Bound and Unbound Light Nuclei from Ab Initio Theory

Shapes and Symmetries in Nuclei: from Experiment to Theory SSNET 2017 Centre de Sciences Nucléaires et Sciences de la Matière, CNRS, Gif sur Yvette, France, 6-10 November, 2017

Petr Navratil | TRIUMF

Collabrorators:
Sofia Quaglioni, Carolina Romero-Redondo (LLNL) Guillaume Hupin (CNRS) Angelo Calci, Matteo Vorabbi (TRIUMF) Jeremy Dohet-Eraly (INFN), Robert Roth (TU Darmstadt)

Outline

- Nuclear structure and reactions from first principles
- No-Core Shell Model with Continuum (NCSMC) approach
- n - ${ }^{4} \mathrm{He}$ scattering benchmark
- ${ }^{11}$ Be parity inversion in low-lying states, photo-dissociation
- Structure of unbound ${ }^{9} \mathrm{He}$
- Synergy between ab initio theory and TRIUMF experiments
- ${ }^{11} \mathrm{~N}$ and ${ }^{10} \mathrm{C}(\mathrm{p}, \mathrm{p})$ scattering - IRIS
$-{ }^{12} \mathrm{~N},{ }^{11} \mathrm{C}(p, p)$ scattering and ${ }^{11} \mathrm{C}(\mathrm{p}, \mathrm{y}){ }^{12} \mathrm{~N}$ capture - TUDA
- Quadrupole moment of ${ }^{12} \mathrm{C} 2^{+}$state - TIGRESS

Low-energy QCD

Nuclear structure and reactions

$H|\Psi\rangle=E|\Psi\rangle$
Many-Body methods NCSM, NCSMC, CCM, IM-SRG, SCGF, GFMC, HH, Nuclear Lattice EFT...

Nuclear structure and reactions

$$
H|\Psi\rangle=E|\Psi\rangle
$$

Low-energy QCD

Nuclear structure and reactions

- Ab initio no-core shell model
- Short- and medium range correlations
- Bound-states, narrow resonances

NCSM
Harmonic oscillator basis

$$
\left.\Psi^{(A)}=\left.\sum_{\lambda} c_{\lambda}\right|^{(A)}, \lambda\right\rangle
$$

- Ab initio no-core shell model
- Short- and medium range correlations
- Bound-states, narrow resonances

NCSM

Harmonic oscillator basis

- ...with resonating group method
- Bound \& scattering states, reactions

- Cluster dynamics, long-range correlations

- Ab initio no-core shell model
- Short- and medium range correlations
- Bound-states, narrow resonances

NCSM

Harmonic oscillator basis

- ...with resonating group method
- Bound \& scattering states, reactions
- Cluster dynamics, long-range correlations
S. Baroni, P. Navratil, and S. Quaglioni, PRL 110, 022505 (2013); PRC 87, 034326 (2013).
- Most efficient: ab initio no-core shell model with continuum

NCSMC

$$
H \Psi^{(A)}=E \Psi^{(A)}
$$

$$
\Psi^{(A)}=\sum_{\lambda} c_{\lambda}|(A) 8, \lambda\rangle+\sum_{v} \int d \vec{r} \gamma_{v}(\vec{r}) \hat{A}_{v}|\underset{(A-a)}{\underset{r}{r}} \underset{(a)}{ }, v\rangle
$$

Scattering matrix (and observables) from matching solutions to known asymptotic with microscopic R-matrix on Lagrange mesh

$n-{ }^{4} \mathrm{He}$ scattering phase-shifts for chiral NN

FY: Faddeev-Yakubovsky method - Rimantas Lazauskas

[^0]- $Z=4, N=7$
- In the shell model picture g.s. expected to be $J^{\pi}=1 / 2=$
- $Z=6, N=7{ }^{13} \mathrm{C}$ and $Z=8, N=7{ }^{15} \mathrm{O}$ have $\mathrm{J}=1 / 2^{-}$g.s.
$\xlongequal{200000}$ $1 \mathrm{~s}_{1 / 2}$ $0 p_{1 / 2}$
$0 p_{3 / 2}$ $0 \mathrm{~s}_{1 / 2}$
- In reality, ${ }^{11}$ Be g.s. is $\mathbf{J}^{\boldsymbol{\pi}}=\mathbf{1 / 2 +}$ - parity inversion
- Very weakly bound: $\mathrm{E}_{\mathrm{th}}=-0.5 \mathrm{MeV}$
- Halo state - dominated by ${ }^{10} \mathrm{Be}$-n in the S -wave
- The $1 / 2^{-}$state also bound - only by 180 keV
- Can we describe ${ }^{11} \mathrm{Be}$ in ab initio calculations?
- Continuum must be included
- Does the 3N interaction play a role in the parity inversion?

- Experiment at TRIUMF with the novel IRIS solid H_{2} target
- First re-accelerated ${ }^{10} \mathrm{C}$ beam at TRIUMF
- ${ }^{10} \mathrm{C}(\mathrm{p}, \mathrm{p})$ angular distributions measured at $E_{\mathrm{CM}} \sim 4.15 \mathrm{MeV}$ and 4.4 MeV

$$
\begin{gathered}
{ }^{11} \mathrm{~N} \sim{ }^{10} \mathrm{C}+\mathrm{p} \\
\text { unbound } \\
\text { mirror system of } \\
{ }^{11} \mathrm{Be} \sim{ }^{10} \mathrm{Be}+\mathrm{n}
\end{gathered}
$$

IRIS collaboration:
A. Kumar, R. Kanungo,
A. Sanetullaev et al.

