
Par$cle-core	coupling	in	nuclei:	
new	insights,	fundamental	misconcep$ons	

John	L.	Wood	
School	of	Physics	

Georgia	ins7tute	of	Technology	



Symmetric-top	model:		
quantum	numbers		

the z-axis and the 3-axis 
are not in a rigidly  
oriented relationship 

R:	collec7ve	angular	momentum	
	
J:	intrinsic	spin	
	
I:	total	spin	/	angular	momentum	
	
M:	laboratory-frame,	
								z-component	of I 
	
K:		body-frame	(symmetry	axis),	
							3-component	of	I;	K	=	Ω 

“Coriolis”	interac7on:	
		R�R	= (I – J)�(I –J)  
          =  I�I - 2 I�J + J�J 

J 

=Ω 



February 4, 2010 12:18 WSPC/Book Trim Size for 9.75in x 6.5in rw-book975x65

1.8 Low-energy collective structure in odd nuclei

same energy. However, if the potential is allowed to become spheroidal, the states
of |≠| = 1/2, 3/2, 5/2, . . . , separate in energy. For a prolate spheroidal potential,
the |≠| = 1/2 orbital lies lowest and the energy increases with increasing |≠|. This
is due to the fact that the density distribution of a single-particle state of low |≠|
fits more readily inside an equipotential surface of a prolate potential than in an
equipotential surface of an oblate potential, and vice-versa. This is shown in Figure
1.70 for a 1h11/2 single-particle state. For more than one available shell-model j
orbital, mixing of configurations with the same ≠º value from diÆerent j orbitals
occurs.

The Nilsson model is essentially a deformed version of the single-particle shell
model. It replaces the spherical harmonic oscillator potential of Equation (1.13)
with a spheroidal potential. Thus, for deformed nuclei, the spherically symmetric
single-particle Hamiltonian of Equation (1.19) is replaced by an axially symmetric
Nilsson model Hamiltonian
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where the x̄, ȳ and z̄ coordinates are defined relative to the intrinsic axes of the
rotor.

An equipotential surface for this Hamiltonian is a spheroid with semi axes Rx =
Ry = R?, Rz related by the equation
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For consistency, !? and !z, should be chosen such that the shape of this equipo-
tential surface approximates the shape of a corresponding equidensity surface of
the deformed core. Thus, based on the constancy of the nuclear matter density in
the interior of a nucleus, it is appropriate to express the frequencies of the Nilsson
model Hamiltonian in terms of a volume-conserving scale transformation

!? = !0e
≤/3, !z = !0e

°2≤/3, (1.60)

for which !x!y!z = const. := !3
0 (cf. Exercises (1.34) and (1.35)). When ≤ > 0,

the equipotential surface is then a prolate spheroid and when ≤ < 0 it is oblate.
The total Hamiltonian for a nucleon coupled to the states of a K = 0 ground-

state rotational band of an even-nucleus core is given by

Ĥ :=
~2R̂2

2= + ĥ, (1.61)

where R̂ is the angular momentum of the rotor (cf. Equation (1.43)). If ĵ denotes
the angular momentum of the odd nucleon and Î := R̂ + ĵ is the total angular
momentum of the odd-mass nucleus, then

Ĥ =
~2Î2

2= + ĥ+
~2ĵ2

2= ° ~2

= Î · ĵ. (1.62)
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1.8 Low-energy collective structure in odd nuclei

Er isotopes show a loss of the strongly-coupled pattern. The reduction of strong
coupling is termed decoupling.

Decoupling is a consequence of the Coriolis interaction, given in Equation 1.39.
Its expectation value reduces to °(~2/=)h~I ·~ji for a spheroidal (axially symmetric)
nucleus. The Coriolis interaction cannot be neglected if = is small or if h~I · ~ji is
large. The systematic behaviour shown in Figure 1.72 is attributed to a decreasing
deformation (decreasing =) with decreasing mass and a consequent increase in the
influence of the Coriolis interaction. The Coriolis interaction evidently favours the
alignment of ~j with ~I. This “rotation alignment” eÆect of the Coriolis interaction
opposes the “deformation alignment” of the spheroidal potential (cf. Figures 1.70
and 1.71) which favours the alignment of the probability density distribution of
the particle with that of the slowly rotating rotor core. (Fuller details of Coriolis
decoupling will be given in Volume 2.)

