experimental halflives and B(E2) strengths in comparison to various shell model predictions

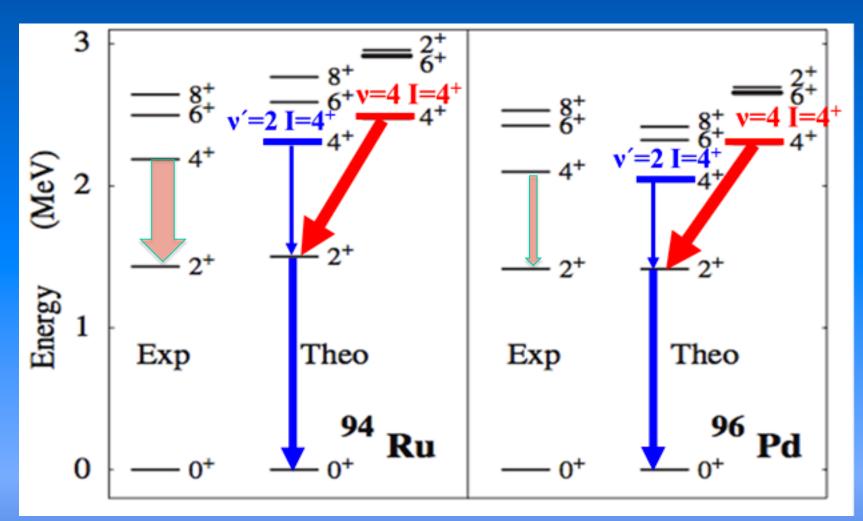
KTH VETENSKAP VCCH KONST

PHYSICAL REVIEW C 69, 034317 (2004)

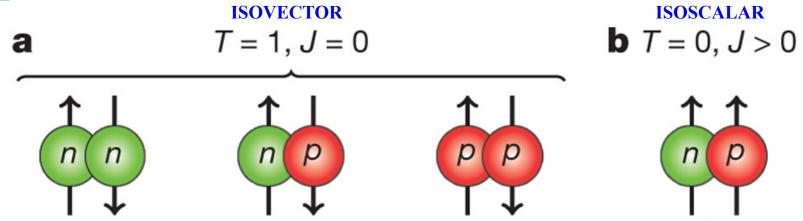

Transition from the seniority regime to collective motion

J. J. Ressler,¹ R. F. Casten,¹ N. V. Zamfir,¹ C. W. Beausang,¹ R B. Cakirli,^{1,2} H. Ai,¹ H. Amro,¹ M. A. Caprio,¹ A. A. Hecht,¹ A. Heinz,¹ S. D. Langdown,^{1,3} E. A. McCutchan,¹ D. A. Meyer,¹ C. Plettner,¹ P. H. Regan,^{1,3} M. J. S. Sciacchitano,¹ and A. D. Yamamoto^{1,3}
¹Wright Nuclear Structure Laboratory, Yale University, New Haven, Connecticut 06520-8124, USA
²Istanbul University, 34459 Vezneciler-Istanbul, Turkey
³University of Surrey, Guilford, Surrey GU2 7XH, United Kingdom (Received 17 September 2003; published 15 March 2004)

B(E2) values from isomeric states near closed shells are discussed in the context of the behavior of seniority conserving transitions induced by even tensor operators. This result provides a signature for the transition from the seniority regime to collective motion that can be of use in identifying shell structure in exotic nuclei.


