Shapes and Symmetries in Nuclei: from Experiment to Theory (SSNET'17) - Orsay, November 6-10, 2017
unverstrof SURREY

SCGF Computations of Nuclei

Carlo Barbieri - University of Surrey

Current Status of low-energy nuclear physics

Composite system of interacting fermions
Binding and limits of stability
Coexistence of individual and collective behaviors
Self-organization and emerging phenomena

Concept of correlations

independent particle picture

Spectral function: distribution of momentum (p_{m}) and energies (E_{m})

Understood for a few stable closed shells:
[CB. and HWH. H. Dickhoff, Prog. Part. Nucl. Phys 52, 377 (2004)]

Concept of correlations
\qquad stable isotopes... $52,377(2004)$]

The FRPA Method in Two Words

Particle vibration coupling is the main cause driving the distribution of particle strength-on both sides of the Fermi surface...

```
CB et al.,
Phys. Rev. C63, 034313 (2001)
Phys. Rev. A76, 052503 (2007)
Phys. Rev. C79, 064313(2009)
```

- A complete expansion requires all types of particle-vibration coupling ...these modes are all resummed exactly and to all orders in a ab-initio many-body expansion.
-The Self-energy $\Sigma^{\star}(\omega)$ yields both single-particle states and scattering

Self-Consistent Green's Function Approach

- Global picture of nuclear dynamics
- Reciprocal correlations among effective modes
- Guaranties macroscopic conservation laws

Self-Consistent Green's Function Approach

Self-Consistent Green's Function Approach

${ }^{16} O\left(e, e^{\prime} p n\right){ }^{14} \mathrm{~N}$ @ MAINZ

[C. B., C. Giusti, et al.
Phys Rev. C70, 014606 (2004)
D. Middelton, et al.
arXiv:0907.1758; EPJA in print]

Self-Consistent Green's Function Approach

[^0]つUKKLI

Self-Consistent Green's Function Approach

${ }^{16} O\left(e, e^{\prime} p n\right)^{14} \mathrm{~N} @$ MAINZ

[C. B., C. Giusti, et al.
Phys Rev. C70, 014606 (2004)
D. Middelton, et al.
arXiv:0907.1758; EPJA in print]

Isovector response for ${ }^{32} \mathrm{Ar},{ }^{34} \mathrm{Ar}$
Proton

Pygmy

$\Pi^{(p h)}(\omega)$
[C. B., K. Langanke, et al., Phys Rev. C77, 024304 (2008)]
つUKKEY

See talk of A.Idini and arXiv:1612.01478 [nucl-th]

Self-Consistent Green's Function Approach

${ }^{16} O\left(e, e^{\prime} p n\right)^{14} \mathrm{~N}$ @ MAINZ

Ionization energies/ affinities, in atoms
[CB, D. Van Neck,
[C. B., C. Giusti, et al.
Phys Rev. C70, 014606 (2004)
D. Middelton, et al.
arXiv:0907.1758; EPJA in print]
$\Pi^{(p h)}(\omega)$
Isovector response

[C. B., K. Langanke, et al., Phys Rev. C77, 024304 (2008)]
つUKKEY

AIP Conf.Proc.1120,104 ('09) \& in prep]

AIP Conf.Proc.1120,104 ('09) \& in prep]				
		Hatree-Fock	FrPAc	Experiment [16, 17]
He:	1 s	0.918 (+14)	0.9008 (-2.9)	0.9037
Be^{2+};	1 s	$5.6672(+116)$	5.6551 (-0.5)	5.6556
Be:	2 s	0.3093 (-34)	0.3224 (-20.2)	0.3426
	1 s	$4.733(+200)$	$4.5405(+8)$	4.533
Ne :	${ }^{2 p}$	0.852 (+57)	$0.8037(+11)$	0.793
	1 s	1.931 (+149)	1.7967 (+15)	1.782
Mg^{2+};	$2 \mathrm{p}$	$3.0068(+56.9)$	2.9537 (+3.8)	2.9499
	1 s	4.4827	4.3589	
Mg:	3 s	0.253 (-28)	$0.280(-1)$	0.281
	2p	2.282 (+162)	2.137 (+17)	2.12
Ar:	$3^{3} \mathrm{p}$	0.591 (+12)	0.579 ($\sim 0)$	0.579
	3 s	1.277 (+202)	1.065 (-10)	1.075
	3 s		1.544	
	${ }^{2 p}$	9.571 (+411)	9.219 (+59)	9.160

