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FIG. 4. Proton (top) and neutron (bottom) radii obtained
from IM-SRG and SCGF calculations with EM [20–22] and
NNLOsat [26] interactions. For protons, experimental values
from Table I are displayed.

oxygen chain, the heaviest one for which experimental in-
formation on both binding energies and radii is available
up to the neutron drip line. We showed that analysing
(p,p) scattering data allows one to obtain information
on nuclear sizes of unstable isotopes within 0.1 fm. The
combined comparison of measured charge/matter radii
and binding energies with state-of-the-art ab initio cal-
culations o↵ers unique insight on nuclear forces. On the
one hand, EM, a current standard for nuclear theory em-
ploying only 2-, 3- and 4-body observables in the fit of
the low-energy constants thus sticking to the (strict) re-
ductionist strategy, yields an excellent reproduction of
binding energies but significantly underestimates charge
and matter radii. On the other hand, unconventional
NNLOsat , while maintaining a good energy systematics,
clearly improves the description of absolute radii, though
leaving room for refinement for what concerns isotope
shifts. Given the alternative fitting procedure, such an
output raises questions about the choice of observables
that should be included in the fit and the resulting pre-
dictive power whenever this strategy is followed.

More precise information on oxygen radii, e.g. rch via
laser spectroscopy measurements, would allow confirming
our (p,p) analysis and further refining the present discus-
sion. Future, similar studies in heavier isotopes will also
preciously contribute to the systematic development of
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FIG. 5. Matter radii from our analysis and Ref. [33, 36]
compared to ab initio calculations with EM [20–22] and
NNLOsat [26] interactions. Bands span results from GGF
and MR-IMSRG many-body schemes.

nuclear forces. From the many-body point of view, the
consistent inclusion of higher-body terms in the charge
radius operator is envisaged and might eventually a↵ect
the present discussion. Finally, we stress that a simulta-
neous reproduction of binding energies and radii in stable
and neutron-rich nuclei is mandatory for reliable struc-
ture but even more for reaction calculations. Scattering
amplitudes and nucleon-nucleus interactions evolve as a
function of the size, which should be consistently taken
into account specially when more microscopic reaction
approaches are considered.
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Current Status of low-energy nuclear physics
Composite)system)of)interacting)fermions
Binding%and%limits%of%stability
Coexistence%of%individual%and%collective%behaviors
SelfKorganization%and%emerging%phenomena
EOS%of%neutron%star%matter
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Unstable)nuclei
• ~3,200#known#isotopes
• ~7,000#predicted#to#exist
• Correlation#characterised

in#full#for#~283#stable
Nature#473,#25##(2011);#486,#509#(2012)



Concept of correlations
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The FRPA Method in Two Words
Particle vibration coupling is the main cause driving the distribution of 
particle strength—on both sides of the Fermi surface…

n p

# particle # hole

…these modes are all resummed
exactly and to all orders in a 

ab-initio many-body expansion.

“Extended”
Hartree Fock

R(2p1h)$!(%) = R(2h1p)

•A complete expansion requires all 
types of particle-vibration coupling

•The Self-energy $!(%) yields both
single-particle states and scattering

CB&et&al.,&
Phys.&Rev.&C63,&034313 (2001)
Phys.&Rev.&A76,&052503&(2007)
Phys.&Rev.&C79,&064313&(2009)



• Global picture of nuclear dynamics
• Reciprocal correlations among effective modes
• Guaranties macroscopic conservation laws

gII(%)

pp/hh-RPA; two-nucleon transfer
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ph-RPA; response, giant resonances

optical potential
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Single-
particle
motion
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Self-Consistent Green’s Function Approach
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Use effective degrees of freedom: p,n,pions

Effective Field Theory:  Bridges the non-perturbative low-energy regime of QCD with forces
                                      among nucleons

L =
⇤

k

ck

�
Q

�b

⇥k

Have a systematic expansion of the Hamiltonian 
in terms of diagrams

Construct the most general Hamiltonian which is 
consistent with the chiral symmetry of QCD

(3NFs arise naturally at N2LO)

Modern realistic nuclear forces
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FIG. 2: Single-particle energies of the neutron d5/2, s1/2 and
d3/2 orbitals measured from the energy of 16O as a function of
neutron number N . (a) SPE calculated from a G matrix and
from low-momentum interactions Vlow k. (b) SPE obtained
from the phenomenological forces SDPF-M [14] and USD-
B [15]. (c,d) SPE including contributions from 3N forces due
to∆ excitations and chiral EFT 3N interactions at N2LO [26].
The changes due to 3N forces based on ∆ excitations are
highlighted by the shaded areas.

sures N = 8, 14, 16, and 20. The evolution of the SPE
is due to interactions as neutrons are added. For the
SPE based on NN forces in Fig. 2 (a), the d3/2 orbital
decreases rapidly as neutrons occupy the d5/2 orbital,
and remains well-bound from N = 14 on. This leads
to bound oxygen isotopes out to N = 20 and puts the
neutron drip-line incorrectly at 28O. This result appears
to depend only weakly on the renormalization method
or the NN interaction used. We demonstrate this by
showing SPE calculated in the G matrix formalism [11],
which sums particle-particle ladders, and based on low-
momentum interactions Vlow k [12] obtained from chiral
NN interactions at next-to-next-to-next-to-leading order
(N3LO) [13] using the renormalization group. Both cal-
culations include core polarization effects perturbatively
(including diagram Fig. 3 (d) with the ∆ replaced by a
nucleon and all other second-order diagrams) and start
from empirical SPE [14] in 17O. The empirical SPEs con-
tain effects from the core and its excitations, including
effects due to 3N forces.
We next show in Fig. 2 (b) the SPE obtained from the

phenomenological forces SDPF-M [14] and USD-B [15]
that have been fit to reproduce experimental binding en-

ergies and spectra. This shows a striking difference com-
pared to Fig. 2 (a): As neutrons occupy the d5/2 orbital,
with N evolving from 8 to 14, the d3/2 orbital remains
almost at the same energy and is not well-bound out to
N = 20. The dominant differences between Figs. 2 (a)
and (b) can be traced to the two-body monopole compo-
nents, which determine the average interaction between
two orbitals. The monopole components of a general two-
body interaction V are given by an angular average over
all possible orientations of the two nucleons in orbitals lj
and l′j′ [16],

V mono
j,j′ =

∑

m,m′

⟨jm j′m′|V |jm j′m′⟩
/

∑

m,m′

1 , (1)

where the sum over magnetic quantum numbers m and
m′ can be restricted by antisymmetry (see [17, 18] for
details). The SPE of the orbital j is effectively shifted by
V mono
j,j′ multiplied by the occupation number of the orbital

j′. This leads to the change in the SPE and determines
shell structure and the location of the drip-line [17–20].
The comparison of Figs. 2 (a) and (b) suggests that the

monopole interaction between the d3/2 and d5/2 orbitals
obtained from NN theories is too attractive, and that the
oxygen anomaly can be solved by additional repulsive
contributions to the two-neutron monopole components,
which approximately cancel the average NN attraction
on the d3/2 orbital. With extensive studies based on NN
forces, it is unlikely that such a distinct property would
have been missed, and it has been argued that 3N forces
may be important for the monopole components [21].
Next, we show that 3N forces among two valence neu-

trons and one nucleon in the 16O core give rise to repul-
sive monopole interactions between the valence neutrons.
While the contributions of the FM 3N force to other
quantities can be different, the shell-model configurations
composed of valence neutrons probe the long-range parts
of 3N forces. The repulsive nature of this 3N mechanism
can be understood based on the Pauli exclusion princi-
ple. Figure 3 (a) depicts the leading contribution to NN
forces due to the excitation of a ∆, induced by the ex-
change of pions with another nucleon. Because this is
a second-order perturbation, its contribution to the en-
ergy and to the two-neutron monopole components has
to be attractive. This is part of the attractive d3/2-d5/2
monopole component obtained from NN forces.
In nuclei, the process of Fig. 3 (a) leads to a change of

the SPE of the j,m orbital due to the excitation of a core
nucleon to a ∆, as illustrated in Fig. 3 (b) where the ini-
tial valence neutron is virtually excited to another j′,m′

orbital. As discussed, this lowers the energy of the j,m
orbital and thus increases its binding. However, in nuclei
this process is forbidden by the Pauli exclusion princi-
ple, if another neutron occupies the same orbital j′,m′,
as shown in Fig. 3 (c). The corresponding contribution
must then be subtracted from the SPE change due to
Fig. 3 (b). This is taken into account by the inclusion

Chiral EFT for nuclear forces:

Need at LEAST 3NF!!!
(“cannot” do RNB physics without…)

Single particle spectrum at Efermi:

Saturation of nuclear matter:

[T. Otsuka et al.,
Phys Rev. Lett 105, 
032501 (2010)]

[A. Carbone et al., 
Phy.s Rev. C 88, 044302# (2013)]

SYMMETRIC NUCLEAR MATTER WITH CHIRAL THREE- . . . PHYSICAL REVIEW C 88, 044302 (2013)

Note that the N2LO potential yields a poorer reproduction of
the phase shifts for selected partial waves compared to the
richer N3LO force.

Most nuclear matter calculations using chiral forces have
been performed within a perturbative framework starting
from evolved interactions. In Ref. [43], convergence has
been analyzed order by order in many-body perturbation
theory. Results have been obtained up to third order, including
particle-particle and hole-hole propagation [43]. In principle,
the equation of state should be independent of the evolution
scales in the 2NF and the 3NF. Moreover, in the perturbative
regime, results should only be mildly dependent on the order in
perturbation theory. Our nonperturbative calculations include
contributions to all orders and hence are neither limited to the
perturbative regime nor dependent on the order of perturbation
theory. If the diagrammatic summation is complete, it should
lead to scale-invariant results.