DOI: 10.1103/PhysRevC.69.034317

PACS number(s): 21.10.Pc, 21.60.Cs, 23.20.Lv, 27.80.+w

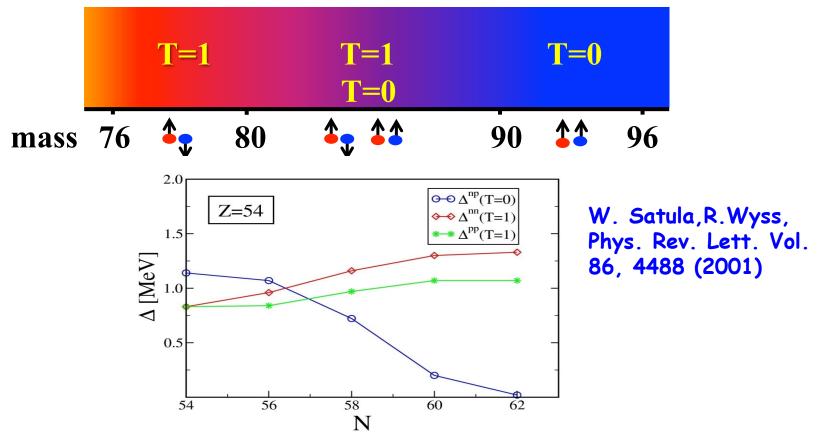


Shell model predictions for semimagic ⁹⁴Ru and ⁹⁶Pd: "special" low-lying v=4, I=4⁺ state

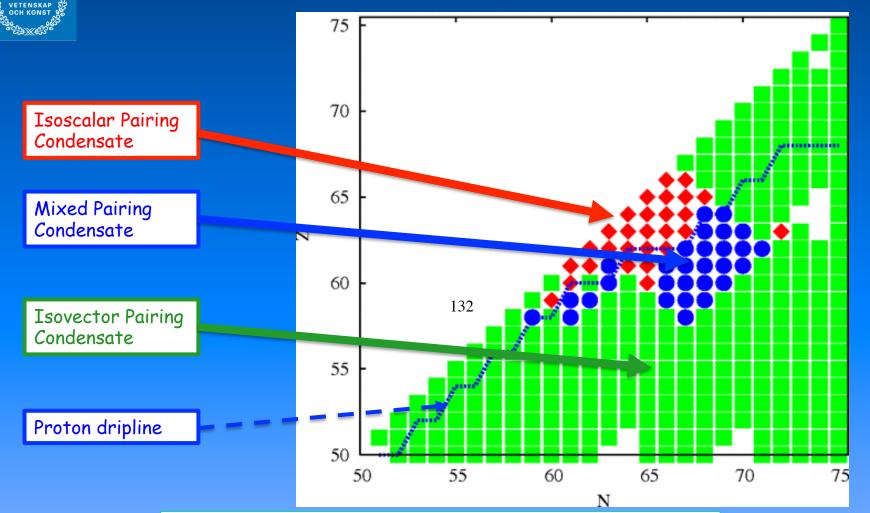
C. Qi, priv. comm.

Neutron-proton pairing in N = Z nuclei

When approaching N=Z, "normal" pair correlations may remain or even be extended as neutrons and protons occupy identical quantum states


- Binding energies in e-e and o-o nuclei indicate that T=1 *np* pairing is dominant, no evidence for a T=0 (deuteron-like) pair condensate up to around A≈60
- Comparison of spectroscopy data with mean-field calculations for A=60-76 nuclei also suggests the presence of a strong isovector (T=1) *np* pair field at low spin, but no evidence for T=0 pairing.
- P. Vogel, Nucl. Phys. A662 (2000) 148,
- A.O. Macchiavelli et al PRC 61 (2000) 014303R
- A Afanasjev, S Frauendorf, Phys. Rev. C 71, 064318 (2005)
- S. Frauendorf, A.O. Macchiavelli, Prog. in Particle and Nuclear Physics 78, 24 (2014)