See talk of A.Idini and arXiv:1612.01478 [nucl-th]

Self-Consistent Green's Function Approach

Binding energies
[PRL. 111, 062501 (2013)
PRC 92, 014306 (2015), PRC89, 061301R (2014)]
[C. B., C. Giusti, et al.
Phys Rev. C70, 014606 (2004) D. Middelton, et al. arXiv:0907.1758; EPJA in print]

$\Pi^{(p h)}(\omega)$
Isovector response

[C. B., K. Langanke, et al., Phys Rev. C77, 024304 (2008)]
DUKIEKY

Ionization energies/ affinities, in atoms
[CB, D. Van Neck,
AIP Conf.Proc.1120,104 ('09) \& in prep]

		Hattre-Fock	FRPAc	Experiment [16, 17]
He:	1 s	0.918 (+14)	0.9008 (-2.9)	0.9037
Be^{2+};	Is	5.6672 (+116)	5.6551 (-0.5)	5.6556
Be:	2 s	0.3093 (-34)	0.3224(-20.2)	0.3426
	1 s	4.733 (+200)	$4.5405(+8)$	4.533
Ne :	2 p	0.852 (+57)	0.8037 (+11)	0.793
	1 s	1.931 (+149)	1.7967 (+15)	1.782
$\mathrm{Mg}^{\text {+ }}$:	2 p	3.0068 (+56.9)	2.9537 (+3.8)	2.9499
	1 s	4.4827	4.3589	
Mg:	3 s	$0.253(-28)$	0.280 (-1)	0.281
	2p	2.282 (+162)	$2.137(+17)$	2.12
Ar:	3 p	0.591 (+12)	0.579 (00)	0.579
	3 s	1.277 (+202)	1.065 (-10)	1.075
	3 s		1.544	
	2 p	9.571 (+411)	9.219 (+59)	9.160

Modern realistic nuclear forces

Chiral EFT for nuclear forces:

	2 N forces	3 N forces	4 N forces
$\mathrm{LO} \mathcal{O}\left(\frac{Q^{0}}{\Lambda^{0}}\right)$			
$\mathrm{NLO} \mathcal{O}\left(\frac{Q^{2}}{\Lambda^{2}}\right)$	 		

(3NFs arise naturally at N2LO)

Single particle spectrum at $E_{\text {fermi }}$:

[T. Otsuka et al., Phys Rev. Lett 105, 032501 (2010)]

Need at LEAST 3NF!!!

("cannot" do RNB physics without...)

Nuclear forces in exotic nuclei

Nucleon interactions are very complex and difficult to handle...

Symmetric matter:
$\mathrm{N} \approx \mathrm{Z}$
Tensor force (p-n)

Neutron-rich matter (N 》 Z):

- Neutron star matter EoS
- Symmetry energy
- new shell closures

Three-nucleon
Force (3NF)

Driplines of nitrogen and fluorine isotopes

[A. Cipollone, CB, P. Navrátil, Phys. Rev. Lett. 111, 062501 (2013)]

Change of regime from stable to dripline isotopes !

Inclusion of NNN forces

A. Carbone, CB, et al., Phys. Rev. C88, 054326 (2013)

- NNN forces can enter diagrams in three different ways:
\rightarrow Define new 1- and 2-body interactions and use only interaction-irreducible diagrams

- Contractions are with fully correlated density matrices (BEYOND a normal ordering...)

Inclusion of NNN forces

A. Carbone, CB, et al., Phys. Rev. C88, 054326 (2013)

- Second order PT diagrams with 3BFs:

(b)
\rightarrow Use of irreducible 2-body interactions
\rightarrow Need to correct the Koltun sum rule (for energy)
$\rightarrow 3 p 2 h / 3 h 2 p$ terms relevant to next-generation high-precision methods.

