Shapes describing the fusion, binary and ternary fission, ! and cluster radioactivities, fragmentation and alpha molecules

G. Royer, J. Jahan, N. Mokus

```
Subatech Laboratory (IN2P3/CNRS, University, IMT), Nantes, France
```

- Definitions
- Ellipsoids
- Elliptic and hyperbolic lemniscatoids
- Prolate ternary shapes
- Pumpkin-like shapes and tori
- Bubbles
- n-alphas: ${ }^{8} \mathrm{Be},{ }^{12} \mathrm{C},{ }^{16} \mathrm{O},{ }^{20} \mathrm{Ne},{ }^{24} \mathrm{Mg},{ }^{32} \mathrm{~S}$

General definitions

Relative (to the sphere of radius R_{0}) shape-dependent surface B_{s}, curvature $B_{1 .}$ and Coulomb (or qravitational) B. functions :

$$
B_{s}=\int_{\sigma} \frac{d \sigma}{4 \pi R_{0}{ }^{2}} \quad B_{k}=\int_{\sigma} k_{l} \frac{d \sigma}{8 \pi R_{0}} \quad B_{C}=\frac{15}{16 \pi^{2} R_{0}{ }^{5}} \int d \tau \int \frac{d \tau^{\prime}}{\left|\vec{r}-\vec{r}^{\prime}\right|}
$$

(B_{s}, B_{k}, and $B_{c}=1$ for the sphere)
For axially symmetric shapes : $\quad B_{C}=\frac{1}{2} \int \frac{v\left(\theta_{i}\right)}{v_{0}}\left[\frac{R\left(\theta_{i}\right)}{R_{0}}\right]^{3} \sin \left(\theta_{i}\right) d \theta_{i}$
$\frac{v\left(\theta_{i}\right)}{v_{0}}=\frac{3}{2 \pi R_{0}{ }^{2}} \int \frac{\rho\left[\left(\rho_{i}+\rho\right) \frac{d z}{d \theta}+\left(z_{i}-z\right) \frac{d \rho}{d \theta}\right] K(k)-\frac{1}{2}\left[\left(\rho_{i}+\rho\right)^{2}+\left(z_{i}-z\right)^{2}\right] \frac{d z}{d \theta} D(k)}{\sqrt{\left(\rho_{i}+\rho\right)^{2}+\left(z_{i}-z\right)^{2}}} d \theta$.
$(v(!)$ is the potential at the surface of the shape)
Relative (dimensionless) quadrupole moment : $\quad Q=\frac{1}{R_{0}{ }^{5}} \iiint\left(3 z^{2}-r^{2}\right) d \tau$
Inverse effective moment of inertia : $\quad I_{e f f}^{-1}=I_{\|}^{-1}-I_{\perp}{ }^{-1}$
Deformation parameter

$$
\beta=\frac{0.75}{\sqrt{5 \pi}} Q R_{0}^{2}\left\langle r^{2}\right\rangle^{-1} \quad \beta=2 \sqrt{\frac{\pi}{5}} \frac{I_{\perp}-I_{\|}}{I_{\perp}+0.5 I_{\|_{2}}}
$$

Link between the elliptic lemniscatoid L and the prolate E_{1}

 and oblate E2 ellipsoidsWhen the point M generates the prolate ellipsoid E_{1}, the point H, projection of the origin onto the tangential plane in M, generates the elliptic lemniscatoid $L . M^{\prime}$, the inverse of the point H, describes the oblate ellipsoid E_{2}.

Prolate and oblate ellipsoids

For axially symmetric ellipsoids and in polar coordinates :

$$
1 / R(\theta)^{2}=\sin ^{2} \theta / a^{2}+\cos ^{2} \theta / c^{2}
$$

a is the transverse semiaxis and c is half the elongation.