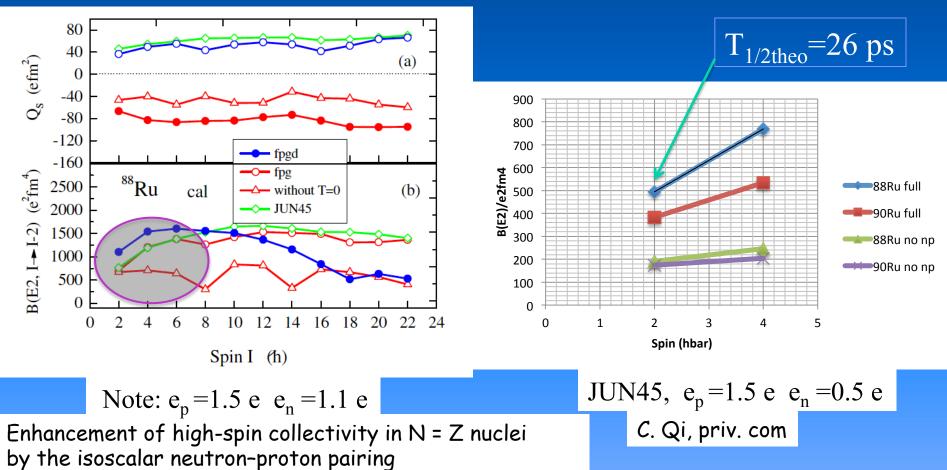
We know the isoscalar effective NN interaction is strongly attractive but can it produce a correlated np pairing condensate???


Predictions for neutron-proton pairing in N = Z nuclei

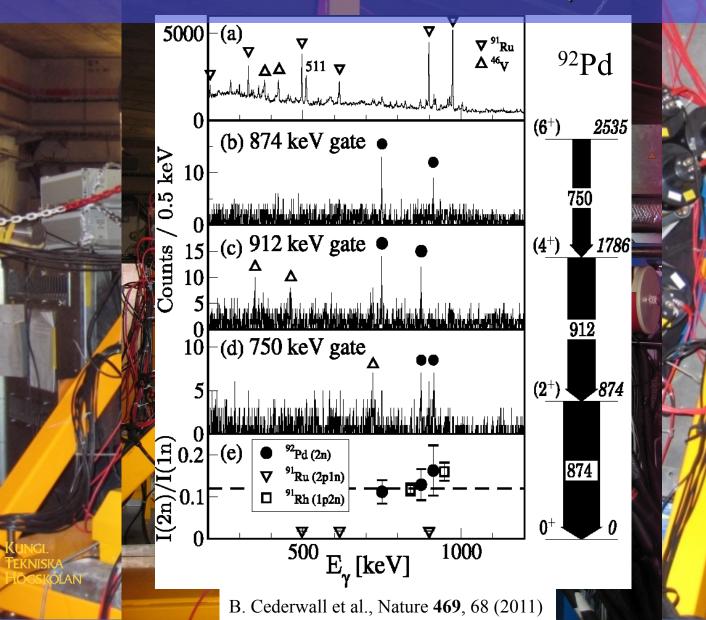
Does T=0 pairing/ interaction play a role at low or high spin in heavier N=Z nuclei? A. L. Goodman, PRC 60, 014311 (1999) – studies of ground states of e-e A = 76-96, N = Z nuclei

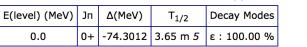
The isoscalar (np) pair gap is predicted to increase sharply as $N \rightarrow Z$

Island of ground-state isoscalar pairing condensates around ¹³²Dy₆₆?



Taken from "Mixed-Spin Pairing Condensates in Heavy Nuclei" A. Gezerlis, G. F. Bertsch, and Y. L. Luo Phys. Rev. Lett. 106, 252502 (2011)


LSSM calculations and np pairing in ⁸⁸Ru: Transition rates


Kaneko, Sun and de Angelis, Nucl. Phys. A957, 144 (2017)

Observation of excited states in the N=Z=46 nucleus ⁹²Pd EXOGAM + Neutron Wall + Diamant experiment