(h)

(e)

(i)

(o)

(f)

(j)

(n)

(p)

(q)

Inclusion of NNN forces

$\rightarrow 3 p 2 h / 3 h 2 p$ terms relevant to next-generation high-precision methods.

UNIVERSITY OF

Radii and Binding Energies in Oxygen Isotopes: A Challenge for Nuclear Forces
V. Lapoux, ${ }^{1, *}$ V. Somà, ${ }^{1}$ C. Barbieri, ${ }^{2}$ H. Hergert, ${ }^{3}$ J. D. Holt, ${ }^{4}$ and S. R. Stroberg ${ }^{4}$

- New fits of chiral interactions (NNLOsat) highly improve comparison to data
- Deficiencies remain for neutron rich isotopes

FIG. 1. Oxygen binding energies. Results from SCGF and IMSRG calculations performed with EM [20-22] and $\mathrm{NNLO}_{\text {sat }}$ [26] interactions are displayed along with available experimental data.

Single particle spectra in Oxygen

A. Cipollone, CB, P. Navrátil, Phys. Rev. Lett. 111, 062501 (2013) and Phys. Rev. C 92, 014306 (2015) and in preparation

UNVIESTIYOE
SURREY

Z/N asymmetry dependence of SF's - Theory

Ab-initio calculations explain (a very weak) the Z / N dependence but the effect is much lower than suggested by direct knockout

Rather the quenching is high correlated to the gap at the Femi surface.

CB, M. Hjorth-Jensen,
Phys. Rev. C 79, 064313 (2009)

A. Cipollone, CB, P Navrátil,Phys. Rev. C92, 014306 (2015) and CB, unpublished (2016)

Z/N asymmetry dependence of SFs

Calculated spectroscopic factors are	- correlated to p-h gaps
found to be:	- independent of asymmetry
	- consistent with experimental data

${ }^{14} \mathrm{O}(\mathrm{d}, \mathrm{t})^{13} \mathrm{O}$ and ${ }^{14} \mathrm{O}\left(\mathrm{d},{ }^{3} \mathrm{He}\right){ }^{13} \mathrm{~N}$ transfer reactions @ SPIRAL

[F. Flavigny et al, PRL110, 122503 (2013)]
${ }^{A} O(p, 2 p)^{A-1} N$ at GSI ($\left.R^{3} B-L A N D\right)$

Proton SF for ${ }^{16} \mathrm{O} \rightarrow{ }^{15} \mathrm{~N}$:

$$
\begin{array}{lll}
p_{1 / 2}: & 0.78 \text { (SCGF) } & 0.80 \text { (exp.) } \\
p_{3 / 2}: & 0.80 \text { (SCGF) } & 0.65 \text { (exp. }- \text { up to cont.) }
\end{array}
$$

L. Atar, et al., in preparation (2017) - see talk by T. Aumann

Bubble nuclei... 34 si prediction

Duguet, Somà, Lecuse, CB, Navrátil, Phys.Rev. C95, 034319 (2017)

- ${ }^{34} \mathrm{Si}$ is unstable, charge distribution is still unknown
- Suggested central depletion from mean-field simulations
- Ab-initio theory confirms predictions

Validated by charge distributions and neutron quasiparticle spectra:

unversize or

SURREY

Local vs. non-local chiral N²LO NNN interaction - by P. Navrátil

- Local: chiral N3LO NN+ N²LO 3N500
$-c_{D}=-0.2 \quad c_{E}=-0.205\left({ }^{3} \mathrm{H} \mathrm{E}_{\mathrm{gs}}=-8.48 \mathrm{MeV}\right)$
$-{ }^{4} \mathrm{He}$