※triumf

$\mathrm{p}+{ }^{10} \mathrm{C}$ scattering: structure of ${ }^{11} \mathrm{~N}$ resonances

- NCSMC calculations with chiral NN+3N (N32O NN+N²LO 3NF400, NNLOsat)
$-\left({ }^{11} \mathrm{~N}\right)_{\text {NCSM }}+\left(\mathrm{p}-{ }^{-10} \mathrm{C}\right)_{\text {NCSM/RGM }}$
- ${ }^{10} \mathrm{C}: \mathrm{O}^{+}, 2^{+}, 2^{+}$NCSM eigenstates

- ${ }^{11} \mathrm{~N}: \geq 4 \pi=-1$ and $\geq 3 \pi=+1$ NCSM eigenstates
chiral NN+3NF400

$\mathrm{p}+{ }^{10} \mathrm{C}$ scattering: structure of ${ }^{11} \mathrm{~N}$ resonances

Nuclear Force Imprints Revealed on the Elastic Scattering of Protons with ${ }^{10} \mathrm{C}$
A. Kumar, ${ }^{1}$ R. Kanungo, ${ }^{1 *}$ A. Calci, ${ }^{2}$ P. Navrátil, ${ }^{2 \dagger}$ A. Sanetullaev, ${ }^{1,2}$ M. Alcorta, ${ }^{2}$ V. Bildstein, ${ }^{3}$ G. Christian, ${ }^{2}$ B Davids ${ }^{2}$ J. Dohet-Eraly 2,4 J. Fallis ${ }^{2}$ U T. Glant ${ }^{2}$ G. Hevkman ${ }^{2}$ B. Hadini ${ }^{3}$ G. Hupin ${ }^{5,6}$ S. Ishimote R. Krücken ${ }^{2,8}$ A. T. Laffoley ${ }^{3}$ J. Lighthall ${ }^{2}$ D. Miller ${ }^{2}$ S. Quaglioni, ${ }^{9}$ J. S. Randhawa, ${ }^{1}$ E. T. Rand ${ }^{3}$

$\mathrm{p}+{ }^{10} \mathrm{C}$ scattering: structure of ${ }^{11} \mathrm{~N}$ resonances

Nuclear Force Imprints Revealed on the Elastic Scattering of Protons with ${ }^{10} \mathrm{C}$
A. Kumar, ${ }^{1}$ R. Kanungo, ${ }^{1 *}$ A. Calci, ${ }^{2}$ P. Navrátil, ${ }^{2 \dagger}$ A. Sanetullaev, ${ }^{1,2}$ M. Alcorta, ${ }^{2}$ V. Bildstein, ${ }^{3}$ G. Christian ${ }^{2}$ B. Davids ${ }^{2}$ J Dohet-Eraly ${ }^{2,4}$ J Fallis ${ }^{2}$ A T. Gallant ${ }^{2}$ G. Hackman ${ }^{2}$ B. Hadinia ${ }^{3}$ G. Hupin ${ }^{5,6}$ S. Ishimete R. Krücken, ${ }^{2,8}$ A. T. Laffoley, ${ }^{3}$ J. Lighthall, ${ }^{2}$ D. Miller, ${ }^{2}$ S. Quaglioni, ${ }^{9}$ J. S. Randhawa, ${ }^{1}$ E. T. Rand, ${ }^{3}$
A. Rojas, ${ }^{2}$ R. Roth ${ }^{10}$ A. Shotter, ${ }^{, 11}$ J. Tanaka, ${ }^{12}$ I. Tanihata, ${ }^{12,13}$ and C. Unsworth ${ }^{2}$

$\mathrm{p}+{ }^{10} \mathrm{C}$ scattering: structure of ${ }^{11} \mathrm{~N}$ resonances

Nuclear Force Imprints Revealed on the Elastic Scattering of Protons with ${ }^{10} \mathrm{C}$
A. Kumar, ${ }^{1}$ R. Kanungo, ${ }^{1 *}$ A. Calci, ${ }^{2}$ P. Navrátil, ${ }^{2 \dagger}$ A. Sanetullaev, ${ }^{1,2}$ M. Alcorta, ${ }^{2}$ V. Bildstein, ${ }^{3}$ G. Christian, ${ }^{2}$ B. Davids ${ }^{2}$ J. Dohet-Eraly $2^{2,4}$ J. Fallis ${ }^{2}$ A T. Gallant ${ }^{2}$ G Hackman ${ }^{2}$ B. Hadinia ${ }^{3}$ G. Hupin ${ }^{5}, 6$ S. Ishimoto R. Krücken,,${ }^{2,8}$ A. T. Laffoley, ${ }^{3}$ J. Lighthall, ${ }^{2}$ D. Miller, ${ }^{2}$ S. Quaglioni, ${ }^{9}$ J. S. Randhawa, ${ }^{1}$ E. T. Rand, ${ }^{3}$
A. Rojas, ${ }^{2}$ R. Roth, ${ }^{10}$ A. Shotter, ${ }^{, 11}$ J. Tanaka, ${ }^{12}$ I. Tanihata, ${ }^{12,13}$ and C. Unsworth ${ }^{2}$

11Be within NCSMC:
Discrimination among chiral nuclear forces

11Be within NCSMC: Discrimination among chiral nuclear forces

11Be within NCSMC: Discrimination among chiral nuclear forces

$\mathrm{p}+{ }^{10} \mathrm{C}$ scattering: structure of ${ }^{11} \mathrm{~N}$ resonances

Nuclear Force Imprints Revealed on the Elastic Scattering of Protons with ${ }^{10} \mathrm{C}$
A. Kumar, ${ }^{1}$ R. Kanungo, ${ }^{1 *}$ A. Calci, ${ }^{2}$ P. Navrátil, ${ }^{2 \dagger}$ A. Sanetullaev, ${ }^{1,2}$ M. Alcorta, ${ }^{2}$ V. Bildstein, ${ }^{3}$ G. Christian, ${ }^{2}$ B. Davids ${ }^{2}$ J. Dohet-Eraly $2^{2,4}$ J. Fallis ${ }^{2}$ A T. Gallant ${ }^{2}$ G Hackman ${ }^{2}$ B. Hadinia ${ }^{3}$ G. Hupin ${ }^{5}, 6$ S. Ishimoto R. Krücken,,${ }^{2,8}$ A. T. Laffoley, ${ }^{3}$ J. Lighthall, ${ }^{2}$ D. Miller, ${ }^{2}$ S. Quaglioni, ${ }^{9}$ J. S. Randhawa, ${ }^{1}$ E. T. Rand, ${ }^{3}$
A. Rojas, ${ }^{2}$ R. Roth, ${ }^{10}$ A. Shotter, ${ }^{, 11}$ J. Tanaka, ${ }^{12}$ I. Tanihata, ${ }^{12,13}$ and C. Unsworth ${ }^{2}$

$\mathrm{p}+{ }^{10} \mathrm{C}$ scattering: structure of ${ }^{11} \mathrm{~N}$ resonances