CNRS/IN2

K VETI OCH	TH INSKAP KONST KONST KONST								
Sear		at 2.7	Grou	ind and excit	mas Search ed states (en / modes), gar			allet Cards S Ind and isome erties	
and Colc		nteractively.	More. (ene	rgy, intensity	$Q_{\beta+} S_n S_p$			S _{2p}	follo <u> </u>
z		91Ρd >1 μS ε	92Pd 0.7 S 8: 100.00%	93Pd 1.00 S 8: 100.00% 8p	94Pd 9.6 S 8: 100.00%	95Pd 5 S 8: 100.00%	96Pd 122 S 8: 100.009	9 Fd 3.10 M 8: 100.00%	98Pd 17.7 M 8: 100.00%
45	89Rh >1.5 μS ₽	90Rh 12 MS 8	91Rh 1.47 S 8: 100.00% 8p: 1.35%	92Rh 5.7 S 8: 100.00% 8p: 100.00%	93Rh 12.2 S 8: 100.00%	94Rh 66 S 8: 10° 0075 5: 1.8075	95Rh 5.02 M 8: 100.00%	96Rh 9.90 M 8: 100.00%	97Rh 30.7 M 8: 100.00%
44	88Ru 1.2 S 8: 100.00% 8	89Ru 1.5 S 8: 100.00% 8p: 3.00%	90Ru 11.7 S 8: 100.00%	91Ru 8.0 S 8: 100.00%	92Ru 3.65 M 8: 100.00%	93Ru 59.7 S 8: 100.00%	94Ru 51.8 M 8: 100.00%	95Ru 1.643 H 8: 100.00%	96Ru STABLE 5.54%
43	87Te 2.2 S 8: 100.00%	88Tc 6.4 S 8: 100.00%	89Tc 12.8 S 8: 100.00%	90Tc 8.7 S 8: 100.00%	91Tc 3.14 M 8: 100.00%	92Tc 4.25 M 8: 100.00%	93Tc 2.75 H 8: 100.00%	94Tc 293 M 8: 100:00%	95Tc 20.0 H a: 100.00%
42	86Mo 19.1 S 8: 100.00%	871Mo 14.02 S 5: 100.00% 5p: 15.00%	88Mo 8.0 M 8: 100.00%	89Mo 2.11 M 8: 100.00%	90Mo 5.56 H 8: 100.00%	91Mo 15.49 M 8: 100.00%	92Mo STABLE 14.53%	93Mo 4.0E+3 Y 8: 100.00%	94Mo STABLE 9.15%
	44	45	46	47	48	49	50	51	N
			Ground	and isomeri	c state inform	nation for 92	Ru		

SSNET 10 Nov 2017, Gif s Y /BC

- - - -

-2833.9 100 NS

-0.0 3.65 M 🗧 : 100 %

2760.5 190 NS

2282.6 > 3.4 PS

1509.50.35 PS

-0.0 STABLE

-1854.9

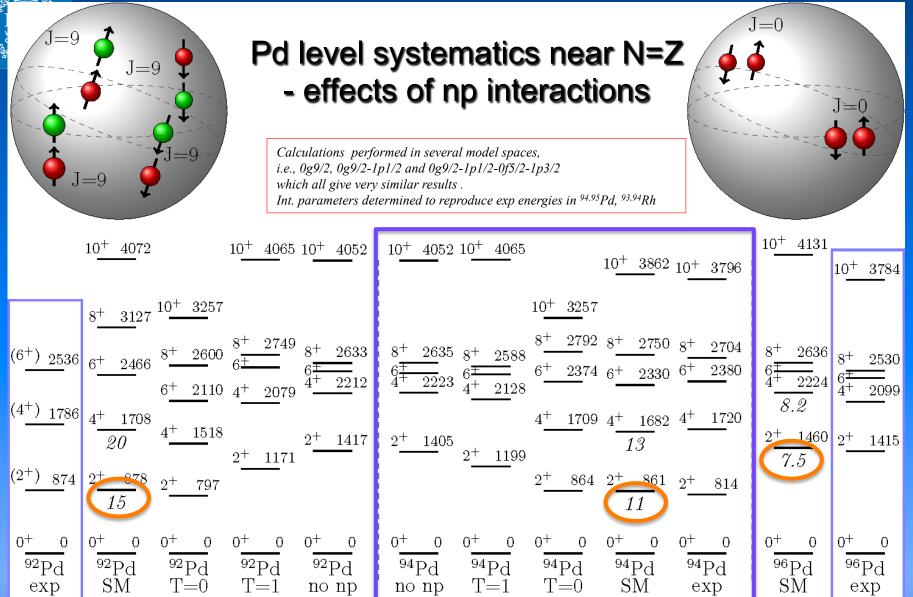
-865.7

Arnell et al., Z.P.A. 1993

D. Ward et al., AECL rep. 1971

(8+) (8+)