$s=a / c$. (volume conservation: $a^{2} c=R_{0}^{3}$)
For prolate deformations $s<1$ and the eccentricity $e^{2}=1-s^{2}$.
For oblate deformations $s>1$ and the eccentricity $e^{2}=1-s^{-2}$.
In the prolate case :

$$
B_{s}=\frac{\left(1-e^{2}\right)^{1 / 3}}{2}\left[1+\frac{\sin ^{-1}(e)}{e\left(1-e^{2}\right)^{1 / 2}}\right]
$$

$$
B_{C}=\frac{\left(1-e^{2}\right)^{1 / 3}}{2 e} \ln \left(\frac{1+e}{1-e}\right)
$$

In the oblate case :

$$
B_{s}=\frac{\left(1+\epsilon^{2}\right)^{1 / 3}}{2}\left[1+\frac{\ln \left(\epsilon+\left(1+\epsilon^{2}\right)^{1 / 2}\right)}{\epsilon\left(1+\epsilon^{2}\right)^{1 / 2}}\right] \quad \epsilon^{2}=s^{2}-1 \quad B_{C}=\frac{\left(1+\epsilon^{2}\right)^{1 / 3}}{\epsilon} \tan ^{-1} \epsilon
$$

For the prolate ellipsoidal shapes :

$$
I_{\perp}=\frac{s^{-4 / 3}+s^{2 / 3}}{2} \quad I_{\|}=s^{2 / 3} \quad Q=\frac{8 \pi}{15}\left(s^{-4 / 3}-s^{2 / 3}\right){ }_{4}
$$

Elliptic Lemniscatoïds

$$
R(\theta)^{2}=a^{2} \sin ^{2} \theta+c^{2} \cos ^{2} \theta . \quad s=a / c
$$

a and c are the radial and transverse semi-axes.
Assuming volume conservation, when s varies from 0 to 1 (or viceversa) the elliptic lemniscatoids evolve from two tangent spheres to a sphere with the intermediate formation of a deep neck.

(for $s=1 / 3$)

Elliptic Lemniscatoïds

Volume:

$$
V=\frac{4}{3} \pi R_{0}{ }^{3}=\frac{\pi}{12} c^{3}\left[4+6 s^{2}+\frac{3 s^{4}}{\sqrt{1-s^{2}}} \sinh ^{-1}\left(\frac{2}{s^{2}} \sqrt{1-s^{2}}\right)\right]
$$

Surface area:

$$
S=4 \pi R_{0}{ }^{2} B_{s}=2 \pi c^{2}\left[1+\frac{s^{4}}{\sqrt{1-s^{4}}} \sinh ^{-1}\left(\frac{1}{s^{2}} \sqrt{1-s^{4}}\right)\right]
$$

Distance r between the mass centers

$$
\begin{aligned}
r & =\frac{2 \int_{0}^{c} z d^{3} r}{\int_{0}^{c} d^{3} r} \\
r & =\pi c^{4} \frac{1+s^{2}+s^{4}}{3 V}
\end{aligned}
$$

Relative perpendicular and parallel moments of inertia:

$$
\begin{aligned}
& I_{\perp, \text { rel }}=\frac{c^{5} s^{2}}{512\left(1-s^{2}\right) R_{0}{ }^{5}}\left[\frac{112}{s^{2}}+8+30 s^{2}-135 s^{4}+\frac{120 s^{4}-135 s^{6}}{\sqrt{1-s^{2}}} \sinh ^{-1}\left(\sqrt{\frac{1-s^{2}}{s^{2}}}\right)\right] \\
& I_{\|, \text {rel }}=\frac{c^{5} s^{2}}{512\left(1-s^{2}\right) R_{0}^{5}}\left[\frac{32}{s^{2}}+48+100 s^{2}-210 s^{4}+\frac{240 s^{4}-210 s^{6}}{\sqrt{1-s^{2}}} \sinh ^{-1}\left(\sqrt{\frac{1-s^{2}}{s^{2}}}\right)\right]
\end{aligned}
$$

Quadrupole moment :

$$
Q=\frac{\pi c^{5} s^{2}}{96\left(1-s^{2}\right) R_{0}{ }^{5}}\left[\frac{16}{s^{2}}-8-14 s^{2}+15 s^{4}-\frac{24 s^{4}-15 s^{6}}{\sqrt{1-s^{2}}} \sinh ^{-1}\left(\sqrt{\frac{1-s^{2}}{s^{2}}}\right)\right]
$$

Asymmetric quasimolecular shapes

The transition from two unequal spheres to one sphere or vice versa can be described in joining two different elliptic lemniscatoids assuming the same transverse distance a and the volume conservation.

$$
R(\theta)^{2}=\left\{\begin{array}{ll}
a^{2} \sin ^{2} \theta+c_{1}^{2} \cos ^{2} \theta & 0 \leq \theta \leq \pi / 2 \\
a^{2} \sin ^{2} \theta+c_{2}^{2} \cos ^{2} \theta & \pi / 2<\theta<\pi
\end{array} \quad R_{0}^{3}=R_{1}^{3}+R_{2}{ }^{3}\right.
$$