Nuclear Force Imprints Revealed on the Elastic Scattering of Protons with ${ }^{10} \mathrm{C}$
A. Kumar, ${ }^{1}$ R. Kanungo, ${ }^{1 *}$ A. Calci, ${ }^{2}$ P. Navrátil, ${ }^{2 \dagger}$ A. Sanetullaev, ${ }^{1,2}$ M. Alcorta, ${ }^{2}$ V. Bildstein, ${ }^{3}$ G. Christian, ${ }^{2}$ B. Davids, ${ }^{2}$ J. Dohet-Eraly ${ }^{2,4}$ J. Fallis, ${ }^{2}$ A T Gallant ${ }^{2}$ G. Hackman ${ }^{2}$ B. Hadinia ${ }^{3}$ G. Hupin ${ }^{5,6}$ S. Ishimote R. Krücken, ${ }^{2,8}$ A. T. Laffoley, ${ }^{3}$ J. Lighthall, ${ }^{2}$ D. Miller, ${ }^{2}$ S. Quaglioni, ${ }^{9}$ J. S. Randhawa, ${ }^{1}$ E. T. Rand, ${ }^{3}$

$\mathrm{p}+{ }^{10} \mathrm{C}$ scattering: structure of ${ }^{11} \mathrm{~N}$ resonances

Photo-disassociation of ${ }^{11} \mathrm{Be}$

Bound to bound	NCSM	NCSMC-phenom	Expt.
$B\left(E 1 ; 1 / 2^{+} \rightarrow 1 / 2^{-}\right)\left[\mathrm{e}^{2} \mathrm{fm}^{2}\right]$	0.0005	0.117	$0.102(2)$

Photo-disassociation of ${ }^{11} \mathrm{Be}$

Halo structure

Bound to bound	NCSM	NCSMC-phenom	Expt.
$B\left(E 1 ; 1 / 2^{+} \rightarrow 1 / 2^{-}\right)\left[\mathrm{e}^{2} \mathrm{fm}^{2}\right]$	0.0005	0.117	$0.102(2)$

cluster form factor
$=r\left\langle\Phi_{v r}^{J^{\pi} T}\right| \hat{A}_{v}\left|\psi^{J^{\pi} T}\right\rangle$
$\left|\Phi_{v r}^{J^{\pi} T}\right\rangle=\left[\left(\left|{ }^{10} \mathrm{Be} \alpha_{1} I_{1}^{\pi_{1}} T_{1}\right\rangle\left|n \frac{1}{2}^{+} \frac{1}{2}\right\rangle\right)^{(s T)} Y_{\ell}\left(\hat{r}_{10,1}\right)\right]^{\left(J^{\pi} T\right)} \frac{\delta\left(r-r_{10,1}\right)}{r r_{10,1}}$

[^1]
Photo-disassociation of ${ }^{11} \mathrm{Be}$

Bound to continuum

Bound to bound	NCSM	NCSMC-phenom	Expt.
$B\left(E 1 ; 1 / 2^{+} \rightarrow 1 / 2^{-}\right)\left[\mathrm{e}^{2} \mathrm{fm}^{2}\right]$	0.0005	0.117	$0.102(2)$

[^2]A still lighter $\mathrm{N}=7$ isotone: ${ }^{9} \mathrm{He}$

- Controversial experimental situation
- From talk by Nigel Orr at ECT* in 2013

- No bound state
- Most experiments see $1 / 2^{-}$resonance $\sim 1 \mathrm{MeV}$
- Is there a $1 / 2^{+}$resonance? Is the ground state $1 / 2^{+}$or $1 / 2^{-}$?
- $a_{0} \sim-10 \mathrm{fm}$ (Chen et al.)
- $a_{0} \sim-3 \mathrm{fm}$ (Al Falou, et al.)
- Any higher-lying resonances?
- Recent ${ }^{8} \mathrm{He}(\mathrm{p}, \mathrm{p})$ measurement at TRIUMF by Rogachev found no T=5/2 resonances (PLB 754 (2016) 323)
- NCSMC calculations with several interactions
$-{ }^{9} \mathrm{He} \sim\left({ }^{9} \mathrm{He}\right)_{\mathrm{NCSM}}+\left(\mathrm{n}-{ }^{8} \mathrm{He}\right)_{\text {NCSM/RGM }}$
- ${ }^{8} \mathrm{He}: 0^{+}$and 2^{+}NCSM eigenstates

- ${ }^{9} \mathrm{He}: \geq 4 \pi=-1$ and $\geq 4 \pi=+1$ NCSM eigenstates
- Importance of large $N_{\text {max }}$ basis:
- SRG-N4LO500 NN with $\lambda=2.4 \mathrm{fm}^{-1}$
- up to $\mathrm{N}_{\max }=11$ with ${ }^{9} \mathrm{He}$ NCSM m-scheme basis of 350 million

G.s. energy $[\mathrm{MeV}]$	${ }^{4} \mathrm{He}$	${ }^{6} \mathrm{He}$	${ }^{8} \mathrm{He}$
SRG-N ${ }^{4} \mathrm{LO} 500 \boldsymbol{\lambda}=2.4$	-28.36	$-28.9(2)$	$-30.1(2)$
Expt	-28.30	-29.27	-31.41

Phase shift convergence with SRG-N4LO500 NN $\lambda=2.4 \mathrm{fm}^{-1}$

No bound state

Structure of unbound ${ }^{9} \mathrm{He}$

Phase shift and eigenphase shifts with

 SRG-N4LO500 NN $\lambda=2.4 \mathrm{fm}^{-1}$

Robust results for $1 / \mathbf{2}^{-}(\sim 1 \mathrm{MeV})$ and $3 / \mathbf{2}^{-}(\sim 4 \mathrm{MeV})$ P-wave resonances (3/2- resonance in $n-{ }^{8} \mathrm{He}\left(2^{+}\right)$channel)
$1 / 2^{+}$S-wave with vanishing scattering length: $a_{s}=0 \sim-1 \mathrm{fm}$ No evidence for other higher lying resonances

- Measurement of ${ }^{11} \mathrm{C}(\mathrm{p}, \mathrm{p})$ resonance scattering planned at TRIUMF
- TUDA facility
- ${ }^{11} \mathrm{C}$ beam of sufficient intensity produced
- NCSMC calculations of ${ }^{11} \mathrm{C}(\mathrm{p}, \mathrm{p})$ with chiral $\mathrm{NN}+3 \mathrm{~N}$ under way
- Obtained wave functions will be used to calculate ${ }^{11} \mathrm{C}(\mathrm{p}, \mathrm{y}){ }^{12} \mathrm{~N}$ capture relevant for astrophysics
$p+{ }^{11} \mathrm{C}$ scattering and ${ }^{11} \mathrm{C}(p, \gamma)^{12} \mathrm{~N}$ capture
- ${ }^{11} \mathrm{C}(\mathrm{p}, \mathrm{y}){ }^{12} \mathrm{~N}$ capture relevant in hot $p-p$ chain: Link between pp chain and the CNO cycle - bypass of slow triple alpha capture ${ }^{4} \mathrm{He}(\alpha \alpha, \gamma){ }^{12} \mathrm{C}$