Coriolis decoupling provides an explanation for the irregularities of the rotational
bands built on the 371 and 627 keV states of 175Lu (cf. Figure 1.69). These two
bands have |≠| = 1/2 ( equal to the lowest spin in each band). In fact, the Coriolis
interaction is invariably important for |≠| = 1/2 bands. This is because it makes
diagonal contributions to the energies of |≠| = 1/2 states; a fact that becomes evident
when h~I ·~ji is expressed in the form

h~I ·~ji = h1
2
(Î+ĵ° + Î°ĵ+) + Îz ĵzi. (1.68)

One finds that the operator Î+ĵ° + Î°ĵ+ has non-zero matrix elements between
the ≠ = ±1/2 components of a |≠| = 1/2 rotational state. The modified rotational
energy formula that results is

EI = E0 +A[I(I + 1) + (°1)I+1/
2(I + 1/2) a ±K,1/

2

], (1.69)

where a, the so-called decoupling parameter, is characteristic of the intrinsic state
of the nucleus. (This will be discussed in more detail in Volume 2.)

Exercises

1.29 Obtain values of a that appear in Equation (1.69) by fitting this equation to the
bands in 175Lu built on the 353 and 627 keV states shown in Figure 1.69.

1.30 Obtain = for the bands shown in Figure 1.69 and compare with 174Yb (Figure
1.60).

1.31 Plot EI vs. I(I + 1) for the band shown in Figure 1.68.

1.32 For the nuclei with N = 91 in Figure 1.43, use the Nilsson model diagram, Figure
1.71, to identify N , nZ , § quantum numbers.

1.33 Identify the Nilsson configurations, [N,nZ ,§], associated with the bands shown
in Figure 1.69.
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1.7 Low-energy collective structure in doubly-even nuclei

molecules and symmetric top molecules will be discussed in Volume 2). Thus,
within the framework of the rotor model, one interprets the even-I spin sequence as
implying a reflection symmetry of the nuclear rotor in a plane perpendicular to its
symmetry axis. An implication of such a symmetry is that the states |KIMi and
|°K, IMi appear in linear combination

|KIMi+ "(°1)I+K |°K, IMi, (1.50)

where " = ±1 according as the intrinsic wave function is symmetric or antisymmetric
under rotation through an angle º about an axis perpendicular to the symmetry
axis. One sees that, for a symmetric (" = 1) combination, the states of odd I vanish
when K = 0; only even values of I survive. For " = °1, a K = 0 band has an odd-I
only spin sequence; such bands are also seen.

In addition to their characteristic I(I +1) spectra, some distinguishing features
of a rotational nucleus are the huge values of the quadrupole moments of its I > 1
states. These are given in the rotor model by the product of an intrinsic quadrupole
moment, Q̄0(ÆK), characteristic of the rotor band, and a geometric factor which
depends on the angular momentum of the particular state;

Q(ÆKI) =
3K2 ° I(I + 1)

(I + 1)(2I + 3)
eQ̄0(ÆK), (1.51)

where Æ distinguishes bands with the same K. (Note, that as I increases for a given
K, Q(ÆKI) will change sign for K > 1/2.) The intrinsic quadrupole moment of a
rotational state can also be determined from the E2 transition rates between the
states of a rotor band, which have B(E2) values given by

B(E2;ÆKIi ! ÆKIf ) =
5

16º
(IiK, 20|IfK)2e2|Q̄0(ÆK)|2, (1.52)

where (IiK, 20|IfK) is a Clebsch-Gordan coe±cient.

1.7.3 Low-energy vibrational states in doubly-even nuclei

Figure 1.47 shows states at low energy in the singly-closed shell nucleus 118Sn that
are strongly excited in inelastic electron scattering. From the strength of excitation,
it is deduced that the first excited state at 1.23 MeV is a collective quadrupole
excitation and the excited state at 2.33 MeV is a collective octupole excitation. The
Iº = 4+ states at 2.28, 2.49, and 2.73 MeV indicate some hexadecapole collectivity,
but it is fragmented.

To infer the characters of collective excitations, such as seen in Figure 1.47,
it is necessary to consider them within the context of a larger pattern of states.
Figure 1.48(a) shows the states in 114,116,118Sn that have strong electric quadrupole
transitions to the first 2+ states.