$$
\text { <H>=-28.4939 <V3b_2pi>= -5.8819 <V3b_D>=-0.2206 <V3b_E>= } 1.2665
$$

- Non-local: chiral $\mathrm{N}^{2} \mathrm{LO}_{\text {sat }} \mathrm{NN}+3 \mathrm{~N}$
- $\mathrm{c}_{\mathrm{D}}=+0.8168 \mathrm{C}_{\mathrm{E}}=-0.0396\left({ }^{3} \mathrm{H} \mathrm{E} \mathrm{gss}=-8.53 \mathrm{MeV}\right)$
- ${ }^{4} \mathrm{He}$

$$
\text { <H>=-28.4596 <V3b_2pi>=-4.7260 <V3b_D>= } 1.3897 \text { <V3b_E>= } 0.4174
$$

- Local/Non-local: chiral N32 ${ }^{2}$ NN+ N2LO

$$
F\left(\frac{1}{2}\left(\pi_{1}^{2}+\pi_{2}^{2}\right) ; \Lambda_{\text {nonloc }}\right) W_{1}^{Q}\left(\Lambda_{\text {loc }}\right) F\left(\frac{1}{2}\left(\pi_{1}^{2}+\pi_{2}^{2}\right) ; \Lambda_{\text {nonloc }}\right) \leftarrow \begin{aligned}
& \text { in HO basis to calculate } \\
& \text { products of } F W F
\end{aligned}
$$

- $c_{D}=+0.7$
$\mathrm{C}_{\mathrm{E}}=-0.06\left({ }^{3} \mathrm{H} \mathrm{E}_{\mathrm{gs}}=-8.44 \mathrm{MeV}\right)$
$-{ }^{4} \mathrm{He}$
<H>=-28.2530 <V3b_2pi>=-4.8124 <V3b_D>= 0.7414 <V3b_E>= 0.4255

$N 3 L O(500)+n / n 3 N F$

SCGF - Gorkov-ADC(2)

unvirsiry of
SURREY

Masses in the Ti isotopic chain

- High precision measurements at TITAN (TRIUMF):

Newly developed Multiple-Reflection Time-of-Flight Mass Spectrometer (MR-TOF-MS)

- Weak shell closure at $\mathrm{N}=32$ (quenched w.r.t. ${ }^{52} \mathrm{Ca}$)

FIG. 4. The mass landscape of titanium isotopes is shown from three perspectives: (a) absolute masses (shown in binding energy format), (b) its first "derivative" as two-neutron separation energies ($S_{2 n}$), and (c) its second "derivative" as empirical neutron-shell gaps ($\Delta_{2 n}$). Both theoretical ab-initio calculations (lines) and experimental values (points) are shown.
E. Leistenschneider et al., arXiv:1710.08537 (2017) - TITAN coll. @ TRIUMF

Electromagnetic response in SCEF

$$
\begin{aligned}
\sigma_{\gamma}(E) & =4 \pi^{2} \alpha E R(E) \quad \text { photo-absorption cross secti } \\
\alpha_{D} & =2 \alpha \int_{0}^{\infty} d E \frac{R(E)}{E} \text { electric dipole polarizability }
\end{aligned}
$$

Results for Oxygen isotopes

σ from RPA response (discretized spectrum) vs σ from photoabsorption and Coulomb excitation

- GDR position of ${ }^{16} \mathrm{O}$ reproduced
- Hint of a soft dipole mode on the neutron-rich isotope

Dipole polarizability $\alpha_{D}\left(\mathrm{fm}^{3}\right)$			
Nucleus	SCGF	CC/LIT	Exp
${ }^{16} \mathrm{O}$	0.53	$0.57(1)$	$0.585(9)$
${ }^{22} \mathrm{O}$	0.77	$0.86(4)$	$0.43(4)$

Slides courtesy of F. Raimondi - TRIUMF wks, Mar 2017

Results for Calcium isotopes

σ from RPA response (discretized spectrum) vs σ from photoabsorption and Coulomb excitation

NNLO sat

- GDR positions reproduced

Dipole polarizability $\alpha_{D}\left(\mathrm{fm}^{3}\right)$			
Nucleus	SCGF	CC/LIT	Exp
${ }^{40} \mathrm{Ca}$	1.89	$1.47(1.87)_{\text {thresh }}$	$1.87(3)$
${ }^{48} \mathrm{Ca}$	2.14	2.45	$2.07(22)$