$$
\begin{gathered}
{ }^{3} \mathrm{He}(\alpha, \gamma)^{7} \mathrm{Be}(\alpha, \gamma)^{11} C(p, \gamma)^{12} N(p, \gamma)^{13} O\left(\beta^{+}, \nu\right)^{13} N(p, \gamma)^{14} O \\
{ }^{3} \mathrm{He}(\alpha, \gamma)^{7} \mathrm{Be}(\alpha, \gamma)^{11} C(p, \gamma)^{12} N\left(\beta^{+}, \nu\right)^{12} C(p, \gamma)^{13} N(p, \gamma)^{14} O \\
{ }^{11} \mathrm{C}\left(\beta^{+} \nu\right)^{11} \mathrm{~B}(p, \alpha)^{8} \mathrm{Be}\left({ }^{4} \mathrm{He},{ }^{4} \mathrm{He}\right)
\end{gathered}
$$

- NCSMC calculations of ${ }^{11} \mathrm{C}(\mathrm{p}, \mathrm{p})$ with chiral $\mathrm{NN}+3 \mathrm{~N}$ under way
- ${ }^{11} \mathrm{C}$: $3 / 2^{-}, 1 / 2^{-}, 5 / 2^{-}, 3 / 2^{-}$NCSM eigenstates
- ${ }^{12} \mathrm{~N}: \geq 6 \pi=+1$ and $\geq 4 \pi=-1$ NCSM eigenstates

NCSMC calculations to be validated by measured cross sections and applied to calculate the ${ }^{11} \mathrm{C}(\mathrm{p}, \mathrm{y})^{12} \mathrm{~N}$ capture

- NCSMC calculations of ${ }^{11} \mathrm{C}(\mathrm{p}, \mathrm{p})$ with chiral $\mathrm{NN}+3 \mathrm{~N}$ under way
- ${ }^{11} \mathrm{C}: 3 / 2{ }^{2}, 1 / 22^{-}, 5 / 2^{-}, 3 / 2-\mathrm{NCSM}$ eigenstates
- ${ }^{12} \mathrm{~N}: \geq 6 \pi=+1$ and $\geq 4 \pi=-1$ NCSM eigenstates

NCSMC calculations to be validated by measured cross sections and applied to calculate the ${ }^{11} \mathrm{C}(\mathrm{p}, \mathrm{y})^{12} \mathrm{~N}$ capture

- New Coulomb excitation reorientation-effect measurement at TRIUMF
- TIGRESS array, particle-gamma coincidence
- Analysis by the semi-classical coupled-channel Coulomb-excitation least-squares code GOSIA
- Extraction of $\left\langle 2^{+}{ }_{1}\right|\left|E 2 \| 2^{+}{ }_{1}\right\rangle$ matrix element
- Nuclear polarizability for the ground and the $2^{+}{ }_{1}$ states needed
- Calculated by the no-core shell model (NCSM) using chiral NN and $\mathrm{NN}+3 \mathrm{~N}$ interaction

$$
\frac{\sum_{n} W\left(11 J_{i} J_{f}, 2 J_{n}\right) \frac{\langle i| \hat{E} 1|n\rangle\langle n\||\hat{E} 1 \| f\rangle}{E_{n}-E_{i}}}{\langle i\|\hat{E} 2\| f\rangle}
$$

Quadrupole moment of ${ }^{12} \mathrm{C} 2^{+}$state

M. Kumar Raju et al., arXiv 1709.07501
$\frac{\sum_{n} W\left(11 J_{i} J_{f}, 2 J_{n}\right) \frac{\langle i| \hat{1} 1| | n\rangle\langle n||\hat{E} 1 \| f\rangle}{E_{n}-E_{i}}}{\langle i\|\hat{E} 2\| f\rangle}$

New determination: Oblate shape
$Q_{S}\left(2_{1}^{+}\right)=+0.071(25) \mathrm{eb}$

- Ab initio calculations of nuclear structure and reactions is a dynamic field with significant advances
- We developed a new unified approach to nuclear bound and unbound states
- Merging of the NCSM and the NCSM/RGM = NCSMC
- Inclusion of three-nucleon interactions in reaction calculations for $A>5$ systems
- Extension to three-body clusters (${ }^{6} \mathrm{He} \sim^{4} \mathrm{He}+n+n$)
- Synergy between theory and experiment:
- Calculations of ${ }^{10} \mathrm{C}(\mathrm{p}, \mathrm{p})$ compared to TRIUMF/IRIS measurement
- Test of chiral forces
- Calculations of ${ }^{11} \mathrm{C}(p, p)$ to be compared to approved TRIUMF/TUDA experiment
- Determination of ${ }^{11} \mathrm{C}(\mathrm{p}, \mathrm{\gamma}){ }^{12} \mathrm{~N}$
- Nuclear polarizability for the determination of ${ }^{12} \mathrm{C} 2^{+}$quadrupole moment
- TRIUMF/TIGRESS experiment
- Outlook
- Alpha-clustering (${ }^{4} \mathrm{He}$ projectile)
- ${ }^{12} \mathrm{C}$ and Hoyle state: ${ }^{8} \mathrm{Be}+{ }^{4} \mathrm{He}$
- ${ }^{16} \mathrm{O}:{ }^{12} \mathrm{C}+{ }^{4} \mathrm{He}$
- Inter-nucleon forces from chiral effective field theory

- Systematic low-momentum expansion to a given order $\left(\mathrm{Q} / \Lambda_{\mathrm{x}}\right)$
- Hierarchy
- Consistency
- Low energy constants (LEC)
- Fitted to data
- Can be calculated by lattice QCD

$$
\Lambda_{\mathrm{x}} \sim 1 \mathrm{GeV}:
$$

Chiral symmetry breaking scale

N ${ }^{4}$ LO500 NN $\mathrm{N}^{3} \mathrm{LO}$ NN+N2LO 3N (NN+3N400, NN+3N500)

- Ab initio no-core shell model
- Short- and medium range correlations
- Bound-states, narrow resonances
- Equivalent description in relative-coordinate and Slater determinant basis

NCSM

$$
(A)
$$

- Ab initio no-core shell model
- Short- and medium range correlations
- Bound-states, narrow resonances
- Equivalent description in relative-coordinate and Slater determinant basis