The pattern is approximately that of a harmonic vibrator in all three nuclei.
Recall (Section 1.7.1) that, for harmonic vibrations, one expects a degenerate two-
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1.8 Low-energy collective structure in odd nuclei
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Low-Spin Identical Bands in Neighboring Odd-A and Even-Even Nuclei:
A Possible Challenge to Mean-Field Theories

C. Baktash, 3. D. Garrett, D. F. Winchell, and A. Smith
Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6371

(Received 3 February 1992)
A comprehensive study of odd-8 rotational bands in normally deformed rare-earth nuclei indicates

that a large number of seniority-one configurations (30% for odd-Z nuclei) at low spin have moments of
inertia nearly identical to that of the seniority-zero configuration of the neighboring even-even nucleus
with one less nucleon. It is difficult to reconcile these results with conventional models of nuclear pair
correlation, which predict variations of about 15% in the moments of inertia of configurations differing
by one unit in seniority.

PACS numbers: 21.10.Re, 21.60.Fw, 23.20.Lv, 27.70.+q

More than thirty years ago Bohr, Mottelson, and Pines
[1] suggested that short-range pairing interactions may
be responsible for the observed reduction of the moment
of inertia of deformed nuclei compared to that of a rigid
rotor. Shortly afterwards, this expectation was confirmed
by the first detailed application of the BCS pairing theory
[2] to nuclei [3]. A consequence of this interpretation is
that the moments of inertia associated with one-quasi-
particle states in odd-A nuclei should be larger than those
of the ground-state configurations of the neighboring
even-even nuclei [4].
Therefore, the recent discovery [5] of superdeformed

rotational bands in several [6-8] odd- and even-mass nu-
clei differing by a single nucleon that have identical y-ray
transition energies to within a few keV has received a
great deal of attention. Explanations of these "identical
bands" (IB) range from a simple, "accidental" cancella-
tion of the various terms associated with the contributions
of the valence nucleons to the moment of inertia [9,10],
to strong coupling of pseudo SU(3) orbitals to the even-
even core [11], and finally, to a suggestion of rotational
alignment of pseudospin [6,7]. All these explanations as-
sume that the largest contributing factor to the odd-even
difference in the moments of inertia, namely the pair
force, is substantially weakened for high-spin superde-
formed states. However, these scenarios would fail to ex-
plain identical bands at low spin, where the blocking of
the pairing contributions of the odd nucleon is predicted
to reduce the nuclear superfluidity, thereby increasing the
moment of inertia of the odd-A nucleus by about 15% for
rare-earth nuclei [3,12]. (Recent reports of IB's in near-
by even-even nuclei [13,14] compare bands which have
the same number of quasiparticles and, thus, do not probe
the effects of blocking on moments of inertia. )
The present Letter reports a systematic comparison of

nearly 200 odd-3 bands in normally deformed rare-earth
nuclei with their neighboring even-even isotone or isotope
having one less neutron or proton. The difference in the
dynamic moments of inertia J of the neighboring odd-
Z and even-even isotones is 2' for the low-spin part of
nearly 30% of the bands. This is much smaller than the
expected 15% increase. Such data present a serious chal-
lenge to the traditional picture of monopole pairing cor-

relations which has been in vogue for more than three
decades.
As an example, the decay sequences of three "identical

bands" in ' 'Lu are compared in Fig. 1 with a rotational
core defined by the yrast sequence of ' Yb, the neighbor-
ing isotone with one less proton [15]. The variations be-
tween the transition energies of the [404] 2 band in ' 'Lu
and the corresponding values in the ' Yb core are less
than 2 keV, indicating nearly equal dynamic moments of
inertia for these bands. In the context of the present pa-
per, bands in neighboring odd- and even-mass nuclei with
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FIG. l. (a) Comparison of the distribution of spin as a func-
tion of gamma-ray transition energy for a variety of seniority-
one configurations in '7'Lu and the x[404[ —, Sr[4021 —', config-
uration in ' Hf with that of the ground-state band in ' Yb.
(b) Alignment plots of the seniority-one and -two configurations
shown in (a) relative to the ground-state band of the ' Yb as a
function of the gamma-ray energy.

l500 1992 The American Physical Society

A
nn

u.
 R

ev
. N

uc
l. 

Pa
rt.

 S
ci

. 1
99

5.
45

:4
85

-5
41

. D
ow

nl
oa

de
d 

fr
om

 a
rjo

ur
na

ls
.a

nn
ua

lre
vi

ew
s.o

rg
by

 G
eo

rg
ia

 In
st

itu
te

 o
f T

ec
hn

ol
og

y 
on

 0
6/

28
/1

0.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

A
nn

u.
 R

ev
. N

uc
l. 

