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Review: D.L, Prog. Part. Nucl. Phys. 63 117-154 (2009) 
TALENT summer school lectures:  qmc2016.wordpress.ncsu.edu 



Construct the effective potential order by order 
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Contact interactions 
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Chiral effective field theory 
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Euclidean time projection 
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Auxiliary field method 
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Lattice simulations had been restricted to nuclei with N = Z due to Monte 
Carlo sign oscillations.  This problem has now been resolved using a 
different choice of leading-order action. 

Proton- and neutron-rich systems 
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Ground state energies 

Elhatisari, Epelbaum, Krebs, Lähde, D.L., Li, Lu, Meißner, Rupak, PRL in press, 
arXiv:1702.05177 
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Model-independent measure of clustering 
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Elhatisari, Epelbaum, Krebs, Lähde, D.L., Li, Lu, Meißner, Rupak, PRL in press, 
arXiv:1702.05177 
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Unfortunately there is no algorithm available for ab initio auxiliary field 
Monte Carlo simulations to determine the density distribution of particles 
relative to the center of mass.  The problem is that the particle wave 
functions in the auxiliary field simulation are a superposition of many 
values for the center of mass. 



Pinhole algorithm 

Consider the density operator for nucleon with spin i and isospin j 

We construct the normal-ordered A-body density operator 

In the A-particle subspace, we have the identity 
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In the simulations we do Monte Carlo sampling of the amplitude 
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Elhatisari, Epelbaum, Krebs, Lähde, D.L., Li, Lu, Meißner, Rupak, PRL in press, 
arXiv:1702.05177 



Model-independent measure of alpha cluster geometry   

For the carbon isotopes, we can map out the alpha cluster geometry 
by computing the density correlations of the three spin-up protons.  
We compute these density correlations using the pinhole algorithm. 
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Elhatisari, Epelbaum, Krebs, Lähde, D.L., Li, Lu, Meißner, Rupak, PRL in press, 
arXiv:1702.05177 
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Eigenvector continuation 

Eigenvector continuation might be able to help.  It is a method for the 
calculation of extremal eigenvectors of a quantum Hamiltonian by 
applying some basic concepts from machine learning. 

While a eigenvector resides in a linear space with enormous dimensions, 
the effective dimensionality of the subspace spanned by the eigenvector 
over a range of interaction couplings can be quite small. But instead of 
using a restricted Boltzmann machine to find this subspace, we use the 
variational principle. 
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Consider the case with strong quantum correlations are but the required 
linear space is so immense that only Monte Carlo methods can be used.  
But it may be that the parameters are such that the sign problem renders  
the Monte Carlo simulation impractical. 

Frame, He, Ipsen, Lee, D.L., Rrapaj, in progress 



The “training” coupling values ck are chosen within some interval where 
Monte Carlo simulations can be done. The target value c may be 
inaccessible due to sign oscillations. 

We consider four bosons on a three-dimensional lattice with equal masses 
and zero-range attractive interactions with kinetic energy coefficient t and 
coupling U. 
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Consider the ground state of a Hamiltonian that depends on the real 
parameter c.  
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Perturbation theory 
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Eigenvector continuation 
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Neutron matter using a difficult lattice action* 

*D.L., in “An Advanced Course in Computational Nuclear Physics”, 
Lecture Notes in Physics, Volume 936, arXiv:1609.00421 
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Eigenvector continuation results 

Fourteen neutrons (L = 8 fm) 
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Frame, He, Ipsen, Lee, D.L., Rrapaj, in progress 
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Summary and Outlook 

These are exciting times for ab initio 
nuclear theory with progress by many 
groups using many different methods.  
With nuclear lattice simulations, we now 
have several projects in motion that are 
pushing the frontiers of first-principles 
nuclear structure and reaction theory. 
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