(4+) -


(2+)

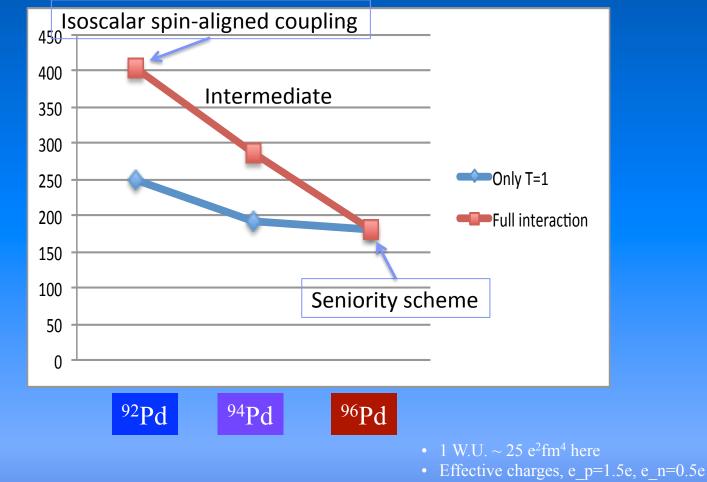
0+

8‡ 4+

2+

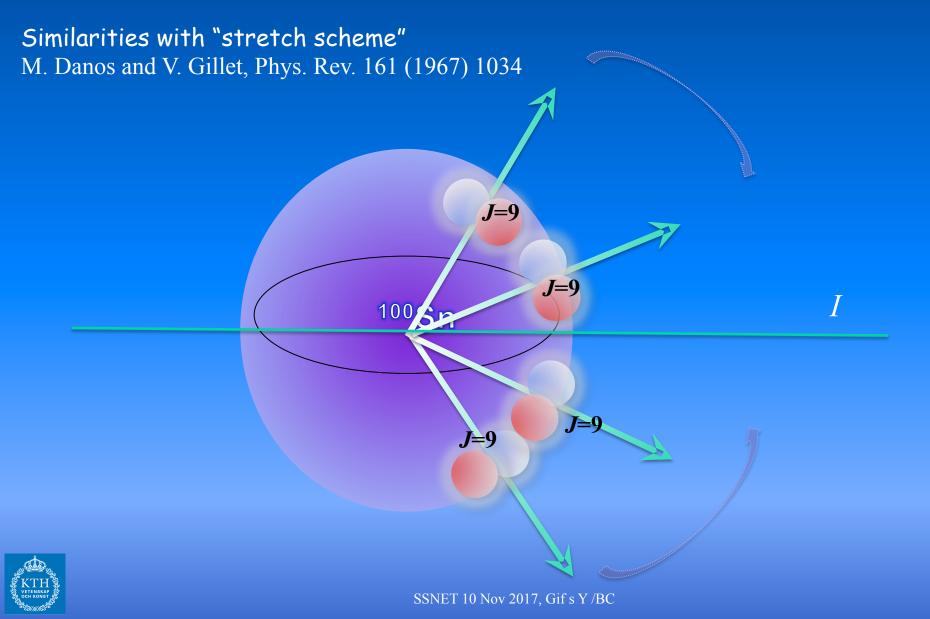
0+

Taken from B. Cederwall et al., Nature 469, 68 (2011)