The two parameters $s_{1}=a / c_{1}$ and $s_{2}=a / c_{2}$ define the shape and the two radii R_{1} and R_{2} connect s_{1} and s_{2} :

$$
s_{2}^{2}=\frac{s_{1}^{2}}{s_{1}^{2}+\left(1-s_{1}^{2}\right)\left(R_{2} / R_{1}\right)^{2}}
$$

When s_{1} increases from 0 to 1 , the shape evolves continuously from two touching different spheres to one sphere with the formation of a deep neck, while keeping almost spherical ends.

Asymmetric quasimolecular shapes

The distance r between the centers of mass of the two parts is $r=r_{1}+r_{2}$. The volume of the two parts being conserved, r_{1} and r_{2} depend on z_{v}, the distance from the origin to the separation plane.

$$
\begin{aligned}
& r_{1}=\frac{1}{\frac{4}{3} R_{1}{ }^{3}}\left\{\frac{z_{v}^{4}-a^{2} z_{v}{ }^{2}}{4}+\frac{c_{1}{ }^{4}+a^{2} c_{1}{ }^{2}+a^{4}}{12}-\frac{a s_{2}{ }^{2}}{3\left(1-s_{2}{ }^{2}\right)}\left[\left(\frac{z_{v}{ }^{2}\left(1-s_{2}{ }^{2}\right)}{s_{2}{ }^{2}}+\frac{a^{2}}{4}\right)^{3 / 2}-\frac{a^{3}}{8}\right]\right\} \\
& r_{2}=\frac{1}{\frac{4}{3} R_{2}{ }^{3}}\left\{\frac{z_{v}^{4}-a^{2} z_{v}{ }^{2}}{4}-\frac{a^{4}}{4}\left(\frac{1-s_{2}{ }^{2}}{s_{2}{ }^{4}}\right)+\frac{a s_{2}{ }^{2}}{3\left(1-s_{2}{ }^{2}\right)}\left[a^{3}\left(\frac{1}{s_{2}{ }^{2}}-\frac{1}{2}\right)^{3}-\left(\frac{z_{v}{ }^{2}\left(1-s_{2}{ }^{2}\right)}{s_{2}{ }^{2}}+\frac{a^{2}}{4}\right)^{3 / 2}\right]\right\}
\end{aligned}
$$

z_{v} is the solution of the equation:
$\frac{1}{3} z^{3}-\frac{1}{2} a^{2} z+\frac{1}{12}\left(2 c_{2}{ }^{3}+3 a^{2} c_{2}\right)+\frac{1}{2} \sqrt{c_{2}{ }^{2}-a^{2}}\left[D^{2} \sinh ^{-1}\left(\frac{c_{2}}{D}\right)-D^{2} \sinh ^{-1}\left(\frac{z}{D}\right)-z \sqrt{z^{2}+D^{2}}\right]=\frac{4}{3} R_{2}{ }^{3}$

Hyperbolic lemniscatoids (Cassinian ovaloids)

For one-body shapes, a and c are the radial and transverse semi-axes and $s=a / c$.

$$
\begin{gathered}
x^{2}=-z^{2}+0.5 c^{2}\left(s^{2}-1\right)+0.5 c \sqrt{8\left(1-s^{2}\right) z^{2}+c^{2}\left(1+s^{2}\right)^{2}} \\
V=\frac{\pi c^{3}}{12}\left[-2+6 s^{2}+\frac{3\left(1+s^{2}\right)^{2}}{\sqrt{2\left(1-s^{2}\right)}} \sinh ^{-1}\left(\frac{2 \sqrt{2\left(1-s^{2}\right)}}{1+s^{2}}\right)\right]
\end{gathered}
$$

For two-body shapes s is the opposite of the ratio of the distance between the tips of the fragments and the system elongation. When s varies from 1 to -1 the shapes vary continuously from a sphere to two infinitely separated spheres, assuming volume conservation.

$$
\begin{gathered}
x^{2}=-z^{2}-0.5 c^{2}\left(s^{2}+1\right)+0.5 c \sqrt{8\left(1+s^{2}\right) z^{2}+c^{2}\left(1-s^{2}\right)^{2}} \\
V=\frac{\pi c^{3}}{12}\left[-2(1+s)^{3}+\frac{3\left(1-s^{2}\right)^{2}}{\sqrt{2\left(1+s^{2}\right)}} \sinh ^{-1}\left(\frac{2(1+s) \sqrt{2\left(1+s^{2}\right)}}{(1-s)^{2}}\right)\right]
\end{gathered}
$$