Slides courtesy of F. Raimondi - TRIUMF wks, Mar 2017

Study of nuclear interactions from Lattice QCD

In collaboration with:

Lattice QCD

$$
L=-\frac{1}{4} G_{\mu \nu}^{a} G_{a}^{\mu \nu}+\bar{q} \gamma^{\mu}\left(i \partial_{\mu}-g t^{a} A_{\mu}^{a}\right) q-m \bar{q} q
$$

quarks q gluons $U=e^{i a A_{\mu}}$ on the sites on the links

Vacuum expectation value

$$
\begin{aligned}
& \langle O(\bar{q}, q, U)\rangle \\
& =\int d U d \bar{q} d q e^{-S(\bar{q}, q, U)} O(\bar{q}, q, U) \\
& =\int d U \operatorname{det} D(U) e^{-S_{U}(U)} O\left(D_{\uparrow}^{-1}(U)\right) \\
& =\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{i=1}^{N} O\left(D^{-1}\left(U_{i}\right)\right)^{\text {quark propagator }}
\end{aligned}
$$

$\left\{U_{i}\right\}$: ensemble of gauge conf. U generated w/ probability $\operatorname{det} D(U) e^{-S_{u}(U)}$

* Well defined (reguralized) * Fully non-perturvative
* Manifest gauge invariance * Highly predictive

Approaches to nuclei from LQCD

$$
L=-\frac{1}{4} G_{\mu \nu}^{a} G_{a}^{\mu \nu}+\bar{q} \gamma^{u}\left(i \partial_{\mu}-g t^{a} A_{\mu}^{a}\right) q-m \bar{q} q
$$

quarks q

on the sites | gluons $U=e^{i a A_{l}}$ |
| :--- |
| on the links |

Why nuclear interactions on the Lattice??

- Extend LQCD beyond few-bodies

- Reproduces exactly scattering and NN, 3N, observables that would be computed with Lattice QCD.
- Not based on a specific EFT momentum scale
\rightarrow exploitable to high densities (e.g. Neutron stars)
- No LECs to worry about ...AND:
- Variation in potentials from variation in sink operators (\rightarrow estimation of theoretical uncertainties, missing N-body terms, etc...)
- Direct derivation of hyperon-nucleon interactions
- 3NF can be derived consistently with NN interactions

Mixed SCEF-Brueckner approach

Solve full many-body dynamics in model space ($P+Q^{\prime}$) and the Goldstone's ladders outside it (i.e. in $Q^{\prime \prime}$ only):

Infrared convergence

EM(500) - N3LO two-nucleon force

Suncrive

Infrared converge

Short-range repulsion in the HALQCD-type potentials can be tamed correctly even for large nuclei.
C. Mcllroy, CB, et al., arXiv:1701.02607 [nucl-th]

sunterivo

Results for binding

Spectral strength in ${ }^{16} \mathrm{O}$ and ${ }^{40} \mathrm{Ca}$:

Particle-hole gaps:
${ }^{16} \mathrm{O}$
$m_{\pi}=469 \mathrm{MeV}: \sim 8 \mathrm{MeV}$
Expt (phys m_{π}): 11.5 MeV

${ }^{40} \mathrm{Ca}$
$m_{\pi}=469 \mathrm{MeV}: \sim 10 \mathrm{MeV}$
Expt (phys m_{π}): 7.5 MeV

Future application for Ys in nuclei now possible

- Physical mass now under reach $\left(m_{\pi} \approx 145 \mathrm{MeV}\right)$ for hyperons
- Need to improve on statistic for the NN sector
$\Omega \Omega$ potential

$N N\left({ }^{3} \mathrm{~S}_{1}\right)$ tensor potential

HALQCD coll. -- Talk of S. Aoki at Kavli institute, Oct. 2016

Summary

Mid-masses and chiral interactions:

\rightarrow Leading order 3NF are crucial to predict many important features that are observed experimentally (drip lines, saturation, orbit evolution, etc...)
\rightarrow New fits of chiral interaction are promising for low-energy observables and for scattering - mass/radii/spectroscopy are improved but there remain issues (symm energy, neutron rich) and dependency on LEC/cutoffs.
\rightarrow Ab intio optical potentials (nucleon-nucleus) within reach.
\rightarrow Dipole responses and polarizabilities, are reproduced well at (LO) RPA .
\rightarrow Effective charges can be computed for SM applications

HALQCD Nuclear forces:

\rightarrow Strong short range behavior calls for new ideas in ab-initio many-body methods. Diagram resummation through G-matrix is good starting point (to be extended).

$\rightarrow A+m_{\pi}=469 \mathrm{MeV}$, closed shell $4 \mathrm{He}, 160$ and 40 Ca are bound. But oxygen is unstable toward 4- α break up, calcium stays bound.

summary

Mid-masses and chiral interactions:

\rightarrow Leading order 3NF are crucial to predict many important features that are observed experimentally (drip lines, saturation, orbit evolution, etc...)
\rightarrow New fits of chiral interaction are promising for low-energy observables and for scattering - mass/radii/spectroscopy are improved but there remain issues (symm energy, neutron rich) and dependency on LEC/cutoffs.
\rightarrow Ab intio optical potentials (nucleon-nucleus) within reach.
\rightarrow Dipole responses and polarizabilities, are reproduced well at (LO) RPA .
\rightarrow Effective charges can be computed for SM applications

HALQCD Nuclear forces:

\rightarrow Strong short range behavior calls for new ideas in ab-initio many-body methods. Diagram resummation through G-matrix is good starting point (to be extended).

$\rightarrow A+m_{\pi}=469 \mathrm{MeV}$, closed shell $4 \mathrm{He}, 16 \mathrm{O}$ and 40 Ca are bound. But oxygen is unstable toward 4- α break up, calcium stays bound.

Thanks to all collaborators!!

UNIVERSITY OF SURREY
A. Cipollone, C. Mcllroy
A. Rios, A. Idini, F. Raimondi
V. Somà, T. Duguet
A. Carbone

EUROPEAN CENTRE FOR THEORETICAL STUDIES
IN NUCLEAR PHYSICS AND RELATED AREAS

U
$=$
B
Universitat de Barcelona
Washington
University inSt.Louis
A. Polls
W.H. Dickhoff,
S. Waldecker
D. Van Neck

M. Hjorth-Jensen

S. Aoki,
T. Doi, T. Hatsuda, Y. Ikeda, T. Inoue,
N. Ishii, K. Murano,
H. Nemura, K. Sasaki
F. Etminan
T. Miyamoto,
T. Iritani
S. Gongyo

YITP Kyoto Univ.
RIKEN Nishina
Nihon Univ.
RCNP Osaka Univ
Univ. Tsukuba
Univ. Birjand
Univ. Tsukuba
Stony Brook Univ.
YITP Kyoto Univ.
UNIUERSITY OF
SURREY

Results for the N-O-F chains

A. Cipollone, CB, P. Navrátil, Phys. Rev. Lett. 111, 062501 (2013) and Phys. Rev. C 92, 014306 (2015)

\rightarrow 3NF crucial for reproducing binding energies and driplines around oxygen
\rightarrow cf. microscopic shell model [Otsuka et al, PRL105, 032501 (2010).]

[^1]
[^0]: [C. B., K. Langanke, et al., Phys Rev. C77, 024304 (2008)]

[^1]: universiryof N3LO ($\Lambda=500 \mathrm{Mev} / \mathrm{c}$) chiral NN interaction evolved to $2 \mathrm{~N}+3 \mathrm{~N}$ forces ($2.0 \mathrm{fm}^{-1}$)
 SURREY N2LO $(\Lambda=400 \mathrm{Mev} / c)$ chiral 3 N interaction evolved $\left(2.0 \mathrm{fm}^{-1}\right)$