Harmonic oscillator basis

$$
\Psi^{A}=\sum_{N=0}^{N_{\max }} \sum_{i} c_{N i} \Phi_{N i}^{H O}\left(\vec{\eta}_{1}, \vec{\eta}_{2}, \ldots, \vec{\eta}_{A-1}\right)
$$

(A) $23 \Psi_{\mathrm{SD}}^{A}=\sum_{N=0}^{N_{\max }} \sum_{j} c_{N j}^{\mathrm{SD}} \Phi_{\mathrm{SDNj}}^{H O}\left(\vec{r}_{1}, \vec{r}_{2}, \ldots, \vec{r}_{A}\right)=\Psi^{A} \varphi_{000}\left(\vec{R}_{C M}\right)$

Chiral EFT interactions up to $\mathrm{N}^{4} \mathrm{LO}$

- Systematic from LO to $\mathrm{N}^{4} \mathrm{LO}$
- High precision $-\mathrm{X}^{2} /$ datum $=1.15$
- D. R. Entem, N. Kaiser, R. Machleidt, and Y. Nosyk, Phys. Rev. C 91, 014002 (2015).
- D. R. Entem, R. Machleidt, and Y. Nosyk, Phys. Rev. C 96, 024004 (2017).

Original EM 2003 N 3 LO NN E gs $=-25.39 \mathrm{MeV}$

Microscopic R-matrix theory on Lagrange mesh

- Separation into "internal" and "external" regions at the channel radius a

- This is achieved through the Bloch operator: $\quad L_{c}=\frac{\hbar^{2}}{2 \mu_{c}} \delta(r-a)\left(\frac{d}{d r}-\frac{B_{c}}{r}\right)$
- System of Bloch-Schrödinger equations:

$$
\left[\hat{T}_{\text {rel }}(r)+L_{c}+\bar{V}_{\text {Coul }}(r)-\left(E-E_{c}\right)\right] u_{c}(r)+\sum_{c^{\prime}} \int d r^{\prime} r^{\prime} W_{c c^{\prime}}\left(r, r^{\prime}\right) u_{c^{\prime}}\left(r^{\prime}\right)=L u_{c}(r)
$$

- Internal region: expansion on Lagrange square-integrable basis $\quad u_{c}(r)=\sum_{n} A_{c n} f_{n}(r)$
- External region: asymptotic form for large r

$$
u_{c}(r) \sim C_{c} W\left(k_{c} r\right) \text { or } \quad u_{c}(r) \sim v_{c}^{-\frac{1}{2}}\left[\delta_{c i} I_{c}\left(k_{c} r\right)-U_{c i} \emptyset_{c}\left(k_{c} r\right)\right]
$$

Deuterium-Tritium fusion

- The $d{ }^{+3} \mathrm{H} \rightarrow n+{ }^{4} \mathrm{He}$ reaction
- The most promising for the production of fusion energy in the near future
- Used to achieve inertial-confinement (laser-induced) fusion at NIF, and magnetic-confinement fusion at ITER
- With its mirror reaction, ${ }^{3} \mathrm{He}(d, p)^{4} \mathrm{He}$, important for Big Bang nucleosynthesis

FY: Faddeev-Yakubovsky method - Rimantas Lazauskas

Invited Comment
Unified ab initio approaches to nuclear structure and reactions

The $d-{ }^{3} \mathrm{H}$ fusion takes place through a transition of $d+{ }^{3} \mathrm{H}$ is S-wave to $n+{ }^{4} \mathrm{He}$ in D-wave: Importance of the tensor and $\mathbf{3 N}$ force
${ }^{3} \mathrm{H}(\mathrm{d}, \mathrm{n}){ }^{4} \mathrm{He}$ with chiral NN+3N500 interaction

Polarized fusion

Structure of ${ }^{11} \mathrm{Be}$ from chiral $\mathrm{NN}+3 \mathrm{~N}$ forces

- NCSMC calculations including chiral 3N (N3LO NN+N²LO 3NF400)
- n- ${ }^{10} \mathrm{Be}+{ }^{11} \mathrm{Be}$
- ${ }^{10} \mathrm{Be}: 0^{+}, 2^{+}, 2^{+} \mathrm{NCSM}$ eigenstates

- ${ }^{11} \mathrm{Be}: \geq 6 \pi=-1$ and $\geq 3 \pi=+1$ NCSM eigenstates

- NCSMC calculations of ${ }^{11} \mathrm{C}(\mathrm{p}, \mathrm{p})$ with chiral $\mathrm{NN}+3 \mathrm{~N}$ under way

急triumf Similarity Renormalization Group (SRG) evolution

- Continuous transformation driving Hamiltonian to band-diagonal form with respect to a chosen basis
- Unitary transformation $H_{\alpha}=U_{\alpha} H U_{\alpha}^{+} \quad U_{\alpha} U_{\alpha}^{+}=U_{\alpha}^{+} U_{\alpha}=1$

$$
\frac{d H_{\alpha}}{d \alpha}=\frac{d U_{\alpha}}{d \alpha} U_{\alpha}^{+} H_{\alpha}+H_{\alpha} U_{\alpha} \frac{d U_{\alpha}^{+}}{d \alpha}=\left[\eta_{\alpha}, H_{\alpha}\right]
$$

- Setting $\eta_{\alpha}=\left[G_{\alpha}, H_{\alpha}\right]$ with Hermitian G_{α}

$$
\eta_{\alpha} \equiv \frac{d U_{\alpha}}{d \alpha} U_{\alpha}^{+}=-\eta_{\alpha}^{+}
$$

anti-Hermitian
generator

$$
\frac{d H_{\alpha}}{d \alpha}=\left[\left[G_{\alpha}, H_{\alpha}\right], H_{\alpha}\right]
$$

- Customary choice in nuclear physics $G_{\alpha}=T$...kinetic energy operator
- band-diagonal in momentum space plane-wave basis
- Initial condition $H_{\alpha=0}=H_{\lambda=\infty}=H \quad \lambda^{2}=1 / \sqrt{\alpha}$
- Induces many-body forces
- In applications to chiral interactions three-body induced terms large, four-body small
- Systematic from LO to $\mathrm{N}^{4} \mathrm{LO}$
- High precision $-X^{2} /$ datum $=1.15$
- D. R. Entem, N. Kaiser, R. Machleidt, and Y. Nosyk, Phys. Rev. C 91, 014002 (2015).
- D. R. Entem, R. Machleidt, and Y. Nosyk, arXiv:1703.05454.

- Systematic from LO to $\mathrm{N}^{4} \mathrm{LO}$
- High precision $-X^{2} /$ datum $=1.15$
- D. R. Entem, N. Kaiser, R. Machleidt, and Y. Nosyk, Phys. Rev. C 91, 014002 (2015).
- D. R. Entem, R. Machleidt, and Y. Nosyk, arXiv:1703.05454.