We test this hypothesis by performing calculations at
different evolution scales, in both the two- and the three-
body sectors. We evolve the 2NF using a free-space SRG
transformation [37]. The transformation renormalizes the 2NF,
suppressing off-diagonal matrix elements and giving rise to
a universal low-momentum interaction. The SRG evolution
flow also induces many-body forces, which should be taken
into account to keep the calculation complete. Following the
philosophy of Ref. [43], we incorporate the effect of induced
forces through the refitting of the cD and cE LECs to the 3H
binding energy and 4He matter radius. We use the values given
in Table I of [43]. Note that in this process we assume that
the operatorial and momentum structures of the original and
the induced 3NFs are the same. Furthermore, we explore the
dependence of our results on the 3NF cutoff, !3NF, appearing
in the density-dependent 2NF. A more complete calculation
would require running a SRG evolution including the 3NF [41].

We present the results of this exploration in Fig. 8.
Numerical calculations obtained using the SRG on the 2NF
have a saturation point which is much closer to the empirical
value when compared to the original force. Moreover, if
the 2NF has been SRG-evolved, the results are somewhat
independent of the cutoff. Overall, one can say that the
more the 2NF is evolved downward, the more attractive the
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FIG. 8. (Color online) SCGF results for the energy per nucleon
of SNM as a function of the density at a temperature of T = 5 MeV.
Different lines represent different choices of cutoffs for the 2NF, λ,
and the 3NF, !3NF.

saturation curve becomes. This effect is a consequence of the
shift in importance between the 2NF and the induced 3NF
associated with the SRG. There is also a small dependence on
!3NF, but the differences agree well with those presented in
Ref. [43].

The large differences between the results obtained with
evolved and unevolved forces is striking. If correlations and
induced many-body forces had been fully taken into account,
one would have expected a much closer agreement between
the results. This difference might indicate that the assumptions
associated with induced 3NFs are not necessarily robust.
Missing induced three-body forces, which up to now have
not been included in SNM calculations, could resolve this
discrepancy. Alternatively, the difference is also an indication
of missing many-body effects such as, for instance, higher
orders in the treatment of the 3NF. It must be emphasized that
the present way to proceed when applying SRG evolution
in infinite matter should be improved by carrying out the
evolution on a full Hamiltonian with both two- and three-body
forces. Recently, improvements toward the solution of this
problem have been presented for calculations in pure neutron
matter [41], where a full Hamiltonian has been consistently
evolved. All in all, our results seem to contradict the idea that
induced 3NFs can be treated simply in nuclear matter.

In terms of evolved interactions, our nonperturbative
calculations can be used to check whether the perturbative
regime is actually reached. To this end, we compare, in
Fig. 9, our results to the perturbative calculations presented
in Ref. [43]. The BHF and SCGF calculations have been
performed with a SRG-evolved 2NF and a 3NF with the same
cut-offs, λ/!3NF = 2.0/2.0 fm−1. Whereas the Brueckner
results have been obtained with a zero-temperature code, the
SCGF calculations have been extrapolated to zero temperature
by means of a simple procedure. At low temperatures,
the Sommerfeld expansion indicates that the effect of tem-
perature is quadratic and is the same, but with opposite sign,
for the energy and the free energy [47]. Consequently, the
semi-sum of both thermodynamical potentials is an estimate
of the zero-temperature energy. We obtain an extremely
good agreement between both many-body approaches and
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FIG. 9. (Color online) Comparison of results for the energy per
nucleon of SNM obtained with different approaches using the same
SRG-evolved 2NF and a 3NF. Circles correspond to extrapolated
SCGF results, whereas squares are BHF calculations at T = 0 MeV.
Diamonds correspond to the results of Hebeler et al. [43].
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Nuclear forces in exotic nuclei

Symmetric+matter:
N+≈+Z

NeutronNrich+matter+(N+� Z):
N Neutron+star+matter++EoS
N Symmetry+energy
N new+shell+closuresTensor+force+(pNn)
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Inclusion of NNN forces 

- NNN forces can enter diagrams in three different ways:

1
4
_

gII (ω)

- Contractions are with fully correlated density matrices 
(BEYOND a normal ordering…)

+

+ +≡

≡

≡

" Define new 1- and 2-body interactions and 
use only interaction-irreducible diagrams

A. Carbone, CB, et al., Phys. Rev. C88, 054326 (2013)



Inclusion of NNN forces 

- Third order PT diagrams with 3BFs:
6

(a) (b) (c)

(d) (e) (f) (g)

(h) (i) (j) (k)

(l) (m) (n)

(o) (p) (q)

FIG. 5. 1PI, skeleton and interaction irreducible self-energy diagrams appearing at 3rd-order in perturbative expansion (7),
making use of the e↵ective hamiltonian of Eq. (9).

this boils down to the equation of motion of the operators
in interaction picture [6]:

i~ @

@t
aI
↵

(t) = [aI
↵

(t), Ĥ
0

] = "
↵

aI
↵

(t) . (18)

By taking the derivative of G(0) and using Eq. (18), we
arrive at

⇢

i~ @

@t
� "

↵

�

G(0)

↵↵

0(t � t0) = �(t � t0)�
↵↵

0 , (19)

where the delta functions come from the derivative of the
step-function decomposition of the time-ordered product
in. Eq. (19) gives the inverse operator of G(0).

The same procedure applied to the exact propagator,
G(t� t0), requires the time-derivative of the annihilation
operators in the Heisenberg picture. For the hamiltonian
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is an appropriate time ordering of Eq. (3) and the con-
tracted propagators yield the exact 1B and 2B reduced
density matrices:
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The e↵ective Hamiltonian (9) not only regroups Feyn-
man diagrams in a more e�cient way but it also allow
to extract the e↵ective 1B and 2B terms from higher or-
der interactions. Averaging the 3BF over one and two
spectator particles in the medium is expected yield the
most important contributions to the many-body dynam-
ics [27, 30]. We note that Eqs. (10) and (11) are exact
and are derived rigorously from the pertubative expan-
sion. Details of the proof are discussed in App. B. As
long as only interaction irreducible diagrams are used to-
gether with eH, this gives a systematic way to generate
e↵ective in medium interactions, it ensures that symme-
try factors are correct and no diagram is over counted.

This approach can be seen as a generalisation of the
normal ordering of the Hamiltonian with respect to the
reference state |�N

0

i, that has already been used in nu-
clear physic applications with 3BFs [27, 30, 39]. If the
unperturbed propagators G(0) and GII,(0) were used in

Eqs. (10) and (11), the e↵ective operators
b

eU and
b

eV would
trivially reduced to the contracted 1B and 2B terms of
normal ordering. In the present case, however, the con-
traction is performed with respect to the exact correlated
density matrices and the e↵ective Hamiltonian eH can be
thought as reordered with respect the the many-body
ground-state | N

0

i, which takes into account the correla-
tions of the system. Note that, following the procedure of
App. B, the full contraction of the original hamiltonian,
H, will yield to the exact ground state energy

E
g.s.

= �
X

↵�

T
↵�

i~G
�↵

(t � t+)

+
1

2

X

↵�

��

V
↵�,��

i~GII

��,↵�

(t � t+)

�1

6

X

↵�✏

��⌘

W
↵�✏,��⌘

i~GIII

��⌘,↵�✏

(t � t+)

= h N

0

|H | N

0

i , (15)

in accordance with our analogy between the eH = H
0

+ eH
1

and the usual normal ordered hamiltonian. In the latter,
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FIG. 3. 1PI, skeleton and interaction irreducible self-energy
diagrams appearing at 2nd-order in the perturbative expan-
sion of Eq. (7), making use of the e↵ective hamiltonian of
Eq. (9).

the 0B contraction part is simply the expectation value
of H with respect to the reference state.

A. Self-energy expansion up to third order

For a 2B Hamiltonian, the only possible interaction
reducible contribution is the extended Hartree-Fock dia-
gram. This is the second term on the right hand side of
Eq. (10) and Fig. (1). It appears only at first order in
any SCGF expansion and it is routinely included in most
GF calculations with 2B forces. Thus, regrouping dia-
grams in terms of e↵ective interactions, such as Eqs. (10)
and (11), becomes useful only when 3BF or higher terms
are present. Here, we are interested in the new diagrams
that need to be considered when one includes 3BFs. To
this purpose we derive and list all interaction irreducible
contributions to the proper self-energy, up to third order
in perturbation theory.

At first order, only one interaction irreducible contri-
bution is present which exactly corresponds to eU :

⌃?,(1)

↵�

= eU
↵�

, (16)

Being a self-energy insertion itself, eU will not appear in
any other skeleton diagram. In spite of the fact that
it only contributes to Eq. (16), the e↵ective 1B poten-
tial is very important because it defines in full the en-
ergy independent part of the self energy, hence it rep-
resents the (static) mean field seen by every particle.
Through Eq. (10), we see that this potential incorpo-
rates three separate terms, including the Hartree-Fock
potentials due to both 2B and 3BFs and higher order
interaction reducible contributions due to the dressed G
and GII propagators. Thus, the full calculation of ⌃?,(1)

requires an iterative procedure to evaluate these propa-
gators self-consistently.

At second order there are only the two interaction ir-
reducible diagrams shown in Fig. 3. Diagram 3a is the
well known contribution due to only 2BFs that freely
propagates two-particle–one-hole (2p1h) and two-hole–
one-particle (2h1p) states. Fig. 3b is the new diagram
arising from explicit 3BF interactions, which may ex-
pected to be less important: this describes contributions
from 3p2h and 3h2p excitations at higher excitation en-
ergies and, moreover, 3BFs are generally weaker than
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the 0B contraction part is simply the expectation value
of H with respect to the reference state.

A. Self-energy expansion up to third order

For a 2B Hamiltonian, the only possible interaction
reducible contribution is the extended Hartree-Fock dia-
gram. This is the second term on the right hand side of
Eq. (10) and Fig. (1). It appears only at first order in
any SCGF expansion and it is routinely included in most
GF calculations with 2B forces. Thus, regrouping dia-
grams in terms of e↵ective interactions, such as Eqs. (10)
and (11), becomes useful only when 3BF or higher terms
are present. Here, we are interested in the new diagrams
that need to be considered when one includes 3BFs. To
this purpose we derive and list all interaction irreducible
contributions to the proper self-energy, up to third order
in perturbation theory.

