

Nuclear shape predictions with proxy-SU(3)

R.Burcu ÇAKIRLI Istanbul University

Shapes and Symmetries in Nuclei: from Experiment to Theory (SSNET'17 Conference, Orsay-France, Nov 6-10, 2017

Motivation

- The dominance of prolate (ellipsoidal) over oblate (disk) shapes in the ground states of even-even nuclei is still a puzzling open problem in nuclear structure.
- Comparision of experimental results with proxy SU(3) symmetry for a prolateto-oblate shape transition in the rare earth region around neutron number N = 116.
- In addition to prolate-oblate, it is interesting challenge to predict nuclear shapes
 :! and ! .

Proxy-SU(3) can predict ! and ! deformation variables Deformation types Spherical Prolate Oblate **β**=0 γ≈0° γ≈60°

- β is the deviation from the spherical shape.
- γ lies between 0° and 60°, where γ≈30° means triaxial nucleus.

Figure from A.Martinou

Relation of Proxy-SU(3) irrep labels, ! , ! , to ! and ! deformation variables

$$\beta^2 = \frac{4\pi}{5} \frac{1}{(A\bar{r^2})^2} (\lambda^2 + \lambda\mu + \mu^2 + 3\lambda + 3\mu + 3)$$

$$\gamma = \arctan\left(\frac{\sqrt{3}(\mu+1)}{2\lambda+\mu+3}\right) \quad \stackrel{! >> 1, ! = 0, \\ ! \rightarrow 0! \\ ! >> 1, ! = !, \\ ! = 30! \\ \text{Note in particular that,} \\ \text{if ! ! ! ! ! the nucleus is oblate (! ! \\ ! ! deg.) \\ 20 < 1 < 1 < 60 \\ \end{cases}$$

Combined (proton + neutron) Proxy-SU(3) irreps: prolate-oblate shapes

Boldf a few	TABLE II: Most leading SU(3) irreps [34, 35] for nuclei with protons in the 50-82 shell and neutrons in the 82-126 shell. Boldface numbers indicate nuclei with $R_{4/2} = E(4_1^+)/E(2_1^+) \ge 2.8$, while * denotes nuclei with $2.8 > R_{4/2} \ge 2.5$, and ** labels a few nuclei with $R_{4/2}$ ratios any other nuclei with $R_{4/2}$ ratios any other nuclei with $R_{4/2}$ ratios													
	$R_{4/2} < 2.5$. For the rest of th still unknown [47]. Oblate irre Predictions using d) the $R_{4/2}$ ratios are													
		_	Ba	(1	1	1					V	Os	Pt
			56		•	, ·						4	76	78
N	N _{val}	Z_{val} irrep	6 (18,0)	(18,4)	(90.4)	(24.0)	(20,6)	(18,8)	(18.6)	(20.0)	(12,8)	$(6,12)^4$	26 (2.12)	28 (0.8)
88	• <u>val</u> 6	(24,0)		(10,4)	(20,4) $(44,4)^*$	(24,0)	(20,0)	(10,0)	(18,6)	(20,0)	(12,0)	(0,12)	(2,12)	(0,8)
90	8	(26,4)		(44,8)	(40.8)	(50,4)	(46.10)	(44.12)	(44,10)*	$(46.4)^*$	(38,12)*			
92	10	(30,4)		(48,8)	(50.8)		(50,10)				(42,12)*			
94	12	(36,0)	(54,0)	(54,4)	(52,4)	(60,0)	(56,6)	(54,8)	(54,6)	(56,0)	(48,8)	(42, 12)	(38,12)*	
96	14	(34,6)	/ 59		(54 10)	(20 6)	(54 19)	(59.14)	12)	(54.6)	(46, 14)	(40, 18)	$(36, 18)^*$	
98	16	(34,8)		1 1	1 1	1	n	rola	to ¹⁴⁾		(46, 16)	(40, 20)	(36,20)*	
100	18	(36,6)	•	• •	• •	•			L#)	(56,6)	(48,14)	(42, 18)	(38, 18)	$(36, 14)^*$
102	20	(40,0)	(58,0)	(58,4)	(60,4)	(64,0)	(60, 6)	(58,8)	(58,6)	(60,0)		(46, 12)	(42, 12)	(40,8)*
104	22	(34,8)	(52,8)	(52, 12)	(54, 12)	(58,8)	(54, 14)				(46, 16)	(40, 20)	(36, 20)	$(34, 16)^*$
106			(48, 12)		(50, 16)		(50, 18)		(48, 18)		(42,20)	(36, 24)	(32, 24)	$(30,20)^*$
108		S	(46, 12)	(46, 16)	(48, 16)		(48, 18)	(46, 20)		(48, 12)	(40, 20)	(34, 24)	(30, 24)	$(28,20)^*$
110	28	(28,8)	(46,8)	(46, 12)	(48, 12)	(52,8)	(48,14)	(46, 16)	(46, 14)	(48,8)	(40,16)	(34,20)	(30,20)	$(28,16)^*$
112	30	(30,0)	(48,0)	(48,4)	(50,4)	(54,0)	(50,6)	(48,8)	(48,6)	(50,0)	(42,8)	(36,12)	(32,12)	(30,8)**
114		· · · · /		(38.14)	(40.14)	(44.10)	(40.16)	(38,18)	(38,16)	(40.10)	(32,18)	(26.22)		(20.18)**
116		(12,16)	l a n	rola	to_to	oble	ate sh	ana			(24, 14)	(18, 28)*		(12, 24) * *
118	36	(6,18)		IUIA				lape			18, 26	(12, 30)	(8, 30)*	(6, 26) * *
120	38	(2,16)	tra	nsiti	on o	ccur	s at N	$\mathbf{N} = 1$	16,		14, 24	(8, 28)	(4, 28)*	(2, 24) * *

