

P.G. Thirolf, LMU München

- ^{229m}Th properties and prospects
- Experimental approach & setup
- Measurements on ^{229m}Th:

identification, characterization

Summary & Perspectives

2 P.G. Thirolf, LMU München

Experimental Approach

- **concept:** populate the isomeric state via 2% decay branch in the α decay of ²³³U
 - spatially decouple ^{229(m)}Th recoils from the ²³³U source: avoid background
 - detect the subsequently occurring isomeric decay

3

Experimental Setup

• MLL located at Maier-Leibnitz Laboratory, Garching:

Intern. Conference on Shapes and Symmetries in Nuclei, Gif-sur-Yvette, 6.-10.11.2017

Ion Extraction from Buffer Gas Cell NU IOCK

mass scan of extracted ion species: efficient ^{229(m)}Th³⁺ extraction

P.G. Thirolf, LMU München

5

LUDWIG-MAXIMILIANS

MLL

UNIVERSITÄT

LMU

Isomer Detection Process

extracted ^{229(m)}Th³⁺ ions:

- impinging directly onto MCP surface behind triode exit
 - 'soft landing' on MCP surface
 - neutralization of Th ions
 - isomer decay by Internal Conversion: electron emission
 - electron cascade generated,
 - accelerated towards phosphor screen
 - visible light imaged by CCD camera

internal conversion (IC) energetically allowed for neutral thorium:

I(Th⁺, 6.31 eV) < E^{*}(^{229m}Th, 7.8 eV)

- isomer lifetime expected to be reduced by ca. 10⁻⁹ (from ~10⁴ s \rightarrow ~ 10 μ s)
- Th^{q+} ions: IC is energetically forbidden, radiative decay branch may dominate
- 6 P.G. Thirolf, LMU München

Intern. Conference on Shapes and Symmetries in Nuclei, Gif-sur-Yvette, 6.-10.11.2017

^{229m}Th³⁺

Direct Signal of IC Decay from ^{229m}Th NUCOLOCK

L. v.d. Wense, PT et al., Nature 533, 47-51 (2016)

clear signal from Th³⁺, Th²⁺ no signal from U³⁺, U²⁺

P.G. Thirolf, LMU München

7

LMU

MLL

Verification Measurements

nu <u>lock</u>

Background-corrected isomeric decay signals:

- $U_{MCP} = -25 V$ $U_{MCP} = -2000 V$ \rightarrow isomeric decay \rightarrow ionic impact 250500 229Th2+ 233]2+ 200400 ŝ Counts in 5 150 300 235[]2+ in 1,200 s 100 200 50 100 0 0 113 114 115 116 117 118 119 m/q (u/e)
- ionic impact signal decreases with $U_{\mbox{\scriptsize MCP}}$
- ²³³U²⁺ signal drops to zero
- ²²⁹Th²⁺ signal remains, cutoff at E_{kin}=0 (rise: IC electrons back-attracted to MCP surface)
- comparable mass peak amplitudes for ²²⁹Th²⁺, ²³³U²⁺ ion impact signals
- for U_{MCP} = -25 V ²³³U²⁺ signal vanishes
- ²²⁹Th²⁺ signal remains

all potential background contributions could be excluded, mostly by several ways

Next step: Halflife determination

- charged ^{229m}Th²⁺: $t_{1/2} > 1$ min. (limited by RFQ storage time)
- neutral ^{229m}Th: pulsed extraction from RFQ

- expected conversion coefficient: $\alpha = N_e/N_{\gamma} \sim 10^9$
- → provides constraint for strength of photonic decay branch (if IC cannot be suppressed, e.g. by suitable crystal lattice implantation)
- 9 P.G. Thirolf, LMU München

LMU

MLL

10 P.G. Thirolf, LMU München

Collinear Laser Spectroscopy of 229mTh

Collaboration with PTB Braunschweig: (E. Peik, M. Okhapkin et al.):

Goal: resolve hyperfine structure of ^{229m}Th²⁺

P.G. Thirolf, LMU München

IMU

11

UNIVERSITÄT

MLL

- laser excitation of ^{229(m)}Th²⁺ ions behind QMS:
 - \rightarrow 3 external-cavity diode lasers
 - ightarrow co- and counter-propagating laser beams
- preparatory experiments on ²²⁹Th at PTB Paul trap

Summary & Perspectives

- 229-Thorium isomer exists: first direct detection via IC decay channel
- constraints of ^{229m}Th properties: $6.3 \text{ eV} \le \text{E}^* \le 18.3 \text{ eV}$ $\tau > 60 \text{ s}$
- Half-life of neutral ^{229m}Th:

$$t_{1/2} = 7 \ \mu s \rightarrow \alpha \sim 10^9$$

Nature 533 (2016)

PRL 118 (2017)

- Hyperfine structure of ^{229m}Th measured via collinear laser spectroscopy:
 →nuclear moments, charge radius, (prolate) deformation
 revision submitted to Nature
- isomeric excitation energy: method: EPJ A53 (2017) measurements with (retarding field) magnetic bottle electron spectrometer in progress
- contrary to general paradigm: laser excitation of ^{229m}Th feasible with existing laser technology → experiment in preparation
 method: PRL 119 (2017)
- charged ^{229m}Th: needs longer storage time
 - → setup of a cryogenic Paul trap in progress
- **14** P.G. Thirolf, LMU München

we made a big step towards the ultimate goal of a Nuclear Clock

but many more are yet to come ...

15 P.G. Thirolf, LMU München

Thanks to

nuelock

- LMU Munich: L. v.d. Wense, B. Seiferle, N. Arlt, B. Kotulski, J.B. Neumayr, H.-J. Maier, H.-F. Wirth
- PTB Braunschweig: J. Thielking, P. Glowacki, D.M. Meier M. Okhapkin, E. Peik
- GSI Helmholtzzentrum f. Schwerionenforschung, Darmstadt & Helmholtz-Institut Mainz: M. Laatiaoui (now: KU Leuven)
- Helmholtz-Institut Mainz & Johannes Gutenberg-Universität Mainz:
 - C. Mokry, J. Runke, K. Eberhardt, C.E. Düllmann, N.G. Trautmann

DEUTSCHE Forschungsgemeinschaft

Thank you for your attention !