At first order, only one interaction irreducible contri-
bution is present which exactly corresponds to eU :

⌃?,(1)
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= eU
↵�

, (16)

Being a self-energy insertion itself, eU will not appear in
any other skeleton diagram. In spite of the fact that
it only contributes to Eq. (16), the e↵ective 1B poten-
tial is very important because it defines in full the en-
ergy independent part of the self energy, hence it rep-
resents the (static) mean field seen by every particle.
Through Eq. (10), we see that this potential incorpo-
rates three separate terms, including the Hartree-Fock
potentials due to both 2B and 3BFs and higher order
interaction reducible contributions due to the dressed G
and GII propagators. Thus, the full calculation of ⌃?,(1)

requires an iterative procedure to evaluate these propa-
gators self-consistently.

At second order there are only the two interaction ir-
reducible diagrams shown in Fig. 3. Diagram 3a is the
well known contribution due to only 2BFs that freely
propagates two-particle–one-hole (2p1h) and two-hole–
one-particle (2h1p) states. Fig. 3b is the new diagram
arising from explicit 3BF interactions, which may ex-
pected to be less important: this describes contributions
from 3p2h and 3h2p excitations at higher excitation en-
ergies and, moreover, 3BFs are generally weaker than
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and F. Raimondi, CB, arXiv:1709.04330 PRC (2017).
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interactions
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sum rule (for energy)

# 3p2h/3h2p terms relevant
to next-generation high-precision
methods.
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FIG. 5. 1PI, skeleton and interaction irreducible self-energy diagrams appearing at 3rd-order in perturbative expansion (7),
making use of the e↵ective hamiltonian of Eq. (9).

this boils down to the equation of motion of the operators
in interaction picture [6]:

i~ @

@t
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(t) = [aI
↵

(t), Ĥ
0

] = "
↵
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↵

(t) . (18)

By taking the derivative of G(0) and using Eq. (18), we
arrive at
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where the delta functions come from the derivative of the
step-function decomposition of the time-ordered product
in. Eq. (19) gives the inverse operator of G(0).

The same procedure applied to the exact propagator,
G(t� t0), requires the time-derivative of the annihilation
operators in the Heisenberg picture. For the hamiltonian

Formalism already laid out: 
F. Raimondi, CB, arXiv:1709.04330 PRC (2017).

# 3p2h/3h2p terms relevant to next-generation high-precision methods.
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FIG. 13. As in Fig. 8 but for the third-order term eU (3).

amplitudes, expressed here with Einstein’s summing convention,
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which vanishes in the case in which the spectrum of the unperturbed 1B Hamiltonian provides the single-particle
model space.

The expansion of eU in Eq. (C2) contains also the term eU (3)

↵� composed by the 11 contributions shown in Fig. 13.
By using the same Feynman rules applied for the terms at second and third order (see Appendix A of Ref. [20]), one
can derive the expressions for those eleven diagrams. Here we give the working equations suitable to be implemented
numerically, after integrals over the frequencies have been performed. Using the compact notation of Eqs. (45-47)
and Einstein’s summing convention, they are listed below according to the order of appearance in Fig. 13:
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ADC(3) formalism is

M(ADC(3))

j↵ = M(ADC(2))

j↵ +M(IIa)

r↵ +M(IIb)

r↵ +M(IIc)

r↵ +M(IId)

q↵ +M(IId

0
)
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0
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q↵
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0
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q↵ +M(IIq)
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q↵ +M(IIu)

q↵ , (A1)

N(ADC(3))

↵k = N(ADC(2))

↵k +N(IIa)

↵s +N(IIb)
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0
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0
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0
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↵s +N(IIt)

↵u +N(IIu)

↵u , (A2)
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rr0 +C3N
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rq0 +Cph
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qq0 +Cph
qq0 +Chh
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eUp
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eUh
qq0 , (A3)

Dkk0 = Dhh
ss0 +Dhp

ss0 +D3N
ss0 +Dpp

su0 +Dhp
su0 +Dhh

uu0 +Dhp
uu0 +Dpp

uu0 +D3N(I)
su0 +D3N(II)

su0 +D3N(III)
uu0

+ D3N(IV )

uu0 +D3N(V )

uu0 +D
eUh
ss0 +D

eUp
ss0 +D

eUp
uu0 +D

eUh
uu0 . (A4)

For the coupling matrices Mj↵ and N↵k, the list of terms truncated at the ADC(3) level is composed by sets of
ADC(2) terms, defined in Eqs. (33, 36) and in Eqs. (34, 37) for the forward-in-time and backward-in-time self-energy
respectively; sets of terms from (IIa) to (IIc) appearing at third order of the ADC, presented in Eqs. (52, 53, 56)
and in Eqs. (54, 55, 57), which contain only 2p1h and 2h1p configurations; and those terms from (IId) to (IIo) with
3p2h and 3h2p ISCs, introduced in Eqs. (66-69, 74-75) and in Eqs. (70-73, 76-77). Other terms with 3p2h and 3h2p
ISCs, denoted with superscripts from (IIe) to (IIq), are defined in Eqs. (A5-A20) below. Moreover, in Eqs. (A1-A2)
we find additional terms, that must be added to the ADC(3) when the single-particle propagator used to construct
self-energy diagrams is uncorrelated, i.e. when one works with a non-skeleton expansion. For coupling matrices, these
additional terms are denoted with superscripts ranging from (IIr) to (IIu). Their explicit expressions will be given in
Appendix C 2.

Interaction matrices appear at third order in the ADC, as listed in Eqs. (A3-A4). The first three terms thereof
connecting to 2p1h and 2h1p configurations, are given in Eqs. (58-59, 62) for forward-in-time diagrams and in Eqs. (60-

61, 63) for backward-in-time ones. Other matrices required to link 3p2h (3h2p) ISCs are denoted by Cpp
rq0 , ...,C

3N(V )

qq0

(Dpp
su0 , · · · ,D3N(V )

uu0 ). They will be given below in Eqs. (A21-A25, A31-A35) (Eqs. (A26-A30, A36-A40)). Finally, ad-
ditional four interaction matrices introduced in Appendix C 2 for the non-skeleton expansion are specified in Eqs. (A3-
A4) through the superscript eU .

1. Coupling matrices with two e↵ective 2NFs

In Fig. 5e we find the following coupling matrices,
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p
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6
P
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⇣
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� )⇤ eV⌫µ,↵�

⌘
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(A5)
and
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p
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6
eV↵�,µ⌫ P123

⇣
(Yk6

� )⇤Yk1
µ Yk2

⌫ tn4n5
k3k6

⌘
, (A6)

for the forward-in-time and backward-in-time Goldstone
diagrams, respectively.

2. Coupling matrices with one e↵ective 2NF and
one interaction-irreducible 3NF

Diagrams in Fig. 5e contains also an interaction-
irreducible 3NF, therefore another coupling matrix can
be obtained from the corresponding Goldstone diagrams.
For the forward-in-time and backward-in-time parts we

have,

M(IIe

0
)
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p
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4
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(A7)
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k4k5

,

(A8)
respectively.
Also diagrams in the second and third row of Fig. 5

feature coupling matrices with 2NFs and interaction-
irreducible 3NFs. We list them below considering both
forward- and backward-in-time contributions. In the
Goldstone diagrams of the term in Fig. 5i we have,
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⌘
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(A10)
In the Goldstone diagrams of the term in Fig. 5m we

22

Finally, the coupling matrix N(IIc)

↵s of Eq. (57) is found in the backward-in-time diagram of Fig. 2c and contains a
3NF. It has the following form in the angular momentum coupling representation,
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c. Interaction matrices with 2p1h and 2h1p ISCs

The interaction matrix Cr̃r̃0 can connect 2p1h propagators through particle-particle, particle-hole and 3NFs, ac-
cording to the terms

Cr̃r̃0 ⌘ Cpp
r̃r̃0

+Cph
r̃r̃0

+C3N
r̃r̃0 , (B30)

which have been introduced in Eqs. (58), (59) and (62), respectively.
The particle-particle interaction matrix results from the diagram in Fig. 2a. Using the angular momentum coupling

of Eq. (B14) we have:
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The particle-hole Cph
r̃r̃0

comes from the ring diagram in Fig. 2b, which contains four terms owing to the antisym-
metrization specified in Eq. (59),
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�ñ1ñ4
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�ñ2ñ4
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X ñ2

v �(⇡jq)vn2
Y˜k6
p �

(⇡jq)
pk6

p
1 + �mvV

J
mv,pl

p
1 + �pl

⇣
X ñ4
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- New fits of chiral interactions (NNLOsat) 
highly improve comparison to data

- Deficiencies remain for neutron rich 
isotopes

structure calculations [3, 4]. Many-body techniques have
themselves undergone major progress and extended their
domain of applicability both in mass and in terms of ac-
cessible (open-shell) isotopes for a given element [5–15].
As a result, today the structure of light and medium-
mass nuclei has become a testing ground for our basic
understanding of nuclear forces.

An emblematic case that has received considerable at-
tention is the one of oxygen binding energies, where sev-
eral calculations have established the crucial role played
by 3N forces in the reproduction of the neutron drip
line at 24O (i.e. in explaining the so-called “oxygen
anomaly”) [6, 16–19]. The excellent agreement between
experimental data and theoretical calculations based on
a next-to-next-to-next-to-leading order (N3LO) 2N and
N2LO 3N chiral interaction (EM) [20–22] was greeted as
a milestone for ab initio methods and modern models
of inter-nucleon interactions, even though a consistent
description of nuclear radii could not be achieved at the
same time [23]. Since then, this mismatch has remained a
puzzle. Subsequent calculations of heavier systems [7–9]
and infinite nuclear matter [24, 25] confirmed the system-
atic underestimation of charge radii, a sizeable overbind-
ing and too spread-out spectra, all pointing to an incor-
rect reproduction of the saturation properties of nuclear
matter. This led to the development of a novel nuclear
interaction, labelled NNLOsat [26], which includes con-
tributions up to N2LO in the chiral EFT expansion (both
in 2N and 3N sector) and di↵ers from EM in two main as-
pects. First, the optimisation of the (“low-energy”) cou-
pling constants is performed simultaneously for 2N and
3N terms [27], while EM and accompanying 3N forces are
optimised sequentially. Second, experimental constraints
from light nuclei (namely energies and charge radii in
some C and O isotopes) are included in the fit of such
low-energy constants in addition to observables from few-
body systems. This second aspect represents a departure
from the usual reductionist strategy of ab initio calcula-
tions followed by EM, in which parameters in the A-body
sector are fixed uniquely by observables in A-body sys-
tems. Although first applications point to good predic-
tive power for ground-state properties [26, 28], the per-
formance of the NNLOsat potential remains to be tested
along isotopic chains and for excited states.

