

Motivation

- The dominance of prolate (ellipsoidal) over oblate (disk) shapes in the ground states of even-even nuclei is still a puzzling open problem in nuclear structure.
- Comparision of experimental results with proxy $\operatorname{SU}(3)$ symmetry for a prolate-to-oblate shape transition in the rare earth region around neutron number $\mathrm{N}=116$.
- In addition to prolate-oblate, it is interesting challenge to predict nuclear shapes : ! and! .
- Proxy-SU(3) can predict! and! deformation variables

Deformation types

Spherical

- β is the deviation from the spherical shape.
-y lies between 0° and 60°, where $\gamma \approx 30^{\circ}$ means triaxial nucleus.

Figure from A.Martinou

Relation of Proxy-SU(3) irrep labels,

 ! , ! , to ! and ! deformation variables$\beta^{2}=\frac{4 \pi}{5} \frac{1}{\left(A r^{2}\right)^{2}}\left(\lambda^{2}+\lambda \mu+\mu^{2}+3 \lambda+3 \mu+3\right)$

if! ! ! ! ! the nucleus is oblate (! !
! ! ! deg.)
$2 \cap-1 \quad 1 \quad 1$

Combined (proton + neutron) Proxy-SU(3) irreps: prolate-oblate shapes

TABLE II: Most leading $\operatorname{SU}(3)$ irreps [34, 35] for nuclei with protons in the $50-82$ shell and neutrons in the $82-126$ shell. Boldface numbers indicate nuclei with $R_{4 / 2}=E\left(4_{1}^{+}\right) / E\left(2_{1}^{+}\right) \geq 2.8$, while * denotes nuclei with $2.8>R_{4 / 2} \geq 2.5$, and ${ }^{* *}$ labels a few nuclei with $R_{4 / 2}$ ratios $R_{4 / 2}<2.5$. For the rest of th still unknown [47]. Oblate irre

Predictions using

Combined (proton + neutron) Proxy-SU(3) irreps: prolate-oblate

	Ba	Ce	Nd	Sm	Gd	Dy	Er	Yb	Hf	W	Os	Pt
Z	56	58	60	62	64	66	68	70	72	74	76	78
$Z_{\text {val }}$	6	8	10	12	14	16	18	20	22	24	26	28
$N N_{\text {val }}$ irrep	$(18,0)$	$(18,4)$	$(20,4)$	$(24,0)$	$(20,6)$	$(18,8)$	$(18,6)$	$(20,0)$	$(12,8)$	$(6,12)$	$(2,12)$	$(0,8)$
$56 \quad 6(18,0)$	$(36,0)$	$(36,4)$	$(38,4)$	$(42,0)$	$(38,6)$	$(36,8)$	$(36,6)$	$(38,0)$	$(30,8)$	$(24,12)$	$(20,12)$	$(18,8)$
$58 \quad 8(18,4)$	$(36,4)$	$(36,8)$	$(38,8)$	$(42,4)$	$(38,10)$	$(36,12)$	$(36,10)$	$(38,4)$	$(30,12)$	$(24,16)$	$(20,16)$	$(18,12)$
$60 \quad 10(20,4)$	$(28,4)$	$(38,8)$	$(40,8)$	$(44,4)$	$(40,10)$	$(38,12)$	$(38,10)$	$(40,4)$	$(32,12)$	$(26,16)$	$(22,16)$	$(20,12)$
$62 \quad 12(24,0)$	$(42,0)$	$(42,4)$	$(44,4)$	$(48,0)$	$(44,6)$	$(42,8)$	$(42,6)$	$(44,0)$	$(36,8)$	$(30,12)$	$(26,12)$	$(24,8)$
$64 \quad 14(20,6)$	$(38,6)$	$(38,10)$	$(40,10)$	$(44,6)$	$(40,12)$	$(38,14)$	$(38,12)$	$(40,6)$	$(32,14)$	$(26,18)$	$(22,18)$	$(20,14)$
$6616(18,8)$	$(36,8)$	$(36,12)$	$(38,12)$	$(32,8)$	$(38,14)$	$(36,16)$	$(36,14)$	$(38,8)$	$(30,16)$	$(24,20)$	$(20,20)$	$(18,16)$
$6818(18,6)$	$(36,6)$	$(36,10)$	$(38,10)$	$(42,6)$	$(38,12)$	$(36,14)$	$(36,12)$	$(38,6)$	$(30,14)$	$(24,18)$	$(20,18)$	$(18,14)$
$70 \quad 20$ (20.0)	(38.0)*	(38.4)	(40.4)	(44.0)	(40.6)	(38.8)	(38.6)	$(40,0)$	(32.8)	(26.12)	2)	(20.8)
a prolate-to-oblate shape transition								$(32,8)$	$(24,16) \frac{(18,20)}{(12,24)}$		$\underline{(14,20)}$	$(12,16)$
								$(8,24)$			$(6,20)$	
								22,12)	$\underline{(14,20)}$	$(8,24)$	$\underline{(4,24)}$	$(2,20)$
								$(20,8)$	$\overline{(12,16)}$	$\overline{(6,20)}$	$\overline{(2,20)}$	$(0,16)$