Hyperbolic lemniscatoids, formulas for one-body shapes

Relative surface:

$$
\begin{array}{r}
B_{s}=\frac{c^{2}}{4 R_{0}{ }^{2}} \times\left[4\left(1+s^{2}\right)+2 \sqrt{\frac{2\left(1+s^{2}\right)}{1-s^{2}}} s^{2} F\left(\sin ^{-1} \sqrt{1-s^{2}}, \frac{1}{\sqrt{1+s^{2}}}\right)\right. \\
\left.-2\left(1+s^{2}\right) \sqrt{\frac{2\left(1+s^{2}\right)}{1-s^{2}}} E\left(\sin ^{-1} \sqrt{1-s^{2}}, \frac{1}{\sqrt{1+s^{2}}}\right)\right]
\end{array}
$$

Distance r between the mass centers of each part: $\quad r=\pi c^{4} \frac{1+s^{2}+s^{4}}{3 V}$ Relative perpendicular and parallel moments of inertia:

$$
\begin{gathered}
I_{\perp}=\frac{c^{5}}{1024\left(1-s^{2}\right) R_{0}{ }^{5}}\left[269+251 s^{2}-145 s^{4}-255 s^{6}-\frac{15\left(1+s^{2}\right)^{2}\left(17-30 s^{2}+17 s^{4}\right)}{2 \sqrt{2\left(1-s^{2}\right)}} \sinh ^{-1}\left(\frac{2 \sqrt{2\left(1-s^{2}\right)}}{1+s^{2}}\right)\right] \\
I_{\| \|}=\frac{c^{5}}{512\left(1-s^{2}\right) R_{0}{ }^{5}}\left[147-27 s^{2}-15 s^{4}-225 s^{6}-\frac{15\left(1+s^{2}\right)^{2}\left(15-34 s^{2}+15 s^{4}\right)}{2 \sqrt{2\left(1-s^{2}\right)}} \sinh ^{-1}\left(\frac{2 \sqrt{2\left(1-s^{2}\right)}}{1+s^{2}}\right)\right]
\end{gathered}
$$

Quadrupole moment:

$$
Q=\frac{\pi c^{5}}{192\left(1-s^{2}\right) R_{0}{ }^{5}}\left[-5+61 s^{2}-23 s^{4}+39 s^{6}+\frac{3\left(1+s^{2}\right)^{2}\left(13-38 s^{2}+13 s^{4}\right)}{2 \sqrt{2\left(1-s^{2}\right)}} \sinh ^{-1}\left(\frac{2 \sqrt{2\left(1-s^{2}\right)}}{1+s^{2}}\right)\right]
$$

Hyperbolic lemniscatoids, formulas for two-body shapes

Distance r between the mass centers of each part:

$$
r=\frac{c^{4}}{8 R_{0}^{3}} \times \frac{\left(1-s^{2}\right)^{3}}{1+s^{2}}
$$

Relative perpendicular and parallel moments of inertia and quadrupole moment:

$$
\begin{aligned}
& I_{\|}= \frac{c^{5}}{512\left(1+s^{2}\right) R_{0}{ }^{5}}\left[147+225 s+27 s^{2}-15 s^{3}-15 s^{4}+27 s^{5}+225 s^{6}+147 s^{7}\right. \\
&\left.-\frac{15\left(1-s^{2}\right)^{2}\left(15+34 s^{2}+15 s^{4}\right)}{2 \sqrt{2\left(1+s^{2}\right)}} \sinh ^{-1}\left(\frac{2(1+s) \sqrt{2\left(1+s^{2}\right)}}{(1-s)^{2}}\right)\right] \\
& I_{\perp}= \frac{c^{5}}{1024\left(1+s^{2}\right) R_{0}{ }^{5}} \times\left[269+255 s-251 s^{2}-145 s^{3}-145 s^{4}-251 s^{5}+255 s^{6}\right. \\
&\left.+269 s^{7}-\frac{15\left(1-s^{2}\right)^{2}\left(17+30 s^{2}+17 s^{4}\right)}{2 \sqrt{2\left(1+s^{2}\right)}} \sinh ^{-1}\left(\frac{2(1+s) \sqrt{2\left(1+s^{2}\right)}}{(1-s)^{2}}\right)\right] \\
& Q=\frac{\pi c^{5}}{192\left(1-s^{2}\right) R_{0}{ }^{5}}\left[-5-39 s-61 s^{2}-23 s^{3}-23 s^{4}-61 s^{5}-39 s^{6}-5 s^{7}\right. \\
&\left.+\frac{3\left(1-s^{2}\right)^{2}\left(13+38 s^{2}+13 s^{4}\right)}{2 \sqrt{2\left(1+s^{2}\right)}} \sinh ^{-1}\left(\frac{2(1+s) \sqrt{2\left(1+s^{2}\right)}}{(1-s)^{2}}\right)\right]
\end{aligned}
$$