- Systematic from LO to $\mathrm{N}^{4} \mathrm{LO}$
- High precision $-X^{2} /$ datum $=1.15$
- D. R. Entem, N. Kaiser, R. Machleidt, and Y. Nosyk, Phys. Rev. C 91, 014002 (2015).
- D. R. Entem, R. Machleidt, and Y. Nosyk, arXiv:1703.05454.

Determination of the c_{D} parameter relevant to chiral 3 N force $\mathrm{c}_{\mathrm{D}}=0.45$ (3 N repulsive)

Original EM 2003 N3 LO NN $c_{D}=-0.2$ (3N attractive)

Chiral EFT interactions up to $\mathrm{N}^{4} \mathrm{LO}$

- Systematic from LO to $\mathrm{N}^{4} \mathrm{LO}$
- High precision $-X^{2} /$ datum $=1.15$
- D. R. Entem, N. Kaiser, R. Machleidt, and Y. Nosyk, Phys. Rev. C 91, 014002 (2015).
- D. R. Entem, R. Machleidt, and Y. Nosyk, arXiv:1703.05454.

Chiral EFT interactions up to N4LO

- Systematic from LO to $\mathrm{N}^{4} \mathrm{LO}$
- High precision $-X^{2} /$ datum $=1.15$
- D. R. Entem, N. Kaiser, R. Machleidt, and Y. Nosyk, Phys. Rev. C 91, 014002 (2015).
- D. R. Entem, R. Machleidt, and Y. Nosyk, arXiv:1703.05454.

Binary cluster Resonating Group Method

- Working in partial waves ($\left.v \equiv\left\{A-a \alpha_{1} I_{1}^{\pi_{1}} T_{1} ; a \alpha_{2} I_{2}^{\pi_{2}} T_{2} ; s \ell\right\}\right)$

$$
\left|\psi^{J^{\pi} T}\right\rangle=\sum_{v} \hat{A}_{v}[\underbrace{\left(A-a \alpha_{1} I_{1}^{\pi_{1}} T_{1}\right.}_{\text {Target }}\rangle \underbrace{\left|a \alpha_{2} I_{2}^{\pi_{2}} T_{2}\right\rangle}_{\text {Projectile }})^{(s T)} Y_{\ell}\left(\hat{r}_{A-a, a}\right)]^{\left(J^{\pi} T\right)} \frac{\gamma_{v}^{J^{\pi} T}\left(r_{A-a, a}\right)}{r_{A-a, a}}
$$

- Introduce a dummy variable \vec{r} with the help of the delta function

$$
\left|\psi^{J^{\pi} T}\right\rangle=\sum_{v} \int \frac{\gamma_{v}^{J^{\pi} T}(r)}{r} \hat{A}_{v}\left[\left(\left|A-a \alpha_{1} I_{1}^{\pi_{1}} T_{1}\right\rangle\left|a \alpha_{2} I_{2}^{\pi_{2}} T_{2}\right\rangle\right)^{(s T)} Y_{\ell}(\hat{r})\right]^{\left(J^{\pi} T\right)} \delta\left(\vec{r}-\vec{r}_{A-a, a}\right) r^{2} d r d \hat{r}
$$

- Allows to bring the wave function of the relative motion in front of the antisymmetrizer

$$
\left.\left.\sum_{v} \int d \vec{r} \gamma_{v}(\vec{r}) \hat{A}_{v}\right|_{(A-a)}, \vec{r}, v\right\rangle
$$

Binary cluster Resonating Group Method

$$
\left|\psi^{J^{\pi} T}\right\rangle=\sum_{v} \int \frac{\gamma_{v}^{J^{\pi} T}(r)}{r} \hat{A}_{v}\left[\left(\left|A-a \alpha_{1} I_{1}^{\pi_{1}} T_{1}\right\rangle\left|a \alpha_{2} I_{2}^{\pi_{2}} T_{2}\right\rangle\right)^{(s T)} Y_{\ell}(\hat{r})\right]^{\left(J^{\pi} T\right)} \delta\left(\vec{r}-\vec{r}_{A-a, a}\right) r^{2} d r d \hat{r}
$$

- Now introduce partial wave expansion of delta function

$$
\begin{equation*}
\delta\left(\vec{r}-\vec{r}_{A-a, a}\right)=\sum_{\lambda, \mu} \frac{\delta\left(r-r_{A-a, a}\right)}{r r_{A-a, a}} Y_{\lambda, \mu}^{*}(\hat{r}) Y_{\lambda, \mu}\left(\hat{r}_{A-a, a}\right) \tag{A-a}
\end{equation*}
$$

- After integration in the solid angle one obtains:

$$
\left|\psi^{J^{\pi} T}\right\rangle=\sum_{v} \int \frac{\gamma_{v}^{J^{\pi_{T}}}(r)}{r} \hat{A}_{v}[\underbrace{\left.\left(\left|A-a \alpha_{1} I_{1}^{\pi_{1}} T_{1}\right\rangle\left|a \alpha_{2} I_{2}^{\pi_{2}} T_{2}\right\rangle\right)^{(s T)} Y_{\ell}\left(\hat{r}_{A-a, a}\right)\right]^{\left(J^{\pi} T\right)} \frac{\delta\left(r-r_{A-a, a}\right)}{r r_{A-a, a}}}_{\left|\Phi_{v r}^{\left.J^{\pi_{T}}\right\rangle}\right\rangle\left(\begin{array}{l}
\text { (Jacobi) channel basis }
\end{array}\right.} r^{2} d r
$$

Binary cluster Resonating Group Method

- Trial wave function: $\left|\psi^{\gamma^{\pi_{T} T}}\right\rangle=\sum_{v} \int \frac{\gamma_{v}^{\pi^{T} T}(r)}{r} \hat{A}_{v}\left|\Phi_{v r}^{,^{\pi_{T}}}\right\rangle r^{2} d r$

- Projecting the Schrödinger equation on the channel basis yields:

- Breakdown of approach:

1. Build channel basis states from input target and projectile wave functions
2. Calculate Hamiltonian and norm kernels
3. Solve RGM equations: find unknown relative motion wave functions