Pa
rt.

 S
ci

. 1
99

5.
45

:4
85

-5
41

. D
ow

nl
oa

de
d 

fr
om

 a
rjo

ur
na

ls
.a

nn
ua

lre
vi

ew
s.o

rg
by

 G
eo

rg
ia

 In
st

itu
te

 o
f T

ec
hn

ol
og

y 
on

 0
6/

28
/1

0.
 F

or
 p

er
so

na
l u

se
 o

nl
y.



Moments	of	iner7a,	MoI	and	pairing	
--sample	statements	

•  “The	iden7cal	bands	are	found	to	be	associated	with	up-sloping	par7cle	states,	
sugges7ng	that	the	cause	may	be	a	cancella7on	between	pairing	and	deforma7on	
decreases.”	

						--PRL	69	3448	(1992).	
	
•  “…BCS	[pairing]	theory	can	qualita7vely	reproduce	the	experimental	large	

fluctua7ons	in	the	MoI	which	is	helpful	to	understand	the	appearance	of	the	
normally	deformed	iden7cal	bands	in	an	odd-A		nucleus	and	its	even-even	
neighbors…”	

							—PR	C63	047306	(2001).	
	
•  “In	par7cular,	the	reduc7on		of	the	BCS	pairing	correla7ons	due	to	the	blocking		of	

one	and	two	orbitals	implies	large	changes	(up	to		30%)	in	the	moments		of	iner7a	
and	cannot	be	reconciled	with	these	[iden7cal	band]	systema7cs.”	

								--Annu.	Rev.	Nucl.	Part.	Sci.	45	485	(1995).		
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FIG. 6. Double-gated, summed coincidence spectra of (a) band 1
(π,α =) (+,0), (b) band 2 (−,0), (c) band 3 (−,1) bands in 158Dy,
and (d) band 1 (+,+ 1

2 ) band in 159Dy. The 760-, 958-, 757-, 838-, and
932-keV side-feeding transitions in 158Dy are marked with asterisks.

in band-crossing interaction strengths with varying particle
numbers. The linear increase in the critical band-crossing
frequency h̄ωc with decreasing proton number for the first i13/2
(AB) crossing in the N = 92 even-even nuclei [Fig. 10(b)]
has already been documented and discussed in detail [56].
This behavior is consistent with an increase in quadrupole
deformation when moving from Hf to Dy [40], which results

FIG. 8. Experimental alignment (i) versus rotational frequency
(h̄ω) for bands in 158Dy. The band crossings are labeled at the
appropriate rotational frequencies [36,37]. The AB and BC labels
refer to the first and second i13/2 neutron crossings and the ApBp

label to the first h11/2 proton crossing. Harris parameters of ℑ0 =
32 MeV−1h̄2 and ℑ1 = 34 MeV−3h̄4 were used. These provide a
constant alignment above h̄ω = 0.2 MeV for the three-quasiparticle
configuration (BpAB) in 157Ho [38], included as a reference trajectory
(dotted) for comparison.

in the neutron Fermi surface for the latter being further
from the highly alignable, low-$ components of the i13/2
shell. A detailed comparison of the alignment frequencies in
these Dy isotopes is not possible because the BC and ApBp

band crossings have a strong interaction strength. However,
the alignment gains and approximate critical frequencies of
these band crossings form a consistent picture with those in
neighboring nuclei, as shown in Fig. 10.

The alignment systematics discussed above form a coherent
body of data, which are generally well described within the
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FIG. 7. Experimental alignment (i) versus
rotational frequency (h̄ω) for bands in 157Dy.
The band crossings are labeled at the appropriate
rotational frequencies [36,37]. The AB, BC, and
AD labels refer to the first, second, and third
i13/2 neutron crossings and the ApBp label to
the first h11/2 proton crossing. Harris parameters
of ℑ0 = 32 MeV−1h̄2 and ℑ1 = 34 MeV−3h̄4

were used. These provide a constant alignment
above h̄ω = 0.2 MeV for the three-quasiparticle
configuration (BpAB) in 157Ho [38], included as
a common reference trajectory (dotted) in each
of the panels.
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CONCLUSIONS	
•  The	rota7onal-par7cle	coupling	term	produces	effects	that	have	

been	overlooked.	
•  The	moments	of	iner7a	in	an	odd	nucleus	are	essen7ally	the	same	

as	those	in	the	neighboring	even	nucleus	with	the	greatest	
deforma7on.	