In the present work we employ two di↵erent
many-body approaches, self-consistent Green’s function
(SCGF) and in-medium similarity renormalisation group
(IM-SRG). Each of them is available in two versions.
The first is based on standard expansion schemes and
thus applicable only to closed-shell nuclei. It is referred
to as Dyson-SCGF (DGF) [29] and single-reference IM-
SRG (SR-IM-SRG) [30] respectively. The second version
builds on Bogoliubov-type reference states and thus allow
for a proper treatment of pairing correlations, resulting in
the description of systems displaying an open-shell char-
acter. Such version is labelled Gorkov-SCGF (GGF) [5]
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FIG. 1. Oxygen binding energies. Results from SCGF
and IMSRG calculations performed with EM [20–22] and
NNLOsat [26] interactions are displayed along with available
experimental data.

and multi-reference IM-SRG (MR-IM-SRG) [6] respec-
tively. For the MR-IM-SRG, the reference state is first
projected on good proton and neutron numbers. Hav-
ing di↵erent ab initio approaches at hand is crucial to
benchmark theoretical results and infer as unbiased as
possible information on the input of such calculations,
i.e. inter-nucleon forces. Moreover, while DGF (here in
the ADC(3) approximation scheme), SR- and MR-IM-
SRG feature a comparable content in terms of many-body
expansion, GGF currently includes a lower amount of
many-body correlations, which allows testing the many-
body convergence [7].

We first compute total binding energies EB for oxygen
isotopes 14�24O for the two sets of 2N and 3N interactions
with the four many-body schemes. EM is further evolved
to a low-momentum scale � = 1.88�2.0 fm�1 by means of
SRG techniques [31]. Results are displayed in Fig. 1. For
both interactions, di↵erent many-body calculations yield
values of EB spanning intervals of up to 10 MeV, from 5
to 10% of the total. Compared to experimental binding
energies, EM and NNLOsat perform similarly, following
the trend of available data along the chain both in ab-
solute and in relative terms. Overall, results shown in
Fig. 1 confirm previous findings for EM and validate the
use along the isotopic chain for NNLOsat .

While nuclear masses have been experimentally deter-
mined for the majority of known light and medium-mass
nuclei, measurements of charge and matter radii are typ-
ically more challenging. Charge radii for stable isotopes
have been accessed in the past by means of electron scat-
tering [32]. In addition to charge rms radii, analytical
forms of fitted experimental charge densities can be ex-
tracted from (e,e) cross sections. Standard forms include
2- or 3-parameter Fermi (2pF or 3pF) profiles [33]. For
extended sets of (e,e) data (in terms of momentum trans-
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oxygen chain, the heaviest one for which experimental in-
formation on both binding energies and radii is available
up to the neutron drip line. We showed that analysing
(p,p) scattering data allows one to obtain information
on nuclear sizes of unstable isotopes within 0.1 fm. The
combined comparison of measured charge/matter radii
and binding energies with state-of-the-art ab initio cal-
culations o↵ers unique insight on nuclear forces. On the
one hand, EM, a current standard for nuclear theory em-
ploying only 2-, 3- and 4-body observables in the fit of
the low-energy constants thus sticking to the (strict) re-
ductionist strategy, yields an excellent reproduction of
binding energies but significantly underestimates charge
and matter radii. On the other hand, unconventional
NNLOsat , while maintaining a good energy systematics,
clearly improves the description of absolute radii, though
leaving room for refinement for what concerns isotope
shifts. Given the alternative fitting procedure, such an
output raises questions about the choice of observables
that should be included in the fit and the resulting pre-
dictive power whenever this strategy is followed.

More precise information on oxygen radii, e.g. rch via
laser spectroscopy measurements, would allow confirming
our (p,p) analysis and further refining the present discus-
sion. Future, similar studies in heavier isotopes will also
preciously contribute to the systematic development of
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nuclear forces. From the many-body point of view, the
consistent inclusion of higher-body terms in the charge
radius operator is envisaged and might eventually a↵ect
the present discussion. Finally, we stress that a simulta-
neous reproduction of binding energies and radii in stable
and neutron-rich nuclei is mandatory for reliable struc-
ture but even more for reaction calculations. Scattering
amplitudes and nucleon-nucleus interactions evolve as a
function of the size, which should be consistently taken
into account specially when more microscopic reaction
approaches are considered.
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We present a systematic study of both nuclear radii and binding energies in (even) oxygen isotopes from
the valley of stability to the neutron drip line. Both charge and matter radii are compared to state-of-the-art
ab initio calculations along with binding energy systematics. Experimental matter radii are obtained
through a complete evaluation of the available elastic proton scattering data of oxygen isotopes. We show
that, in spite of a good reproduction of binding energies, ab initio calculations with conventional nuclear
interactions derived within chiral effective field theory fail to provide a realistic description of charge and
matter radii. A novel version of two- and three-nucleon forces leads to considerable improvement of the
simultaneous description of the three observables for stable isotopes but shows deficiencies for the most
neutron-rich systems. Thus, crucial challenges related to the development of nuclear interactions remain.

DOI: 10.1103/PhysRevLett.117.052501

Our present understanding of atomic nuclei faces the
following major questions. Experimentally, we aim (i) to
determine the location of the proton and neutron drip lines
[1,2], i.e., the limits in neutron numbers N upon which, for
fixed proton number Z, with decreasing or increasing N,
nuclei are not bound with respect to particle emission, and
(ii) to measure nuclear structure observables offering sys-
tematic tests of microscopic models. While nuclear masses
have been experimentally determined for the majority of
known light and medium-mass nuclei [3], measurements of
charge and matter radii are typically more challenging.
Charge radii for stable isotopes have been accessed in the
past bymeans of electron scattering [4]. In recent years, laser
spectroscopy experiments allow extending such measure-
ments to unstable nuclei with lifetimes down to a few
milliseconds [5]. Matter radii are determined by scattering
with hadronic probes which requires a modelization of the
reaction mechanism. Theoretically, intensive works have
also been performed towards linking a universal description
of atomic nuclei to elementary interactions [6–8] amongst
constituent nucleons and, ultimately, to the underlying
theory of strong interactions, quantum chromodynamics
(QCD). If accomplished, this ab initio description would be
beneficial both for a deep understanding of known nuclei
(stable and unstable, totalling around 3300) and to predict on
reliable bases the features of undiscovered ones (few more
thousands are expected). Many of the latter are not, in the
foreseeable future, experimentally at reach, yet they are
crucial to understanding nucleosynthesis phenomena,
modelled using large sets of evaluated data and of calculated
observables.
The reliability of first-principles calculations depends

upon a consistent understanding of fundamental

observables: ground-state characteristics of nuclei related
to their existence (masses, expressed as binding energies)
and sizes (expressed as root mean square—rms—radii).
Special interest resides in the study of masses and sizes for
a given element along isotopic chains. Experimentally, their
determination is increasingly difficult as one approaches
the neutron drip line; as of today, the heaviest element with
available data on all existing bound isotopes is oxygen
(Z ¼ 8) [3]. Using theoretical simulations, the link between
nuclear properties and internucleon forces can be explored
for different N=Z values, thus, critically testing both our
knowledge of nuclear forces and many-body theories.
In this work, we focus on oxygen isotopes for which, in

spite of the tremendous progress of recent ab initiomethods,
a simultaneous reproduction of masses and radii has not yet
been achieved. We present important findings from novel
ab initio calculations along with a complete evaluation of
matter radii, rm, for stable and neutron-rich oxygen isotopes.
Here, rm are deduced via a microscopic reanalysis of proton
elastic scattering data sets. They complement charge radii
rch, offering an extended comparison through the isotopic
chain that allows testing state-of-the-art many-body calcu-
lations. We show that a recent version of two- and
three-nucleon (2N and 3N) forces leads to considerable
improvement in the critical description of radii.
A viable ab initio strategy consists in exploiting the

separation of scales between QCD and (low-energy)
nuclear dynamics, taking point nucleons as degrees of
freedom. For decades, realistic 2N interactions were built
from fitting scattering data, see, e.g., [6]. However, model
limitations were seen through discrepancies with exper-
imental data, like underbinding of finite nuclei and inad-
equate saturation properties of extended nuclear matter.
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FIG. 1. (Color online) Single-particle spectral distributions for
the addition and removal of a proton to/from closed-subshell oxygen
isotopes. States above the Fermi surface (EF ) are indicated by the
shaded areas and yield the spectra of the resulting odd-even fluorine
isotopes. The spectra below EF are for odd-even nitrogen isotopes in
the final state (this appears inverted in the plot, with higher excitation
energies pointing downward). Fragments with different angular
momentum and parity are shown with different colors, as indicated,
and the bar lengths provide the calculated spectroscopic factors. These
results are obtained from ADC(3) and the full NN + 3NF interaction
with λSRG = 2.0 fm−1.
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FIG. 2. (Color online) Same as Fig. 1 but for the addition and
removal of a neutron. Both particle (shaded areas) and hole spectra
correspond to odd-even oxygen isotopes.

