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Menu

Today’s special

1. Effective field theory (EFT) for nuclear vibrations

2. EFT for deformed nuclei

What’s cooking in nuclear theory?

• Ideas from EFT and the renormalization group

• Ever-increasing computer power✽

✽Actually not true: ceiling is at about 10 MW✣

✣Would buy about 1027 bit erasures per second at room temperature (Landauer)



EFTs and RGs as tools

Interactions
& 

currents

Scale and scheme dependences

Extrapolations Uncertainty quantification New methods



Chiral EFT

Energy scales and relevant degrees of freedom

Fig.: Bertsch, Dean, Nazarewicz (2007)
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EFT for nuclear vibrations

EFT for deformed nuclei

Pion-less EFT

(not pictured: halo EFT)



Key ingredients of an EFT

1. Identify symmetries and pattern of symmetry breaking
2. Identify relevant low-energy degrees of freedom
3. Identify the breakdown scale; develop power counting
4. Expand Hamiltonians and currents according to 

power counting
5. Adjust low-energy coefficients to data; make 

predictions; estimate/quantify uncertainties



Quadrupole degrees of freedom describe spins and parity of low-energy spectra

Nuclear rotation: emergent breaking of rotational 
symmetry of SO(3) à SO(2) for axial symmetry or 
SO(3) à 1 for triaxial nuclei; EFT based on 
nonlinear realization (Nambu-Goldstone) of SO(3)

Nuclear vibration: EFT based on 
linear realization (Wigner / Weyl) 
of SO(3)

Two paradigms: vibrations and rotations



EFT for nuclear vibrations

EFT for nuclear vibrations
[Coello Pérez & TP 2015, 2016] 

Spectrum and B(E2) transitions of 
the harmonic quadrupole oscillator

Challenge: While spectra of certain 
nuclei appear to be harmonic, B(E2) 
transitions do not.

Garrett & Wood (2010): “Where are 
the quadrupole vibrations in atomic 
nuclei?”   

Bohr Hamiltonian,
IBM, …



EFT for nuclear vibrations

EFT ingredients:
1. quadrupole degrees of 

freedom
2. breakdown scale around 

three-phonon levels
3. “small” expansion parameter: 

ratio of vibrational energy to 
breakdown scale: ω/Λ ≈ 1/3

• Uncertainties show 68% DOB intervals from truncating higher EFT orders 
[Cacciari & Houdeau (2011); Bagnaschi et al (2015); Furnstahl, Klco, Phillips & 
Wesolowski (2015)]
• Expand observables according to power counting
• Employ “naturalness” assumptions as log-normal priors in Bayes’ 

theorem
• Compute distribution function of uncertainties due to EFT truncation
• Compute degree-of-believe (DOB) intervals.

ω

Λ break



EFT result: sizeable quadrupole matrix 
elements are natural in size

In the EFT, the quadrupole operator 
is also expanded:

Subleading corrections are sizable:



Rhodium as a proton coupled to ruthenium
Silver as a proton (hole) coupled to palladium (cadmium)

Ag
Rh

Focus on odd-mass nuclei 
with spin-1/2 ground states



Fermion coupled to vibrating nucleus 
Approach follows halo EFT [Bertulani, Hammer, van Kolck (2002); Higa, 
Hammer, van Kolck (2008); Hammer & Phillips (2011); Ryberg et al. (2014)], and 
particle-vibrator models [de Shalit (1961); Iachello & Scholten (1981); Vervier
(1982);…]

Two new LECs 
enter at lowest 
interesting order 

E. A. Coello Pérez & TP, Phys. Rev. C 94, 054316 (2016)



Single LEC Q1 fit to all data with EFT weighting.

E. A. Coello Pérez & TP, Phys. Rev. C 94, 054316 (2016)

Static E2 moments (in eb)



Magnetic moments: Relations between even-
even and even-odd nuclei

Results in nuclear magnetons.
At LO, one new LEC enters to describe the magnetic moments 
in the odd-mass neighbor

E. A. Coello Pérez & TP, Phys. Rev. C 94, 054316 (2016)



Double-beta decay: EFT results with low-energy 
coefficients fit to GT transitions 

[Coello Perez, Menendez & Schwenk, arXiv:1708.06140]



Rotors: E(4+)/E(2+) = 10/3
Vibrators: E(4+)/E(2+) = 2

EFT for deformed nuclei: rotations

EFT
[TP (2011); Weidenmüller & 
TP (2014);  Coello Pérez & TP 
(2015)]



Rotors: Nonlinear realization of rotational symmetry
[ follows Weinberg 1967; Coleman, Callan, Wess & Zumino 1969]

Spontaneous breaking of rotational symmetry: Nambu-Goldstone modes 
parameterize the coset SO(3)/SO(2) ~ S2, i.e. the two sphere

Axial: SO(3)àSO(2) TP & Weidenmüller; Phys. Scr. 91 (2016) 053004]
Tri-axial: SO(3)à I: Chen, Kaiser, Meißner, Meng, EPJ A 53, 204 (2017)

Comments: 
• Further degrees of freedom 

in the tangential plane can 
be added to the tangential 
plane

• Addition of monopole field 
yields nuclei with nonzero 
ground-state spins



EFT works well for a wide range of rotors

ξ/ω = 0.18

ξ/ω = 0.06ξ/ω = 0.005
Bohr & Mottelson (1975):
“The accuracy of the present 
measurements of E2-matrix 
elements in the ground-state 
bands of even even nuclei is in 
most cases barely sufficient to 
detect deviations from the 
leading-order intensity relations.”

ξ/ω = 0.1



In-band transitions [in e2b2] are LO, inter-band transitions are NLO. Effective theory is 
more complicated than Bohr Hamiltonian both in Hamiltonian and E2 transition 
operator. EFT  correctly predicts strengths of inter-band transitions with natural LECs.

[E. A. Coello Pérez and TP, Phys. Rev. C 92, 014323 (2015)]

Challenge: weak interband transitions 
(example: 154Sm)



• EFT for nuclear vibrations

• Anharmonic vibrations consistent with data within uncertainties

• Sizable quadrupole moments and transitions where models yield null 
result 

• Predictions for M1 and E2 moments and transitions

• EFT for deformed nuclei

• LO recovers Bohr Hamiltonian

• EFT explains weak interband transitions

Summary

Take-home message: 

1. Systematic expansion of Hamiltonian and transition operators according to 
a power counting.

2. All collective models have a breakdown scale: ignore at own risk …
3. Uncertainty quantification (or at least estimates) exploit breakdown scale