•  There	is	no	odd-par7cle	“blocking”	effect	of	moments	of	iner7a.	
•  There	is	no	“deforma7on-driving	effect”	of	unpaired	nucleons.	
•  A	reassessment	of	our	understanding	of	the	magnitudes	of	

moments	of	iner7a	is	needed:	there	are	models	that	atribute	
“rota7onal”	energies	to	poten7al-energy	sources,	e.g.,	Q�Q	
interac7ons	in	SU(3)	coupling	schemes.	

•  If	“rota7onal”	energy	is	partly	poten7al,	Coriolis	effects	are	
					atenuated—this	solves	a	long-standing	problem.	
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Abstract

The phenomenological symplectic model with a Davidson potential is used to construct
rotational states for a rare-earth nucleus with microscopic wave functions. The energy levels and

Ž .E2 transitions obtained are in remarkably close agreement to within a few percent with those of
the rotor model with vibrational shape fluctations that are adiabatically decoupled from the

Ž .rotational degrees of freedom. An analysis of the states in terms of their SU 3 content shows that
Ž .SU 3 is a very poor dynamical symmetry but an excellent quasi-dynamical symmetry for the

model. It is argued that such quasi-dynamical symmetry can be expected for any Hamiltonian that
reproduces the observed low-energy properties of a well-deformed nucleus, whenever the latter are
well-described by the nuclear rotor model. q 2000 Elsevier Science B.V. All rights reserved.

PACS: 03.65.Fd; 05.70.Fh; 21.60.Fw; 21.60.Ev
Ž .Keywords: Dynamical symmetry; Quasi-dynamical symmetry; Symplectic model; SU 3 ; Shell

model; Nuclear Structure

1. Introduction

A microscopic theory of nuclear structure would be very incomplete without a
satisfactory description of nuclear rotational states in terms of many-nucleon quantum

w xmechanics. However, while the states of a truly rigid rotor can be handled with ease 1 ,
they do not have square-integrable wave functions in either a spherical vibrational-model
or many-nucleon Hilbert space. Moreover, the expansion of liquid-like, soft-rotor, wave
functions on any spherical basis is slowly convergent. This means that many major
shells are required for a realistic shell-model theory of nuclear rotational states. It also
means that a realistic calculation of nuclear rotational states in terms of interacting
nucleons, without a priori knowledge of the kinds of correlations to expect, is an
impossibly difficult task. The fact remains that nuclear rotational bands are exceedingly
simple; they are essentially characterized by a few intrinsic quadrupole moments and

0375-9474r00r$ - see front matter q 2000 Elsevier Science B.V. All rights reserved.
Ž .PII: S0375-9474 99 00394-2

	“A	par7cularly	interes7ng	challenge	was	to	learn	how	a	model,	without	pair	correla7ons,	
could	give	correct	moments	of	iner7a	when	it	is	known	that	the	cranking	model	is	
	only	successful	when	pairing	correla7ons	are	included.	The	early	calcula7ons	of	Park	et	
al.	indicated	that	the	dominant	contribu7on	to	rota7onal	energies	came	from	the	
poten7al	energy	part	of	the	Hamiltonian,	thus	calling	into	ques7on	the	very	concept	of	
the	moment	of	iner7a	as	an	inverse	coefficient	of	the	L2		term	in	the	kine7c	energy.	The	
results	of	the	present	calcula7on	indicate	that	the	inclusion	of	only	stretched	states,	as	in	
the	calcula7on	of	Park	et	al.,	tends	to	exaggerate	this	effect.	Nevertheless,	it	confirms	
that	the	dominant	component	of	the	rota7onal	energies	comes	from	the	poten7al	energy;	
for	the	self-consistent	value	of	x		only	about	20%	of	the	rota7onal	energy	comes	from	
the	kine7c	energy	in	the	present	calcula7on.”	