(A − 1)-nucleon wave functions in the continuum and the
bound |"A

0 ⟩ ground state.
The fragments of the spectral distribution provide the

excitation spectrum for the neighboring odd-even isotopes.
For example, the two dominant quasihole peaks in 24O in
Fig. 2 correspond to the 1/2+ ground state and the 5/2+

excitation of 23O. Our calculated excitation energy for the
5/2+ state is 2.74 MeV, close to the experimental value of
2.79(13) MeV [64]. The 3/2+ state of 23O can be calculated
from the quasiparticle spectra of 22O. For this we obtain
5.0 MeV excitation energy, which is larger than the experi-
mental value of 4.0 MeV [62]. In both cases, the theoretical
result agrees with the ab initio configuration interaction (CI)
calculations of Refs. [32,33], which use the same NN + 3NF
full Hamiltonian. As mentioned above, satellite peaks (that
is, nondominant ones) are not necessarily well described in
nucleon-attached and nucleon-removal methods at the ADC(3)
level. This because they require leading-order configurations
of 2p1h/2h1p type or higher. The first 1/2+ excited state of 21O,
seen as a hole on 22O, is of this type and has a spectroscopic
factor ≈9% of the independent particle model. In spite of this,
the ADC(3) excitation energy is 1.78 MeV, which is again in
great agreement with CI calculations based on the same Hamil-
tonian (and slightly off the experimental value of 1.22 MeV
[65]). Instead, the calculated spectroscopic factor the the 3/2+

excited state is only <1% and this is unlikely to be converged
with respect to the many-body truncation in the ADC(3). For
this state, we obtain an excitation energy of 940 keV that
disagrees with both the experiment and the ab initio CI results,
as expected. These results give a further confirmation of the
performance of the present chiral Hamiltonian with the single
sd shell. Furthermore, we note that the comparison with Refs.
[32,33] provides a successful benchmark of the accuracy of
ADC(3) for calculating dominant quasiparticle states. We then
use the latter to discuss the single-particle structure across both
p and sd shells.

Figure 3 shows the details of the evolution of the
dominant proton quasiparticle and quasihole peaks in the
sd and p shells for increasing neutron number. These
are corrected for the effects of the c.m. motion accord-
ing to Eqs. (12). The dashed lines are obtained from the
NN + 3N -induced interaction and represent the spectrum
predicted by the initial N3LO NN force. In general, the
addition of original 3NFs (solid lines) has the effect of
consistently increasing the spin-orbit splittings between the
1/2−–3/2− and the 3/2+–5/2+ dominant peaks. The s1/2 orbit
remain largely unaffected. The overall changes introduced
by leading-order 3NFs are reported in Tables I and II
for both protons and neutrons. The evolution of quasiparticle
energies for the addition and the removal of a neutron is
displayed in Fig. 4. In this case, the 1/2− and 3/2− strength (in
the p shell) is strongly fragmented for masses above A = 20
and no clear dominant peak is predicted. The original 3NFs still
have the effect of increasing the splitting between spin-orbit
partner states. However, this is in addition to the stronger
repulsion on the d3/2 orbit that is at the origin of the anomalous
dripline at 24O [16].

Worth mentioning are the splittings between the 1/2− and
the 3/2− quasiholes in 16O. For protons, this is predicted to be

014306-5
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Ab-initio calculations explain (a very weak) the Z/N dependence but the 
effect is much lower than suggested by direct knockout

Rather the quenching is high correlated to the gap at the Femi surface.

Spectroscopic factor are strongly
correlated to p-h gaps:

Z/N asymmetry dependence of SFs - Theory

QUASIPARTICLE AND QUASIHOLE STATES OF NUCLEI . . . PHYSICAL REVIEW C 79, 064313 (2009)

This term automatically corrects for the zero point motion in
the oscillator basis but it depends explicitly on the number
of particles. In this work, we are interested in transitions to
states with different numbers of nucleons (A ± 1) and aim at
computing directly the differences between the total energies.
Therefore, the above correction should not be employed in
the present case. One may note that the separation of the
center-of-mass motion is an issue related to the choice made for
the model space, rather than the many-body method itself. For
example, expressing the propagators directly in momentum
space would allow an exact separation. In this situation, the
transformation between the center-of-mass and laboratory
frames for systems with a nucleon plus a A-nucleons [or
(A-1)-nucleons] core would also be simple.

A. Choice of κM

Equation (16) introduces a single parameter (κM ) in our
calculations. The reason for this modification is that the spec-
troscopic factors of the valence orbits are strongly sensitive to
the particle-hole gap. This sensitivity is to be expected because
collective modes in the 56Ni core are dominated by excitations
across the Fermi surface. Smaller gaps imply lower excitation
energies and higher probability of admixture with valence
orbits. To extract meaningful predictions for spectroscopic
factors it is therefore necessary to constrain the Fermi gaps
for protons and neutrons to their experimental values.

To investigate this dependency we repeated our calculations
for values of κM in the range 0.4–0.7 MeV. Figure 3 shows
the resulting neutron spectroscopic factors for the valence
p3/2 quasiparticle and f7/2 quasihole. These are plotted
as a function of the calculated particle-hole gap "Eph =
ε+

1p3/2,n=0 − ε−
0f7/2,k=0. The results correspond to model spaces

of different dimensions (eight or ten oscillator shells) and
oscillator frequencies (h̄$ = 10 or 18 MeV). The gap "Eph
increases with κM but the dependence on the model space is
weak. We notice that, once the experimental value of "Eph
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FIG. 3. (Color online) Dependence of neutron spectroscopic
factors (given as a fraction of the independent-particle model value)
for the 1p3/2 and the 0f7/2 valence orbits with respect to the ph gap
"Eph. For each model space, different points correspond to different
choices of κM in the range 0.4–0.7 MeV.

is reproduced, the spectroscopic factors are well defined and
found to be converged with respect to the given model space.

All results reported below were obtained with a fixed value
of κM = 0.57 MeV. In the Nmax = 9 model space and an
oscillator energy h̄$ = 10 MeV, this choice reproduces the
experimental gaps at the Fermi surface for both protons and
neutrons to an error within 70 keV. From Fig. 3 one infers
that the calculated spectroscopic factors are reliable to within
1–2% of the independent-particle model value.

B. Convergence with respect to the model space

Figure 4 shows the dependence of the neutron 1p3/2 particle
and the 0f7/2 hole energies with respect to the oscillator
frequency and the size of the model space. As can be seen
from this figure, the single-particle energies for these two
single-particle states tend to stabilize around eight to ten
major shells. This finding concords both with coupled-cluster
calculations that employ a G matrix as effective interaction
for 16O, see Refs. [71] and [70], and with analogous Green’s
functions studies [31]. It remains, however, to make an
extensive comparison between coupled-cluster theory and the
Green’s functions approach to find an optimal size of the
model space with a given nucleon-nucleon interaction. Finally,
we plot in Fig. 5 the neutron valence single-particle energies
for all the single-particle states in the 1p0f shell. The latter
results were obtained with our largest model space, ten major
shells with Nmax = 9 and the single-particle orbital momentum
l ! 7. As can be seen from this figure, there is still, although
weak, a dependence upon the oscillator parameter. To perform
calculations beyond ten major shells will require nontrivial
extensions of our codes.
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Z/N asymmetry dependence of SFs

14O(d,t)13O and 14O(d,3He)13N 
transfer reactions @ SPIRAL

Calculated spectroscopic factors are - correlated to p-h gaps
found to be:  - independent of asymmetry

- consistent with experimental data

[F.*Flavigny et*al,**PRL110,*122503*(2013)]

radii (and consequently of r0) due to different Skyrme
interactions, provided the rms radii of 15N extracted from
(e, e0p) [5] are reproduced. All the other experimental
uncertainties are accounted for by the error bars displayed
on Fig. 4. A rather flat trend is found without the need
for the large asymmetry dependence suggested by inter-
mediate energy knockout data analyzed with the eikonal
formalism [10]. For a quantitative evaluation, we fitted
the reduction factor with a linear dependence Rs¼
!"!Sþ". We obtained mean values for ! and " with
associated errors from a minimization over the 48 data sets,
considering (i) eight combinations of optical potentials for
the entrance and exit channels, (ii) three Skyrme interac-
tions to calculate the rms radii, and (iii) the two above-
mentioned shell-model calculations.

For the WS OF, the reduction factor Rs ¼ 0:538ð28Þð18Þ
(for !S ¼ 0 nuclei) is in agreement with Ref. [9] and the
slope parameter ! ¼ 0:0004ð24Þð12Þ MeV&1, therefore
consistent with zero. The first standard error obtained
over one data set depends on the experimental uncertain-
ties; the second one comes from the distribution over the 48
data sets. Within the error bars, the data do not contradict
the weak dependence found by ab initio calculations, with
!0 ¼ &0:0039 MeV&1 between the two 14O points in
Ref. [7], although the calculated !S is much reduced
compared to the experimental value.

Despite different OFs and SFs, the analysis
performed with the ab initio OF [30] provides very
similar results with Rsð!S¼0Þ¼0:636ð34Þð42Þ and !¼
&0:0042ð28Þð36ÞMeV&1, with calculated !S¼17:6MeV
[Fig. 4(b)].
In summary, we measured exclusive differential cross

sections at 18 MeV=nucleon for the 14Oðd; tÞ13O and
14Oðd; 3HeÞ13N transfer reactions and elastic scattering.
WS OFs with a constraint on HF radii and microscopic
OFs (obtained from SCFG theory) have been compared for
the first time for symmetric and very asymmetric nuclei
and gave similar results. We extracted the reduction factors
Rs over a high asymmetry range, !S ¼ '18:5 MeV, for
oxygen isotopes. From the good agreement between the
CRC calculations and the set of transfer data highlighted in
our work, the asymmetry dependence is found to be non-
existent (or weak), within the error bars. This result is in
agreement with ab initio Green’s function and coupled-
cluster calculations [7,14], but contradicts the trend
observed in nucleon knockout data obtained at incident
energies below 100 MeV=nucleon and analyzed with the
sudden-eikonal formalism. The disagreement of the two
systematic trends from knockout and transfer calls for a
better description of so-called direct reaction mechanisms
in order that a consistent picture of nuclear structure
emerges from measurements at different incident energies.
The authors thank N. T. Timofeyuk and N. Alamanos for

enlightening discussions and P. Navrátil for providing
evolved two- and three-body interactions relevant to this
study. This work was supported by LIA COPIGAL and
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TABLE I: Measured inclusive cross sections for the oxygen isotopes from the quasi-free (p,2p) reaction. The second and third
columns show the neutron and proton separation energies of the residual A�1N fragments, respectively. In the fourth column,
the mean beam energy in the middle of the CH2 target is given. In the fifth column, the inclusive cross sections are listed along

with the statistical (round brackets) and systematic uncertainties (square brackets). The predictions from eikonal theory
are shown for the 0p1/2 protons, except the projectile 16O, in the sixth column. For the 16O(p,2p)15N reaction, the theoretical
cross section is given as the sum of both orbits, 0p1/2 and 0p3/2. The last column gives the resulting reduction factors relative

to the IPM with its total uncertainty.
Reaction Sn (A�1N) Sp (A�1N) Energy �

exp

�
theo

R
(MeV) (MeV) (AMeV) (mb) (mb)