$\mathbf{Z}=\mathbf{N}=50-82$ Shell

Prolate-Oblate Phase Transition In The Hf-Hg region

N	108	108	110	112	112	114	116	116	118	118	120
Nucleus	${ }^{180} \mathrm{Hf}$	${ }^{182} \mathrm{~W}$	${ }^{184} \mathrm{~W}$	${ }^{186} \mathrm{~W}$	${ }^{188} \mathrm{Os}$	${ }^{190} \mathrm{Os}$	${ }^{192} \mathrm{Os}$	${ }^{194} \mathrm{Pt}$	${ }^{196} \mathrm{Pt}$	${ }^{198} \mathrm{Hg}$	${ }^{200} \mathrm{Hg}$
$(\boldsymbol{\lambda , \mu})$	$(40,20)$	$(34,24)$	$(34,20)$	$(36,12)$	$(32,12)$	$(22,22)$	$(14,28)$	$(12,24)$	$(6,26)$	$(6,18)$	$(2,16)$

prolate

Prolate to Oblate shape phase transition in Os

N	96	98	100	102	104	106	108	110	112	114	116	118
Nucleus	${ }^{172} \mathrm{Os}$	${ }^{174} \mathrm{Os}$	${ }^{176} \mathrm{Os}$	${ }^{178} \mathrm{Os}$	${ }^{180} \mathrm{Os}$	${ }^{182} \mathrm{Os}$	${ }^{184} \mathrm{Os}$	${ }^{186} \mathrm{Os}$	${ }^{188} \mathrm{Os}$	${ }^{190} \mathrm{Os}$	${ }^{192} \mathrm{Os}$	${ }^{194} \mathrm{Os}$
(λ, μ)	$(36,18)$	$(36,20)$	$(38,18)$	$(42,12)$	$(36,20)$	$(32,24)$	$(30,24)$	$(30,20)$	$(32,12)$	$(22,22)$	$(14,28)$	$(8,30)$

prolate

Empirical values and Proxy-SU(3) predictions of the ! deformation variable

Empirical values and Proxy-SU(3) predictions for the! deformation variable

Empirical values and Proxy-SU(3) predictions of ! deformation values

Similar trends: 10-15 deg. rising to ~ 30 degrees
Oscillations in the predictions: Presumably due to neglect of pairing which would average out predictions over several neutron numbers
! is only rising at large neutron number \mathbf{N}, indicating regions with triaxial shapes.

Conclusions

- The new proxy-SU(3) scheme is a good approximation to the full set of orbits in major shells and yields a reasonable Nilsson diagram for well-deformed nuclei.
- Not trying to claim that proxy-SU(3) is a detailed microscopic calculation but it is a valuable, extremely simple model for well-deformed nuclei.
- The prolate over oblate dominance
- The proxy-SU(3) symmetry suggests $\mathrm{N} \sim 116$ as the point of the prolate-to-oblate shape/phase transition, in agreement with existing exprerimental evidence and microscopic calculations, for the $\mathrm{Z}=50-82, \mathrm{~N}=82-126$ shells.
- For the $\mathrm{Z}=\mathrm{N}=50-82$ shells, a prolate-to-oblate shape/phase transition occurs at $\mathrm{N}=$ 72.
- The proxy-SU(3) symmetry provides predictions for the collective variables which are comparable empirical values obtained from B(E2) transition rates and with microscopic calculations where the data are known. Interestingly, there are significant differences in nuclei where these $\mathrm{B}(\mathrm{E} 2)$ values are not yet measured.

THANKS

 For Collaborators on Proxy SU(3)

 For Collaborators on Proxy SU(3)}

Dennis Bonatsos, Nikolay Minkov Rick Casten, Klaus Blaum
Andriana Martinou, I.E. Assimakus, S. Sarantopoulou

Main references on Proxy SU(3)

Phys. Rev. C95, 064325(2017) Proxy-SU(3) symmetry in heavy deformed nuclei Phys. Rev. C95, 064326(2017) Analytic predictions for nuclear shapes, prolate dominance, and the prolate-oblate shape transition in the proxy-SU(3) model

Thank you for your attention !