#	

#--1984	
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EVOLUTION OF E2 TRANSITION STRENGTH IN . . . PHYSICAL REVIEW C 91, 044301 (2015)

FIG. 10. (Color online) Contour plots of the deformation energy surfaces in terms of the quadrupole deformations β2 and γ for the nuclei
168–178Hf, obtained from the Gogny HFB calculations using the D1M interaction. The color scale varies in steps of 0.25 MeV and the contour
lines are drawn in steps of 0.5 MeV. The range of the plot is 0.0 ! β ! 0.5 and 0◦ ! γ ! 60◦. The absolute minimum is identified by an open
circle.

the γ = 0 axis, being characteristic of an axially deformed
prolate rotor. While any significant change in the topology
is visible from the microscopic energy surface, the minimum
appears to be steeper in both β and γ directions for heavier Hf
isotopes. Although not shown here, the results with D1S look
quite similar to the D1M ones. However, as compared to the
D1M results, the energy minima of the D1S energy surfaces
are steeper in both β and γ directions than in the D1M case.
In Table VI we observe that for the nuclei 170–178Hf the HFB
energy of the minimum [relative to the energy of the spherical
configuration (β,γ ) = (0,0) and denoted as Emin] is generally
around 1.2–1.7 MeV smaller in magnitude in the D1M case
than the D1S one.

In Fig. 11 the β value at the absolute minimum of the
microscopic energy surface (denoted hereafter as β2,min) is
plotted as a function of neutron number. It exhibits a parabolic

TABLE VI. The HFB energy at the minimum (relative to the
spherical configuration, and denoted by Emin) as well as the position
of the minimum β2,min are given for both parametrizations of the
Gogny force and the 170–178Hf nuclei.

Emin (MeV) β2,min

D1S D1M D1S D1M

170Hf −12.214 −10.944 0.339 0.325
172Hf −13.788 −12.277 0.360 0.332
174Hf −14.724 −13.061 0.353 0.326
176Hf −15.068 −13.385 0.320 0.307
178Hf −14.960 −13.328 0.301 0.288

behavior with its maximum at N = 100 instead of the midshell
value N = 104. The D1S results are generally larger than the
D1M ones but in both cases they show their maximum value
at N = 100. However, as observed in Table VI, the minimum
energy Emin reaches its maximum at midshell for both the D1S
and the D1M sets.
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isotopes. Although not shown here, the results with D1S look
quite similar to the D1M ones. However, as compared to the
D1M results, the energy minima of the D1S energy surfaces
are steeper in both β and γ directions than in the D1M case.
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energy of the minimum [relative to the energy of the spherical
configuration (β,γ ) = (0,0) and denoted as Emin] is generally
around 1.2–1.7 MeV smaller in magnitude in the D1M case
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In Fig. 11 the β value at the absolute minimum of the
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TABLE VI. The HFB energy at the minimum (relative to the
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of the minimum β2,min are given for both parametrizations of the
Gogny force and the 170–178Hf nuclei.
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value N = 104. The D1S results are generally larger than the
D1M ones but in both cases they show their maximum value
at N = 100. However, as observed in Table VI, the minimum
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and the D1M sets.
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the γ = 0 axis, being characteristic of an axially deformed
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is visible from the microscopic energy surface, the minimum
appears to be steeper in both β and γ directions for heavier Hf
isotopes. Although not shown here, the results with D1S look
quite similar to the D1M ones. However, as compared to the
D1M results, the energy minima of the D1S energy surfaces
are steeper in both β and γ directions than in the D1M case.
In Table VI we observe that for the nuclei 170–178Hf the HFB
energy of the minimum [relative to the energy of the spherical
configuration (β,γ ) = (0,0) and denoted as Emin] is generally
around 1.2–1.7 MeV smaller in magnitude in the D1M case
than the D1S one.

In Fig. 11 the β value at the absolute minimum of the
microscopic energy surface (denoted hereafter as β2,min) is
plotted as a function of neutron number. It exhibits a parabolic

TABLE VI. The HFB energy at the minimum (relative to the
spherical configuration, and denoted by Emin) as well as the position
of the minimum β2,min are given for both parametrizations of the
Gogny force and the 170–178Hf nuclei.
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value N = 104. The D1S results are generally larger than the
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at N = 100. However, as observed in Table VI, the minimum
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“In	par7cular,	the	reduc7on		of	the	BCS	pairing	correla7ons	due	to	the	blocking		of	one	and	
	two	orbitals	implies	large	changes	(up	to		30%)	in	the	moments		of	iner7a	and	cannot	be	
	reconciled	with	these	[iden7cal	band]	systema7cs.”	
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