Symmetric prolate ternary shapes

From the elliptic lemniscatoids one can generate symmetric prolate ternary shapes varying from one sphere to three aligned tangential identical spheres.

In the first quadrant: $\quad x^{2}=0.5\left[a^{2}-2(z-d)^{2}+\sqrt{a^{4}+4(z-d)^{2}\left(c^{2}-a^{2}\right)}\right]$
a is the neck radius, c half the elongation of the generating binary case. $s=a / c$ varies from 1 to 0 . d is the distance between the position of the crevice and the transverse axis and h is the maximal transverse radial distance.

$$
h_{\max }= \begin{cases}0.5 c /\left(1-s^{2}\right)^{1 / 2} & \text { for } 0 \leqslant s<0.5 \sqrt{2} \\ a & \text { for } 0.5 \sqrt{2} \leqslant s \leqslant 1\end{cases}
$$

Symmetric prolate ternary shapes

Volume:

$$
V=\frac{4}{3} \pi R_{0}{ }^{3}=\frac{\pi c^{3}}{12}\left[4+6 s^{2}+g(\alpha)\right.
$$

$!!!!!d / c$ and g and h functions of ! ! !

$$
\left.+\frac{3 s^{4}}{\sqrt{1-s^{2}}} \ln \left(\frac{2-s^{2}+2 \sqrt{1-s^{2}}}{h(\alpha)}\right)\right]
$$

Relative surface function:
$B_{s}= \begin{cases}\frac{c^{2}}{2 R_{0}^{2}}\left[1+\frac{\sqrt{1-2 s^{2}}}{2}+\frac{s^{4}}{\sqrt{1-s^{4}}} \ln \left(\frac{\sqrt{2}\left(1+\sqrt{1-s^{4}}\right)}{\sqrt{1-s^{2}}-\sqrt{\left(1+s^{2}\right)\left(1-2 s^{2}\right)}}\right)\right] & \text { for } 0 \leqslant s \leqslant 0.5 \sqrt{2} \\ \frac{c^{2}}{2 R_{0}^{2}}\left[1+\frac{s^{4}}{\sqrt{1-s^{4}}} \ln \left(\frac{1+\sqrt{1-s^{4}}}{s^{2}}\right)\right] & \text { for } 0.5 \sqrt{2} \leqslant s<1\end{cases}$
Distance between the left and right parts:

$$
r= \begin{cases}c\left(2 \alpha+\frac{\pi c^{3}\left(11-8 s^{2}\right)}{48 V\left(1-s^{2}\right)^{2}}\right) & \text { for } 0 \leqslant s<0.5 \sqrt{2} \\ \frac{\pi c^{4}}{3 V}\left(1+s^{2}+s^{4}\right) & \text { for } 0.5 \sqrt{2} \leqslant s \leqslant 1\end{cases}
$$

Asymmetric prolate ternary shapes

A symmetry plane cut the smallest fragment along its maximal orthogonal distance. $s_{1}=a / c_{1}$ and $s_{2}=a / c_{2}$. For $s_{1}=s_{2}=1$, the shape is a sphere and for $s_{1}=s_{2}=0$, two external spheres of radius R_{1} are aligned and in contact with a smaller central sphere of radius $R_{2} . s_{1}$ and s_{2} may be linked by:

$$
s_{2}^{2}=\frac{s_{1}^{2}}{s_{1}^{2}+\left(1-s_{1}^{2}\right)\left(R_{2} / R_{1}\right)^{2}}
$$