13O(p,2p)12N 15.0 0.60 401 5.78(0.91)[0.37] 18.96 -
14O(p,2p)13N 20.1 1.94 351 10.23(0.80)[0.65] 15.09 0.68(7)
15O(p,2p)14N 10.6 7.55 310 18.92(1.82)[1.20] 12.19 -
16O(p,2p)15N 10.9 10.2 451 26.84(0.90)[1.70] 38.34 0.70(5)
17O(p,2p)16N 2.49 11.5 406 7.90(0.26)[0.50] 12.23 0.65(5)
18O(p,2p)17N 5.89 13.1 368 17.80(1.04)[1.13] 9.95 -
21O(p,2p)20N 2.49 11.5 449 5.31(0.23)[0.34] 9.16 0.58(4)
22O(p,2p)21N 4.59 19.6 415 5.93(0.39)[0.40] 8.54 -
23O(p,2p)22N 1.28 21.2 448 5.01(0.97)[0.33] 8.06 0.62(13)
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FIG. 4: Reduction factors, R, obtained from quasi-free one-
proton knockout from different projectiles and shown as a
function of the difference in the separation energies S

p

� S
n

.
The full black circles show the full proton strength for the
0p1/2 orbit. For 16O(p,2p)15N the reduction factor of the
combined 0p1/2 and 0p3/2 protons is displayed by the red
square. The error bars show the statistical uncertainty and
the horizontal square bracket mark the total uncertainty. The

blue triangles are the SFs calculated with SCGF theory.

on isospin asymmetry. Note that continuum effects can
further affect the quenching of SP strength in 22O but not
to the extent of altering this trend [20]. Thus, ab initio

results do not support a significant dependence on isospin
asymmetry, in agreement with the experimental results
presented in this letter.
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- 34Si is unstable, charge distribution is still 
unknown

- Suggested central depletion from mean-field 
simulations

- Ab-initio theory confirms predictions
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Local vs. non-local chiral N2LO NNN interaction    — by P. Navrátil

• Local:*chiral*N3LO*NN+*N2LO*3N500
– cD=L0.2***cE=L0.205*(3H*Egs=L8.48*MeV)
– 4He

• NonLlocal:*chiral*N2LOsat*NN+3N
– cD=+0.8168 cE=L0.0396 (3H*Egs=L8.53*MeV)
– 4He

• Local/NonLlocal:*chiral*N3LO*NN+*N2LO

– cD=+0.7***cE=L0.06*(3H*Egs=L8.44*MeV)
– 4He

<H>=L28.2530***<V3b_2pi>=*L4.8124***<V3b_D>=**0.7414***<V3b_E>=**0.4255

<H>=L28.4939***<V3b_2pi>=*L5.8819***<V3b_D>=*L0.2206***<V3b_E>=**1.2665

<H>=L28.4596***<V3b_2pi>=*L4.7260***<V3b_D>=**1.3897***<V3b_E>=**0.4174

F( 12 (π1
2 +π 2

2 );Λnonloc )W1
Q (Λ loc ) F( 12 (π1

2 +π 2
2 );Λnonloc )

Use#completeness#
in#HO#basis#to#calculate#
products#of#F%W%F%



N3LO(500) + nln 3NF

38 40 42 44 46 48 50 52 54 56 58 60

0

10

20

30

Exp
N3LO standard [srg2.0]
N3LO loc/nloc [srg2.0]
NNLOsat [srg2.0]

ACa

S 2n
 [M

eV
]

36 38 40 42 44 46 48 50 52 54 56 58 60
-500

-450

-400

-350

-300

-250 Exp
N3LO standard [srg2.0]
N3LO loc/nloc
NNLOsat [srg2.0]

ACa

E 
[M

eV
]

SCGF*– GorkovLADC(2)*************PRELIMINARY%

36 38 40 42 44 46 48 50 52 54 56 58 60
-0.1

0

0.1

0.2

0.3
Exp.
N3LO standard
NNLOsat bare
N3LO LNL

ACa

δr
ch

 [f
m

]

Gorkov-Green functions

preliminary

36 38 40 42 44 46 48 50 52 54 56 58 60

3.2

3.4

3.6

3.8 Exp.
N3LO standard
NNLOsat bare
N3LO LNL

ACa

r ch
 [f

m
]

preliminary

Gorkov-Green functions



Masses in the Ti isotopic chain
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FIG. 4. The mass landscape of titanium isotopes is shown from three perspectives: (a) absolute masses (shown in binding
energy format), (b) its first “derivative” as two-neutron separation energies (S2n), and (c) its second “derivative” as empirical
neutron-shell gaps (�2n). Both theoretical ab-initio calculations (lines) and experimental values (points) are shown.

FIG. 5. Empirical neutron-shell gaps for titanium and neigh-
boring isotopic chains show the abrupt rise of the N = 32
shell closure between V and Sc. VS-IMSRG calculations us-
ing the 1.8/2.0(EM) interaction (lines) show remarkable over-
all agreement, but overpredict the extent of the N = 32 shell
closure towards heavier isotones. Data (points) were calcu-
lated from AME16 [12] values, red data points also include
the measurements reported in this work. Unconnected dashed
lines in Sc chain are guides to the eye. Each isotopic chain
was shifted by a multiple of 3.5 MeV for clarity.

trast, calculated shell gaps in titanium steeply rise from
N = 30 to N = 32 compared to experiment, indicating
that the N = 32 closure is predicted to arise too early
towards calcium. While the origin of this discrepancy is
not completely clear, we note that generally signatures
of shell closures, such as first excited 2+ energies and
neutron shell gaps, are often modestly overestimated by
VS-IMSRG [48]. From direct comparisons with coupled
cluster theory [54], it is expected that some controlled ap-
proximation to include three-body operators in the VS-
IMSRG will improve such predictions in magic nuclei and
possibly this discrepancy in titanium as well.

In summary, precision mass measurements performed
with TITAN’s Penning trap and multiple-reflection time-

of-flight mass spectrometers on neutron-rich titanium iso-
topes were able to narrow down the evolution of the
N = 32 shell and its abrupt quenching. Although cal-
culations from ab-initio theories perform well in this re-
gion, our data provide fine information on where they
can currently be improved. These results also highlight
the scientific capabilities of the new TITAN MR-TOF-
MS, whose sensitivity enables probing much rarer species
with competitive precision.
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               Results for Oxygen isotopes 

•  GDR position of 16O reproduced!
•  Hint of a soft dipole mode on the neutron-rich isotope
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               Results for Calcium isotopes 

•  GDR positions reproduced
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particular we will consider

Vsw(r) = −V0 θ (R − r) [square well], (3)

Vexp(r) = −V0 e−(r/R) [exponential], (4)

Vg(r) = −V0 e−(r/R)2
[Gaussian], (5)

Vq(r) = −V0 e−(r/R)4
[quartic], (6)

where for each of the models we work in units with h̄ = 1,
reduced mass µ = 1, and express all lengths in units of R and
all energies in units of h̄2/µR2. For the realistic potential we
use the Entem-Machleidt 500 MeV chiral EFT N3LO potential
[7] and unitarily evolve it with the similarity renormalization
group (SRG). These potentials provide a diverse set of tests
for universal properties. Because we can go to very high h̄"
and N for the two-particle bound states (and therefore large
#UV), it is possible to always ensure that UV corrections are
negligible.

In Sec. II we determine a more accurate value for L than
L′

0 and show that the theoretically founded exponential form
of the extrapolation is favored over Gaussian or power-law
alternatives in practical applications. The accurate determina-
tion of the box radius L also allows us to compute scattering
phase shifts directly in the oscillator basis. The derivation of
the exponential form from Ref. [2] is extended in Sec. III
to show that it depends only on observable quantities, and is
therefore independent of the potential and has the same form
for excited states. These formal conclusions are tested with
model potentials and the deuteron with a realistic potential in
Sec. IV. In Sec. V we summarize our conclusions and discuss
the implications for applications to larger nuclei.

II. SPATIAL CUTOFF FROM HO BASIS TRUNCATIONS

In this section, we determine the spatial extent of a finite HO
basis. We start with empirical considerations before presenting
an analytical understanding. Finally, we use the knowledge of
the spatial extent to compute phase shifts and demonstrate that
the theoretically founded exponential extrapolation law can be
distinguished from other empirical choices.

A. Empirical determination of L

The derivation of the IR correction formula Eq. (1) in
Ref. [2] starts from the observation that a truncated harmonic
oscillator (HO) basis effectively acts at low energies to impose
a hard-wall boundary condition in coordinate space. In Fig. 1
we can see how this happens for a representative model
case, a square well potential Eq. (3) with s-wave radial
wave functions. In the top panel, the exact ground-state
radial wave function (dashed) is compared to the solution
in an oscillator basis truncated at N = 4 determined by
diagonalization (solid). The truncated basis cuts off the tail
of the exact wave function because the individual basis wave
functions have a radial extent that depends on h̄" (from
the Gaussian part) and on the largest power of r (from the
polynomial part). The latter is given by N = 2n + l. With
N = 4 and l = 0, this means that n = 2 gives the largest power.
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FIG. 1. (Color online) (a) The exact radial wave function (dashed)
for a square well Eq. (3) with depth V0 = 4 (and h̄ = µ = R = 1) is
compared to the wave function obtained from an HO basis truncated
at N = 4 with h̄" = 6 (solid). The spatial extent of the wave function
obtained from the HO basis truncation is dictated by the square of HO
wave function for the highest radial quantum number (dot-dashed).
(b) The wave functions obtained from imposing a Dirichlet boundary
condition at L0, L′

0, and L2 are compared to the wave function in
truncated HO basis.