- Bound-state / scattering boundary conditions
- Since we are using NCSM wave functions, it is convenient to introduce Jacobi channel states in the HO space

$$
\left|\Phi_{v n}^{J^{\pi} T}\right\rangle=\left[\left(\left|A-a \alpha_{1} I_{1}^{\pi_{1}} T_{1}\right\rangle\left|a \alpha_{2} I_{2}^{\pi_{2}} T_{2}\right\rangle\right)^{(s T)} Y_{\ell}\left(\hat{r}_{A-a, Q}\right)\right]^{\left(J^{\left.\pi_{T} T\right)}\right.} R_{n \ell}\left(r_{A-a, a}\right)
$$

- Note:
- The coordinate space channel states are given by

$$
\left|\Phi_{v r}^{J^{\pi} T}\right\rangle=\sum_{n} R_{n \ell}(r)\left|\Phi_{v n}^{J^{\pi} T}\right\rangle
$$

- We used the closure properties of HO radial wave functions

$$
\frac{\delta\left(r-r_{A-a, a}\right)}{r r_{A-a, a}}=\sum_{n} R_{n \ell}(r) R_{n \ell}\left(r_{A-a, a}\right)
$$

Note that this is OK,
in particular when the sum
is truncated,
ONLY for localized
parts of the kernels

- We call them Jacobi channel states because they describe only the internal motion
- Target and projectile wave functions are both translational invariant NCSM eigenstates calculated in the Jacobi coordinate basis

$$
\begin{aligned}
& N_{v^{\prime} v}^{J^{\pi} T}\left(r^{\prime}, r\right)=\underbrace{\delta_{v^{\prime} v} \frac{\delta\left(r^{\prime}-r\right)}{r^{\prime} r}}_{v^{\prime}}-(A-1) \underbrace{\left.\sum_{n^{\prime} n} R_{n^{\prime} \ell^{\prime}}\left(r^{\prime}\right) R_{n \ell}(r)\left\langle\psi_{\mu_{1}}^{(A-1)}\right| a^{+} a\left|\psi_{v_{1}}^{(A-1)}\right\rangle_{\mathrm{SD}} \Phi_{v^{\prime} n^{\prime}}^{J^{\pi} T}\left|\hat{P}_{A-1, A}\right| \Phi_{v n}^{J^{\pi} T}\right\rangle}_{n^{\prime} n} \\
& \text { Direct term: } \\
& \text { Treated exactly! } \\
& \text { (in the full space) } \\
& \text { Exchange term: } \\
& \text { Obtained in the model space! } \\
& \text { (Many-body correction due to } \\
& \text { the exchange part of the inter- } \\
& \text { cluster antisymmetrizer) }
\end{aligned}
$$

$n-4$ He scattering within NCSMC

$n-{ }^{4} \mathrm{He}$ scattering phase-shifts for chiral NN and NN+3N500 potential

Total $n-{ }^{4} \mathrm{He}$ cross section with NN and $\mathrm{NN}+3 \mathrm{~N}$ potentials

3N force enhances $1 / 2^{-} \leftarrow \rightarrow 3 / 2^{-}$splitting: Essential at low energies!

Invited Comment
Unified ab initio approaches to nuclear structure and reactions

PHYSICAL REVIEW C 88, 054622 (2013)
$A b$ initio many-body calculations of nucleon- ${ }^{4} \mathrm{He}$ scattering with three-nucleon forces
Guillaume Hupin, ${ }^{\left.1,{ }^{, *} \text { Joachim Langhammer, },{ }^{2, \dagger} \text { Petr Navrátil, }{ }^{3, \ddagger} \text { Sofia Quaglioni, }{ }^{1, \S} \text { Angelo Calci, }{ }^{2, \|} \text { and Robert Roth }{ }^{2, \llbracket}\right]}$

$n-4$ He scattering within NCSMC

$n-{ }^{4} \mathrm{He}$ scattering phase-shifts for chiral NN and NN+3N500 potential
$\quad n-{ }^{4} \mathrm{He}$ scattering phase-shifts for
chiral $\mathrm{N}^{2} \mathrm{LO}_{\text {sat }}$ and $\mathrm{NN}+3 \mathrm{~N} 400$ potentials

3N force enhances $1 / 2^{-} \leftarrow \rightarrow 3 / 2^{-}$splitting: Essential at low energies!

Unified ab initio approaches to nuclear structure and reactions

Petr Navatiti', Sofia Quaglioni2, Guillaume Hupin.
Carolina Romero-Redondo

PHYSICAL REVIEW C 88, 054622 (2013)
Ab initio many-body calculations of nucleon- ${ }^{4} \mathrm{He}$ scattering with three-nucleon forces
Guillaume Hupin, ${ }^{1, *}$ Joachim Langhammer, ${ }^{2, \dagger}$ Petr Navrátil, ${ }^{3, \ddagger}$ Sofia Quaglioni, ${ }^{1, \S}$ Angelo Calci, ${ }^{2, \|}$ and Robert Roth ${ }^{2, \llbracket}$

$n-4 \mathrm{He}$ scattering within NCSMC

$n-{ }^{4} \mathrm{He}$ scattering phase-shifts for chiral NN and NN+3N500 potential

3N force enhances $1 / 2^{-} \leftarrow \rightarrow 3 / 2^{-}$splitting: Essential at low energies!

Unified ab initio approaches to nuclear structure and reactions

PHYSICAL REVIEW C 88, 054622 (2013)
$A b$ initio many-body calculations of nucleon- ${ }^{4} \mathrm{He}$ scattering with three-nucleon forces
Guillaume Hupin, ${ }^{1, *}$ Joachim Langhammer, ${ }^{2, \dagger}$ Petr Navrátil, ${ }^{3, \ddagger}$ Sofia Quaglioni, ${ }^{1, \S}$ Angelo Calci, ${ }^{2, \|}$ and Robert Roth ${ }^{2, \llbracket}$
$p-4 \mathrm{He}$ scattering phase-shifts for $\mathrm{NN}+3 \mathrm{~N} 500$ potential: Convergence

Predictive power in the $3 / 2^{-}$resonance region: Applications to material science

PHYSICAL REVIEW C 90, 061601(R) (2014)
Predictive theory for elastic scattering and recoil of protons from ${ }^{4} \mathbf{H e}$
Guillaume Hupin, ${ }^{1, *}$ Sofia Quaglioni, ${ }^{1, \dagger}$ and Petr Navrátil ${ }^{2, \ddagger}$

Differential $p-4 \mathrm{He}$ cross section with $\mathrm{NN}+3 \mathrm{~N}$ potentials
${ }^{3} \mathrm{H}(\mathrm{d}, \mathrm{n}){ }^{4} \mathrm{He}$ with chiral NN+3N500 interaction