Combined (proton + neutron) Proxy-SU(3) irreps: prolate-oblate

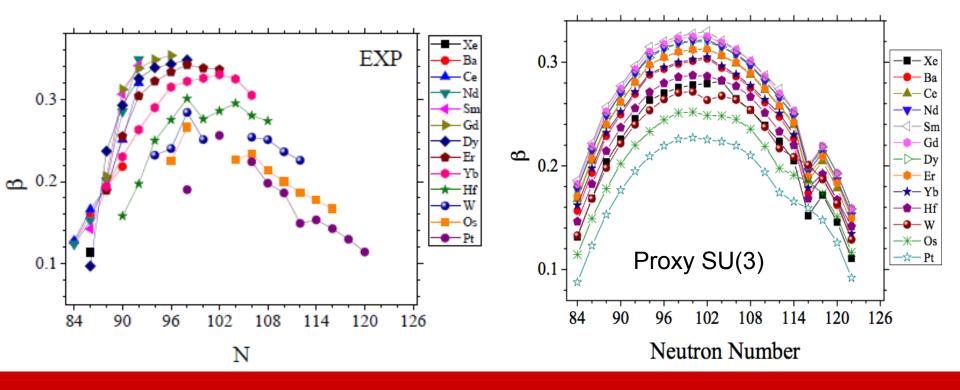
TABLE II: Same as Table II, but for the most leading SU(3) irreps [34, 35] for nuclei with protons in the 50-82 shell and neutrons in the 50-82 shell.