The cutoff will then be determined by the n = 2 oscillator
wave function, uHO

n=2(r), whose square (which is the relevant
quantity) is also plotted in the top panel (dot-dashed). It is
evident that the tail of the wave function in the truncated basis
is fixed by this squared wave function. The premise of Ref. [2]
was that this cutoff is well modeled by a hard-wall (Dirichlet)
boundary condition at r = L. If so, the question remains how
best to quantitatively determine L given N and h̄". Before
we present an analytical derivation of this quantity in the next
subsection, we compare empirically L′

0 from Eq. (2) and

Li ≡
√

2(N + 3/2 + i)b (7)

with integer i, which includes L0 as a special case. In the
bottom panel of Fig. 1 we show the wave functions for
several possible choices for L. L0 corresponds to choosing
the classical turning point (i.e., the half-height point of the tail
of [uHO

n=2(r)]2); it is manifestly too small. Using L′
0, which is

the linear extrapolation from the slope at the half-height point,
gives an improved estimate. However, choosing i = 2 [i.e.,
using L = L2 =

√
2(N + 3/2 + 2)b] is found to be the best

choice in almost all examples.
The most direct illustration of this conclusion comes from

the bound-state energies. In the example in Fig. 1, the exact
energy (in dimensionless units) is −1.51 while the result for
the basis truncated at N = 4 is −1.33, which is therefore what
we hope to reproduce. With L0, the energy is −0.97, with L′

0
it is −1.21, and with L2 it is −1.29. While this is only one
example of a model problem, we have found that L2 always
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between high-momentum and low-momentum potential ma-
trix elements, thereby lowering the effective UV cutoff. Thus
these potentials are useful tools to assess the role of UV
corrections.

We first consider results with N and h̄! chosen to ensure
small UV corrections, as in all prior figures. All the quantities
on the right-hand side of formula Eq. (44) are invariant under
SRG evolution. Therefore, if it is an accurate representation
of the IR energy corrections from truncating the HO basis,
then the E(L2) vs L2 points for different SRG λ should lie
on the same curve. Figure 19 shows that this is the case, and
the curve is the same as for the unevolved potential in Fig. 18.
(Only selected points are plotted for readability.)

Finally, in Fig. 20 we relax the condition that the UV
corrections are small compared to IR corrections. In particular,
we fix N at 8 and 12 and scan through the full range of h̄!.
We observe that with increasing L2, each of the curves with
a given λ eventually deviates from the universal curve, first
with λ = 3.0 fm−1 and then later with decreasing λ or with
higher N . We can understand this in terms of the behavior
of the induced UV cutoff. For fixed N , Eq. (7) tells us that
increasing L2 means increasing b (or decreasing h̄!). But
at fixed N , #UV ∝ 1/b, so the UV cutoff will be decreasing
and the corresponding UV energy correction increasing. Thus
the curves at fixed λ correspond to the curves seen in
conventional plots of energy versus h̄! (e.g., see Ref. [8]).
The softer potentials (lower λ) will have lower intrinsic UV
cutoffs and therefore they are only affected for larger L2.
The minima for each λ are when IR and UV corrections are
roughly equal.
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FIG. 20. (Color online) The same SRG-evolved potentials as in
Fig. 19 are used to generate energies, but with N fixed at (a) 8 and
(b) 12 and no restriction on h̄!. Thus UV corrections are not neg-
ligible everywhere. The dashed and dot-dashed lines are predictions
from Eqs. (42) and (44). The horizontal dotted line is the deuteron
binding energy.

V. SUMMARY AND OUTLOOK

In this paper, we revisited the infrared (IR) correction
formula derived in Ref. [2] for a truncated harmonic oscillator
(HO) basis expansion, using the simplified case of a two-
particle system as a controlled theoretical laboratory. We used
simple model potentials and the deuteron calculated with
realistic potentials to extend and improve the IR formula. We
demonstrated analytically that the spectrum of the squared
momentum operator p2 in a finite oscillator basis is identical
to the one in a spherical box with a hard wall. The minimum
eigenvalue of p2 is (πh̄/L2)2, and this identifies L2 as the box
radius. While these results have been obtained in finite but
large oscillator spaces, they also hold in practical applications
in much smaller spaces. We showed how errors parametrized
in terms of an effective hard-wall radius L from different N
and h̄! combinations all lie on the same curve, but only if
the UV error is sufficiently small and, for smaller N , only if
L is defined as L2 [see Eq. (7)]. The determination of L2 as
the box radius also allows us to extract phase shifts from the
positive-energy solutions in the oscillator basis.

The fall-off with L2 of the IR correction to bound-state
energies is found to be an exponential independent of the
potential or whether a ground or excited states (or whether we
are in one or three dimensions). This conclusion is validated by
the derivation and testing of explicit formulas for the energy
corrections that depend only on on measurable bound-state
properties: the energy and residue of the bound-state pole
of the S matrix (or the binding momentum and asymptotic
normalization constant).
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FIG. 21. (Color online) Triton energy versus L2 (here calculated
with the deuteron-neutron reduced mass) for the two- and three-
nucleon potential in Ref. [27] unitarily evolved by the SRG to
four different resolutions (specified by λ) with the same binding
energy [27,28]. Only larger h̄! points are plotted to minimize the UV
contamination. The horizontal dotted line is the exact triton binding
energy for this interaction.
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particular we will consider

Vsw(r) = −V0 θ (R − r) [square well], (3)

Vexp(r) = −V0 e−(r/R) [exponential], (4)

Vg(r) = −V0 e−(r/R)2
[Gaussian], (5)

Vq(r) = −V0 e−(r/R)4
[quartic], (6)

where for each of the models we work in units with h̄ = 1,
reduced mass µ = 1, and express all lengths in units of R and
all energies in units of h̄2/µR2. For the realistic potential we
use the Entem-Machleidt 500 MeV chiral EFT N3LO potential
[7] and unitarily evolve it with the similarity renormalization
group (SRG). These potentials provide a diverse set of tests
for universal properties. Because we can go to very high h̄"
and N for the two-particle bound states (and therefore large
#UV), it is possible to always ensure that UV corrections are
negligible.

In Sec. II we determine a more accurate value for L than
L′

0 and show that the theoretically founded exponential form
of the extrapolation is favored over Gaussian or power-law
alternatives in practical applications. The accurate determina-
tion of the box radius L also allows us to compute scattering
phase shifts directly in the oscillator basis. The derivation of
the exponential form from Ref. [2] is extended in Sec. III
to show that it depends only on observable quantities, and is
therefore independent of the potential and has the same form
for excited states. These formal conclusions are tested with
model potentials and the deuteron with a realistic potential in
Sec. IV. In Sec. V we summarize our conclusions and discuss
the implications for applications to larger nuclei.

II. SPATIAL CUTOFF FROM HO BASIS TRUNCATIONS

In this section, we determine the spatial extent of a finite HO
basis. We start with empirical considerations before presenting
an analytical understanding. Finally, we use the knowledge of
the spatial extent to compute phase shifts and demonstrate that
the theoretically founded exponential extrapolation law can be
distinguished from other empirical choices.

A. Empirical determination of L

The derivation of the IR correction formula Eq. (1) in
Ref. [2] starts from the observation that a truncated harmonic
oscillator (HO) basis effectively acts at low energies to impose
a hard-wall boundary condition in coordinate space. In Fig. 1
we can see how this happens for a representative model
case, a square well potential Eq. (3) with s-wave radial
wave functions. In the top panel, the exact ground-state
radial wave function (dashed) is compared to the solution
in an oscillator basis truncated at N = 4 determined by
diagonalization (solid). The truncated basis cuts off the tail
of the exact wave function because the individual basis wave
functions have a radial extent that depends on h̄" (from
the Gaussian part) and on the largest power of r (from the
polynomial part). The latter is given by N = 2n + l. With
N = 4 and l = 0, this means that n = 2 gives the largest power.
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FIG. 1. (Color online) (a) The exact radial wave function (dashed)
for a square well Eq. (3) with depth V0 = 4 (and h̄ = µ = R = 1) is
compared to the wave function obtained from an HO basis truncated
at N = 4 with h̄" = 6 (solid). The spatial extent of the wave function
obtained from the HO basis truncation is dictated by the square of HO
wave function for the highest radial quantum number (dot-dashed).
(b) The wave functions obtained from imposing a Dirichlet boundary
condition at L0, L′

0, and L2 are compared to the wave function in
truncated HO basis.

The cutoff will then be determined by the n = 2 oscillator
wave function, uHO

n=2(r), whose square (which is the relevant
quantity) is also plotted in the top panel (dot-dashed). It is
evident that the tail of the wave function in the truncated basis
is fixed by this squared wave function. The premise of Ref. [2]
was that this cutoff is well modeled by a hard-wall (Dirichlet)
boundary condition at r = L. If so, the question remains how
best to quantitatively determine L given N and h̄". Before
we present an analytical derivation of this quantity in the next
subsection, we compare empirically L′

0 from Eq. (2) and

Li ≡
√

2(N + 3/2 + i)b (7)

with integer i, which includes L0 as a special case. In the
bottom panel of Fig. 1 we show the wave functions for
several possible choices for L. L0 corresponds to choosing
the classical turning point (i.e., the half-height point of the tail
of [uHO

n=2(r)]2); it is manifestly too small. Using L′
0, which is

the linear extrapolation from the slope at the half-height point,
gives an improved estimate. However, choosing i = 2 [i.e.,
using L = L2 =

√
2(N + 3/2 + 2)b] is found to be the best

choice in almost all examples.
The most direct illustration of this conclusion comes from

the bound-state energies. In the example in Fig. 1, the exact
energy (in dimensionless units) is −1.51 while the result for
the basis truncated at N = 4 is −1.33, which is therefore what
we hope to reproduce. With L0, the energy is −0.97, with L′

0
it is −1.21, and with L2 it is −1.29. While this is only one
example of a model problem, we have found that L2 always
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between high-momentum and low-momentum potential ma-
trix elements, thereby lowering the effective UV cutoff. Thus
these potentials are useful tools to assess the role of UV
corrections.