$S(E)=E \sigma(E) \exp [2 \pi \eta(E)]$
$\eta(E)=Z_{A-a} Z_{a} e^{2} / \hbar \nu_{A-a, a}$

NCSMC wave function

$$
\left.\Psi^{(A)}=\sum_{\lambda} c_{\lambda}|(A), \lambda\rangle+\left.\sum_{v} \int d \vec{r} \gamma_{v}(\vec{r}) \hat{A}_{v}\right|_{(A-a)} ^{\underset{r}{r}} \underset{(a)}{ }, v\right\rangle
$$

$$
\begin{aligned}
& \left|\Psi_{A}^{J \pi T}\right\rangle=\sum_{\lambda}\left|A \lambda J^{\pi} T\right\rangle\left[\sum_{\lambda^{\prime}}\left(N^{-\frac{1}{2}}\right)^{\lambda \lambda^{\prime}} \bar{c}_{\lambda^{\prime}}+\sum_{v^{\prime}} \int d r^{\prime} r^{\prime 2}\left(N^{-\frac{1}{2}}\right) \bar{v}_{v^{\prime} r^{\prime}}^{\lambda} \frac{\bar{\nu}_{\nu^{\prime}}\left(r^{\prime}\right)}{r^{\prime}}\right] \\
& \left.+\sum_{\nu v^{\prime}} \int d r r^{2} \int d r^{\prime} r^{\prime 2} \hat{\mathcal{A}}_{v} \mid \Phi_{v r}^{J^{T} T}\right) \mathcal{N}_{v v^{\prime}}^{-\frac{1}{2}}\left(r, r^{\prime}\right)\left[\sum_{\lambda^{\prime}}\left(N^{-\frac{1}{2}}\right)_{v^{\prime} r^{\prime}}^{\lambda^{\prime}} \bar{c}_{\lambda^{\prime}}+\sum_{v^{\prime \prime}} \int d r^{\prime \prime} r^{\prime \prime 2}\left(N^{-\frac{1}{2}}\right)_{\nu v^{\prime} r^{\prime} \nu^{\prime \prime} r^{\prime \prime}} \frac{\bar{\chi}_{\nu^{\prime \prime}}\left(r^{\prime \prime}\right)}{r^{\prime \prime}}\right] \text {. }
\end{aligned}
$$

Asymptotic behavior $r \rightarrow \infty$:

$$
\begin{array}{cc}
\bar{\chi}_{v}(r) \sim C_{v} W\left(k_{v} r\right) & \bar{\chi}_{v}(r) \sim \mathrm{v}_{v}^{-\frac{1}{2}}\left[\delta_{v i} I_{v}\left(k_{v} r\right)-U_{v i} O_{v}\left(k_{v} r\right)\right] \\
\text { Bound state } & \text { Scattering state }
\end{array}
$$

$$
\Psi^{(A)}=\sum_{\lambda} c_{\lambda}|(A), \lambda\rangle+\sum_{v} \int d \vec{r} \gamma_{v}(\vec{r}) \hat{A}_{v}|\underset{(A-a)}{\stackrel{r}{r}}(a), v\rangle
$$

$$
\begin{aligned}
\overrightarrow{E 1} & =e \sum_{i=1}^{A-a} \frac{1+\tau_{i}^{(3)}}{2}\left(\vec{r}_{i}-\vec{R}_{\mathrm{c} . \mathrm{m} .}^{(A-a)}\right) \\
& +e \sum_{j=A-a+1}^{A} \frac{1+\tau_{j}^{(3)}}{2}\left(\vec{r}_{i}-\vec{R}_{\mathrm{c} . \mathrm{m} .}^{(a)}\right) \\
& +e \frac{Z_{(A-a)} a-Z_{(a)}(A-a)}{A} \vec{r}_{A-a, a}
\end{aligned}
$$

$$
\begin{aligned}
M_{f i}^{E 1}= & \sum_{\lambda \lambda^{\prime}} c_{\lambda^{\prime}}^{* f}\left\langle A \lambda^{\prime} J_{f}^{\pi_{f}^{f}} T_{f}\|\overrightarrow{E 1}\| A \lambda J_{i}^{\pi_{i}} T_{i}\right\rangle c_{\lambda}^{i} \\
& +\sum_{\lambda^{\prime} \nu} \int d r r^{2} c_{\lambda^{\prime}}^{* f}\left\langle A \lambda^{\prime} J_{f}^{\pi_{f}} T_{f}\left\|\overrightarrow{E 1} \hat{\mathcal{A}}_{\nu}\right\| \Phi_{\nu r}^{i}\right\rangle \frac{\gamma_{\nu}^{i}(r)}{r} \\
& +\sum_{\lambda \nu^{\prime}} \int d r^{\prime} r^{\prime 2} \frac{\gamma_{\nu^{\prime}}^{* f}\left(r^{\prime}\right)}{r^{\prime}}\left\langle\Phi_{\nu^{\prime} r^{\prime}}^{f}\left\|\hat{\mathcal{A}}_{\nu^{\prime}} \overrightarrow{E 1}\right\| A \lambda J_{i}^{\pi_{i}} T_{i}\right\rangle c_{\lambda}^{i} \\
& +\sum_{\nu \nu^{\prime}} \int d r^{\prime} r^{\prime 2} \int d r r^{2} \frac{\gamma_{\nu^{\prime}}^{* f}\left(r^{\prime}\right)}{r^{\prime}}\left\langle\Phi_{\nu^{\prime} r^{\prime}}^{f}\left\|\hat{\mathcal{A}}_{\nu^{\prime}} \vec{E} 1 \hat{\mathcal{A}}_{\nu}\right\| \Phi_{\nu r}^{i}\right\rangle \frac{\gamma_{\nu}^{i}(r)}{r}
\end{aligned}
$$

[^0]: Invited Comment
 Unified ab initio approaches to nuclear structure and reactions

[^1]: Angelo Calci, ${ }^{1,{ }^{*}}$ Petr Navrátil, ${ }^{1, \dagger}$ Robert Roth, ${ }^{2}$ Jérémy Dohet-Eraly, ${ }^{1, *}$ Sofia Quaglioni, ${ }^{3}$ and Guillaume Hupin ${ }^{4,5}$

[^2]: Angelo Calci, ${ }^{1,{ }^{*}}$ Petr Navrátil, ${ }^{1, \dagger}$ Robert Roth, ${ }^{2}$ Jérémy Dohet-Eraly, ${ }^{1,{ }^{,+}}$Sofia Quaglioni, ${ }^{3}$ and Guillaume Hupin ${ }^{4,5}$