	Ba	Ce	Nd	\mathbf{Sm}	Gd	Dy	\mathbf{Er}	Yb	Hf	W	Os	\mathbf{Pt}
Z	56	58	60	62	64	66	68	70	72	74	76	78
Z_{val}	6	8	10	12	14	16	18	20	22	24	26	28
$N N_{val}$ irrep	(18,0)	(18, 4)	(20,4)	(24,0)	(20,6)	(18,8)	(18,6)	(20,0)	(12,8)	(6, 12)	(2, 12)	(0,8)
$56 6 \ (18,0)$	(36,0)	(36, 4)	(38,4)	(42,0)	(38,6)	(36,8)	(36, 6)	(38,0)	(30,8)	(24, 12)	(20, 12)	(18,8)
58 8 (18,4)	(36, 4)	(36, 8)	(38,8)	(42, 4)	(38, 10)	(36, 12)	(36, 10)	(38,4)	(30, 12)	(24, 16)	(20, 16)	(18, 12)
60 10 (20,4)	(28,4)	(38,8)	(40,8)	(44, 4)	(40, 10)	(38, 12)	(38, 10)	(40,4)	(32, 12)	(26, 16)	(22, 16)	(20, 12)
62 12 (24,0)	(42,0)	(42,4)	(44,4)	(48,0)	(44,6)	(42,8)	(42,6)	(44,0)	(36,8)	(30, 12)	(26, 12)	(24,8)
64 14 (20,6)	(38, 6)	(38,10)	(40, 10)	(44, 6)	(40, 12)	(38, 14)	(38, 12)	(40,6)	(32, 14)	(26, 18)	(22, 18)	(20, 14)
66 16 (18,8)	(36,8)	(36, 12)	(38, 12)	(32, 8)	(38, 14)	(36, 16)	(36, 14)	(38,8)	(30, 16)	(24, 20)	(20, 20)	(18, 16)
68 18 (18,6)	(36, 6)	(36,10)	(38,10)	(42,6)	(38, 12)	(36, 14)	(36, 12)	(38,6)	(30, 14)	(24, 18)	(20, 18)	(18, 14)
70 20 (20.0)	(38.0)*	(38.4)	(40.4)	(44.0)	(40.6)	(38.8)	(38.6)	(40,0)	(32.8)	(26.12)	(22.12)	(20.8)
	to to	abla	to aba					(32, 8)	(24, 16)	(18, 20)	(14, 20)	(12, 16)
a prola	le-lo-	-0DIa	le sna	ipe ir				26,12)	(18, 20)	(12, 24)	(8, 24)	(6, 20)
occurs	ot N :	= 72	1 1	1 1	1			22,12	(14, 20)	(8, 24)	(4, 24)	(2, 20)
Loccurs		- 12,	• •	• •	ė		· · · /	(20,8)	(12, 16)	(6, 20)	(2, 20)	(0, 16)