SSNET 10 Nov 2017, Gif s Y /BC

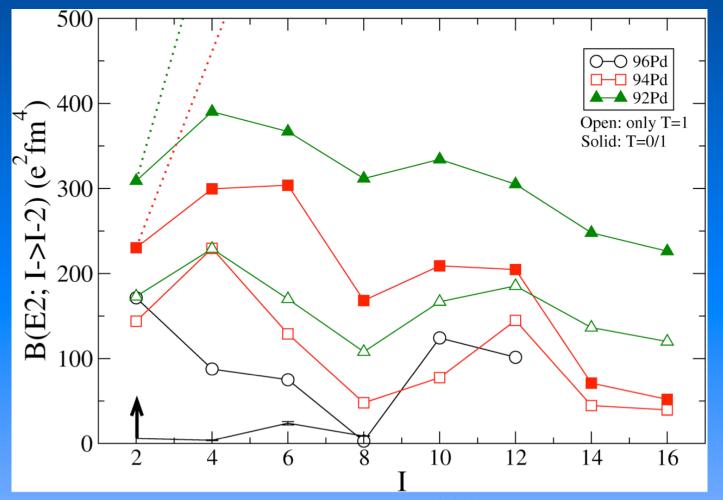
Card a

LSSM calculation, fpg valence space $(f_{5/2}, p_{3/2}, p_{1/2}, g_{9/2})$ (all shells between 28 and 50) C. Qi

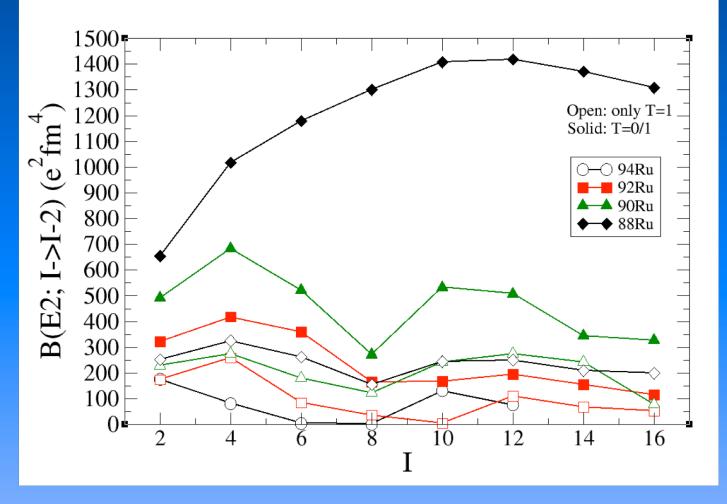

B(E2;2+-0+) (e²fm⁴)*


M. Honma et al, Phys Rev C 80 064323 (2009)

Generation of angular momentum in the isoscalar spin-aligned coupling scheme (⁹²Pd)



Shell model spectra and B(E2; $I \rightarrow I - 2$) values of ⁹²Pd calculated within the $1p_{3/2}0f_{5/2}1p_{1/2}0g_{9/2}$ space (fpg) and the $1p_{1/2}0g_{9/2}$ space (pg). (B. Cederwall et al., Nature 469, 68 (2011); C. Qi Phys. Rev. C 84, (2011)) The two dashed lines show the predictions of the geometric collective model normalized to the 2^+_1 state


Pd isotopes: SM calculations

Calculated $B(E2;I\rightarrow I-2)$ values as a function of angular momentum in ^{92,94,96}Pd. The calculations have been performed in the fpg space with the JUN45 interaction using standard effective charges. The theoretical calculations for the spectra of ^{92,94}Pd include, in addition to full neutron-proton interactions (solid symbols), also results for pure T=1 neutronproton (open symbols) interactions. Dashed lines indicate schematically the prediction for collective harmonic vibration.

Ru isotopes: SM calculations

Calculated $B(E2;I\rightarrow I-2)$ values as a function of angular momentum in ⁸⁸⁻⁹⁴Ru. The calculations have been performed in the fpg space with the JUN45 interaction using standard effective charges. The theoretical calculations for the spectra of ^{88,90,92}Ru include, in addition to full neutron-proton interactions (solid symbols), also results for pure T=1neutron-proton (open symbols) interactions.

Open questions:

- Seniority states in the $g_{9/2}$ shell
- What is the relative strength of the isoscalar component of the NN interaction?
- What happens when moving from the N=50 magic shell closure towards the N=Z line?
- Do we find the "standard" behavior of increased quadrupole collectivity?
- Does isovector coupling (i.e. seniority-like structure) prevail?
- Or do we observe effects from a dominance of an isoscalar, "spinaligned" coupling?

Thank you for your attention