We first consider results with N and h̄! chosen to ensure
small UV corrections, as in all prior figures. All the quantities
on the right-hand side of formula Eq. (44) are invariant under
SRG evolution. Therefore, if it is an accurate representation
of the IR energy corrections from truncating the HO basis,
then the E(L2) vs L2 points for different SRG λ should lie
on the same curve. Figure 19 shows that this is the case, and
the curve is the same as for the unevolved potential in Fig. 18.
(Only selected points are plotted for readability.)

Finally, in Fig. 20 we relax the condition that the UV
corrections are small compared to IR corrections. In particular,
we fix N at 8 and 12 and scan through the full range of h̄!.
We observe that with increasing L2, each of the curves with
a given λ eventually deviates from the universal curve, first
with λ = 3.0 fm−1 and then later with decreasing λ or with
higher N . We can understand this in terms of the behavior
of the induced UV cutoff. For fixed N , Eq. (7) tells us that
increasing L2 means increasing b (or decreasing h̄!). But
at fixed N , #UV ∝ 1/b, so the UV cutoff will be decreasing
and the corresponding UV energy correction increasing. Thus
the curves at fixed λ correspond to the curves seen in
conventional plots of energy versus h̄! (e.g., see Ref. [8]).
The softer potentials (lower λ) will have lower intrinsic UV
cutoffs and therefore they are only affected for larger L2.
The minima for each λ are when IR and UV corrections are
roughly equal.
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FIG. 20. (Color online) The same SRG-evolved potentials as in
Fig. 19 are used to generate energies, but with N fixed at (a) 8 and
(b) 12 and no restriction on h̄!. Thus UV corrections are not neg-
ligible everywhere. The dashed and dot-dashed lines are predictions
from Eqs. (42) and (44). The horizontal dotted line is the deuteron
binding energy.

V. SUMMARY AND OUTLOOK

In this paper, we revisited the infrared (IR) correction
formula derived in Ref. [2] for a truncated harmonic oscillator
(HO) basis expansion, using the simplified case of a two-
particle system as a controlled theoretical laboratory. We used
simple model potentials and the deuteron calculated with
realistic potentials to extend and improve the IR formula. We
demonstrated analytically that the spectrum of the squared
momentum operator p2 in a finite oscillator basis is identical
to the one in a spherical box with a hard wall. The minimum
eigenvalue of p2 is (πh̄/L2)2, and this identifies L2 as the box
radius. While these results have been obtained in finite but
large oscillator spaces, they also hold in practical applications
in much smaller spaces. We showed how errors parametrized
in terms of an effective hard-wall radius L from different N
and h̄! combinations all lie on the same curve, but only if
the UV error is sufficiently small and, for smaller N , only if
L is defined as L2 [see Eq. (7)]. The determination of L2 as
the box radius also allows us to extract phase shifts from the
positive-energy solutions in the oscillator basis.

The fall-off with L2 of the IR correction to bound-state
energies is found to be an exponential independent of the
potential or whether a ground or excited states (or whether we
are in one or three dimensions). This conclusion is validated by
the derivation and testing of explicit formulas for the energy
corrections that depend only on on measurable bound-state
properties: the energy and residue of the bound-state pole
of the S matrix (or the binding momentum and asymptotic
normalization constant).
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FIG. 21. (Color online) Triton energy versus L2 (here calculated
with the deuteron-neutron reduced mass) for the two- and three-
nucleon potential in Ref. [27] unitarily evolved by the SRG to
four different resolutions (specified by λ) with the same binding
energy [27,28]. Only larger h̄! points are plotted to minimize the UV
contamination. The horizontal dotted line is the exact triton binding
energy for this interaction.
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Infrared convergence
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Results for binding
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FIG. 2. (Color online) Ground state energy of 4He, 16O and 40Ca as a function of the harmonic oscillator frequency, ~⌦, and the model space
size, Nmax. Symbols mark the results for the HAL469 potential from full self-consistent calculations in the G-matrix plus ADC(3) approach.

Results. The one-body propagators of 4He, 16O and
40Ca were calculated in spherical harmonic oscillator spaces
of di↵erent frequencies, ~⌦, and increasing sizes up to
Nmax=max{2n + `}=11 (and Nmax  9 for 40Ca). A G-matrix
was calculated for each frequency and model space and then
it was used to derive the static interactions of Eq. (5). We sub-
tracted the kinetic energy of the center of mass according to
Ref. [50] and calculated the intrinsic ground state energy from
g(!) using the Koltun sum rule. The same lattice simulation
setup used to generate the HAL469 interaction gives a nucleon
mass of mN=1161.1 MeV/c2 in addition to the pseudo-scalar
mass of MPS=469 MeV/c2. Thus, we employed this value of
mN in all the kinetic energy terms.

The exact binding energy of 4He for HAL469 is known
to be 5.09 MeV [51] and can be used to benchmark our ap-
proach. Fig. 2 displays the ground state energies calculated
with the G-matrix plus ADC(3) method. The resummation
of ladder diagrams outside the model space tames ultravio-
let corrections and we find that the infrared convergence dis-
cussed in Ref. [52] applies very well for large oscillaltor fre-
quencies. From calculations up to ~⌦=50 MeV, we estimate
a converged binding energy of 4.80(3) MeV for 4He, where
the error corresponds to the uncertainties in the extrapolation.
All results for 4He are summarised in Tab. I where we also list
BHF calculations done with the same gap choice and methods
of Ref. [22]. This suggests that the BHF method can overes-
timate the binding energy for HAL469 even sizeably. On the
other hand, the full inclusion of long-range e↵ects in ADC(3)

EA
0 [MeV] 4He 16O 40Ca

BHF [22] -8.1 -34.7 -112.7
G(!) + ADC(3) -4.80(0.03) -17.9 (0.3) (1.8) -75.4 (6.7) (7.5)
Exact Result [51] -5.09 – –
Separation into 4He clusters: -2.46 (0.3) (1.8) 24.5 (6.7) (7.5)

TABLE I. Ground state energies of 4He, 16O and 40Ca
at MPS=469 MeV/c2 obtained from the HAL469 interaction.
‘G(!)+ADC(3)’ are the results of the present work and are compared
to BHF and exact results. The last line is the breakup energy for split-
ting the system in 4He clusters (of total energy A/4⇥5.09 MeV).

deviates from the exact solution by less than 10%. Since the
SCGF approach resums linked diagrams, and thus is size ex-
tensive, one should expect that similar errors will apply for
larger isotopes. Fig. 2 also demonstrates that 16O and 40Ca
convergence similarly to 4He. Their extrapolated ground state
energies are also given in Tab. I, where the first error is the un-
certainties in the model space extrapolation [52]. The second
error corresponds to many-body truncations and we estimate
it to be 10% based on the finding for 4He. The SCGF results
are sensibly less bound than our previous BHF results [22].
This pattern is completely analogous to the case of 4He and
we interpret it as a limitation of BHF theory.

A key feature of our calculations is the use of an har-
monic oscillator space, which e↵ectively confines all nucle-
ons. The last line Tab. I reports the deduced breakup ener-
gies for separating the computed ground states into infinitely
distant 4He clusters. The 16O is unstable with respect to 4-↵
break up, by ⇡2.5 MeV. Allowing an error in our binding en-
ergies of more than 10% could make oxygen bound but only
very weakly. This is in contrast to the experimental results, at
the physical quarks masses, where the 4-↵ breakup requires
14.4 MeV. On the other hand, 40Ca is stable with respect to
breakup in ↵ particles by ⇡24 MeV. We expect that these
observations are rather robust even when we consider the
(LQCD) statistical errors in the HAL469 interaction. While
such statistical fluctuations introduce additional ⇠10% errors
on binding energies [22], they are expected to be strongly cor-
related among 4He, 16O and 40Ca. Hence, for QCD in the
SU(3) limit at MPS=469 MeV/c2, we find that the deuteron is
unbound [20] and 16O is only just slightly above the threshold
for ↵ breakup, while 4He and 40Ca are instead bound. The
HAL469 interaction has the lowest MPS value among those
considered in Refs. [19, 20], while from Ref. [21] we know
that it is the only one saturating nuclear matter (although not
at the physical saturation point). Moreover, we have tested
that SCGF attempts at calculating asymmetric isotopes, like
28O, predict strongly unbound systems even for HAL469. All
these results together suggest that, when lowering of the pion
mass toward its physical value, closed shell isotopes are cre-
ated at first around the traditional magic numbers. This hy-
pothesis should also be seen in the light of the limitations in
the present HAL469 Hamiltonian, which was built to include



Spectral strength in 16O and 40Ca:
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Future application for Ys in nuclei now possible
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• Need#to#improve#on#statistic#for#the NN#sector
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Summary
Mid-masses and chiral interactions:

" Leading order 3NF are crucial to predict many important features that 
are observed experimentally (drip lines, saturation, orbit evolution, etc…)

" New fits of chiral interaction are promising for low-energy observables
and for scattering – mass/radii/spectroscopy are improved but there remain 
issues (symm energy, neutron rich) and dependency on LEC/cutoffs.

" Ab intio optical potentials (nucleon-nucleus) within reach. 
" Dipole responses and polarizabilities, are reproduced well at (LO) RPA . 
" Effective charges can be computed for SM applications

HALQCD Nuclear forces:

" Strong short range behavior calls for new
ideas in  ab-initio many-body methods. Diagram
resummation through G-matrix is good starting 
point (to be extended).

" At mπ=469MeV, closed shell 4He, 16O and 40Ca are bound. But oxygen is
unstable toward 4-& break up, calcium stays bound. 
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" 3NF crucial for reproducing binding energies and driplines around oxygen

" cf. microscopic shell model [Otsuka et al, PRL105, 032501 (2010).]

N3LO (Λ = 500Mev/c) chiral NN interaction evolved to 2N + 3N forces (2.0fm-1)
N2LO (Λ = 400Mev/c) chiral 3N interaction  evolved (2.0fm-1)

A.*Cipollone,*CB,*P.*Navrátil,*Phys.*Rev.*Lett.*111,*062501*(2013)
and& Phys.*Rev.*C*92,*014306*(2015)

Results for the N-O-F chains
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