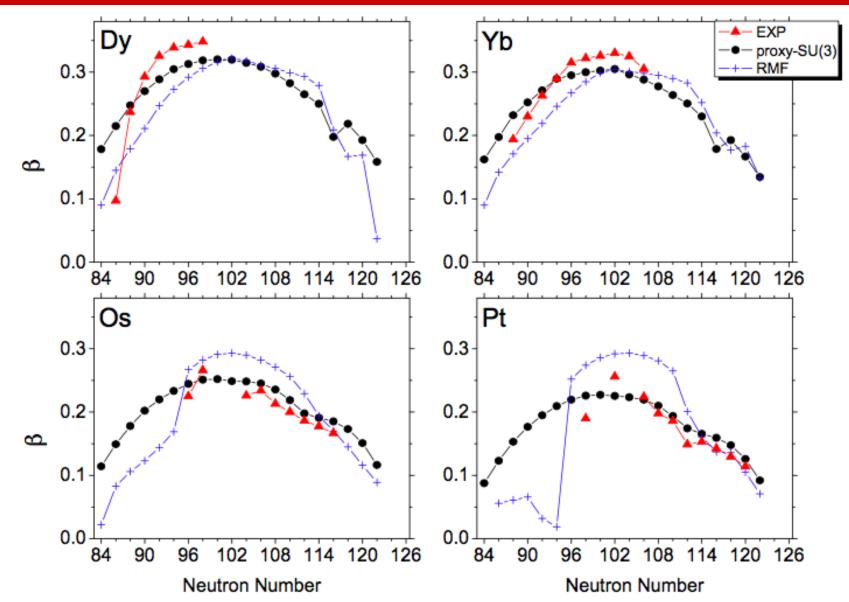
Z=N=50-82 Shell

Prolate-Oblate Phase Transition In The Hf-Hg region

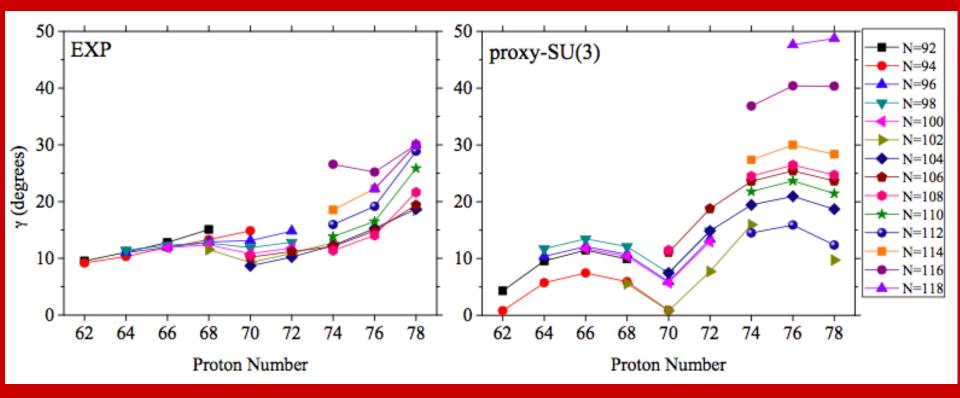
N	108	108	110	112	112	114	116	116	118	118	120
Nucleus	$^{180}\mathrm{Hf}$	182 W	$^{184}{ m W}$	186 W	¹⁸⁸ Os	¹⁹⁰ Os	¹⁹² Os	¹⁹⁴ Pt	¹⁹⁶ Pt	¹⁹⁸ Hg	²⁰⁰ Hg
(λ,μ)	(40,20)	(34,24)	(34,20)	(36,12)	(32,12)	(22,22)	(14,28)	(12,24)	(6,26)	(6,18)	(2,16)


Prolate to Oblate shape phase transition in Os

N	96	98	100	102	104	106	108	110	112	114	116	118
Nucleus	¹⁷² Os	¹⁷⁴ Os	¹⁷⁶ Os	¹⁷⁸ Os	¹⁸⁰ Os	¹⁸² Os	¹⁸⁴ Os	¹⁸⁶ Os	¹⁸⁸ Os	¹⁹⁰ Os	¹⁹² Os	¹⁹⁴ Os
(λ,μ)	(36,18)	(36,20)	(38,18)	(42,12)	(36,20)	(32,24)	(30,24)	(30,20)	(32,12)	(22,22)	(14,28)	(8,30)


 $\int_{\lambda<\mu}$ oblate

prolate


Empirical values and Proxy-SU(3) predictions of the ! deformation variable

Empirical values and Proxy-SU(3) predictions for the ! deformation variable

Empirical values and Proxy-SU(3) predictions of ! deformation values

Similar trends: 10-15 deg. rising to ~30 degrees Oscillations in the predictions: Presumably due to neglect of pairing which would average out predictions over several neutron numbers ! is only rising at large neutron number N, indicating regions with triaxial shapes.

Conclusions

- The new proxy-SU(3) scheme is a good approximation to the full set of orbits in major shells and yields a reasonable Nilsson diagram for well-deformed nuclei.
- Not trying to claim that proxy-SU(3) is a detailed microscopic calculation but it is a valuable, extremely simple model for well-deformed nuclei.
- The prolate over oblate dominance
- The proxy-SU(3) symmetry suggests N ~ 116 as the point of the prolate-to-oblate shape/phase transition, in agreement with existing exprerimental evidence and microscopic calculations, for the Z=50-82, N=82-126 shells.
- For the Z=N=50-82 shells, a prolate-to-oblate shape/phase transition occurs at N = 72.
- The proxy-SU(3) symmetry provides predictions for the collective variables which are comparable empirical values obtained from B(E2) transition rates and with microscopic calculations where the data are known. Interestingly, there are significant differences in nuclei where these B(E2) values are not yet measured.

THANKS

For Collaborators on Proxy SU(3)

Dennis Bonatsos, Nikolay Minkov Rick Casten, Klaus Blaum Andriana Martinou, I.E. Assimakus, S. Sarantopoulou

Main references on Proxy SU(3)

Phys. Rev. C95, 064325(2017) Proxy-SU(3) symmetry in heavy deformed nuclei Phys. Rev. C95, 064326(2017) Analytic predictions for nuclear shapes, prolate dominance, and the prolate-oblate shape transition in the proxy-SU(3) model

Thank you for your attention !