In the first quadrant ($\mathrm{i}=1$ for $\mathrm{z}>\mathrm{d}$ and $\mathrm{i}=2$ for $\mathrm{z}<\mathrm{d}$):

$$
x^{2}=-(z-d)^{2}+0.5 s_{i}{ }^{2} c_{i}{ }^{2}+0.5 c_{i} \sqrt{4\left(1-s_{i}{ }^{2}\right)(z-d)^{2}+s_{i}{ }^{4} c_{i}{ }^{2}}
$$

Asymmetric prolate ternary shapes

Volume:

$$
V=\frac{\pi c_{1}^{3}}{12}\left[4+6 s_{1}^{2}+\frac{3 s_{1}^{4}}{\sqrt{1-s_{1}^{2}}} \sinh ^{-1}\left(\frac{2 \sqrt{1-s_{1}^{2}}}{s_{1}^{2}}\right)\right]
$$

$$
+\frac{\pi c_{2}^{3}}{12}\left[6 \alpha+6 \alpha s_{2}^{2}-8 \alpha^{3}+\frac{3 s_{2}^{4}}{\sqrt{1-s_{2}^{2}}} \sinh ^{-1}\left(\frac{2 \alpha \sqrt{1-s_{2}^{2}}}{s_{2}^{2}}\right)\right]
$$

Surface:

$$
\begin{array}{r}
S=2 \pi c_{1}^{2}\left[1+\frac{s_{1}{ }^{4}}{\sqrt{1-s_{1}^{4}}} \sinh ^{-1}\left(\frac{\sqrt{1-s_{1}{ }^{4}}}{s_{1}^{2}}\right)\right] \\
+2 \pi c_{2}^{2}\left[\alpha \sqrt{1-s_{2}^{2}}+\frac{s_{2}^{4}}{\sqrt{1-s_{2}^{4}}} \sinh ^{-1}\left(\frac{\alpha \sqrt{2\left(1-s_{2}^{4}\right)}}{s_{2}^{2}}\right)\right]
\end{array}
$$

Distance between the centers of mass of the two halves of the system:

$$
r=\frac{\pi c_{1}^{4}}{3 V}\left(1+s_{1}^{2}+s_{1}^{4}\right)+c_{2}\left[2 \alpha+\frac{\pi c_{2}^{3} \alpha^{4}}{3 V} \cdot \frac{-5+8 s_{2}^{2}+16 s_{2}^{6}-16 s_{2}^{8}}{\left(1-2 s_{2}^{2}\right)^{2}}\right]
$$

For three aligned separated spherical fragments:

$$
B_{s}=\frac{2+\left(R_{2} / R_{1}\right)^{2}}{\left(2+\left(R_{2} / R_{1}\right)^{3}\right)^{2 / 3}} \quad r=\frac{3}{2+\left(R_{2} / R_{1}\right)^{3}}\left(\frac{\left(R_{2} / R_{1}\right)^{4} R_{1}}{4}+\frac{4}{3} D\right)
$$

Two ellipsoids

Coulomb interaction energy between two coaxial prolate or oblate ellipsoids:
$E_{C, \text { int }}(r)=\frac{Q_{1} Q_{2}}{r}\left[s\left(\lambda_{1}\right)+s\left(\lambda_{2}\right)-1+S\left(\lambda_{1}, \lambda_{2}\right)\right] \quad \lambda_{i}{ }^{2}=\frac{c_{i}{ }^{2}-a_{i}{ }^{2}}{r^{2}}$
For the prolate case: $\quad s\left(\lambda_{i}\right)=\frac{3}{4}\left(\frac{1}{\lambda_{i}}-\frac{1}{\lambda_{i}{ }^{3}}\right) \ln \left(\frac{1+\lambda_{i}}{1-\lambda_{i}}\right)+\frac{3}{2 \lambda_{i}{ }^{2}}$
For the oblate case: $s\left(\lambda_{i}\right)=\frac{3}{2}\left(\frac{1}{\omega_{i}}+\frac{1}{\omega_{i}{ }^{3}}\right) \tan ^{-1} \omega_{i}-\frac{3}{2 \omega_{i}^{2}}, \quad \omega_{i}^{2}=-\lambda_{i}{ }^{2}$ $S\left(\lambda_{1}, \lambda_{2}\right)=\sum_{j=1}^{\infty} \sum_{k=1}^{\infty} \frac{3}{(2 j+1)(2 j+3)}$

$$
\times \frac{3}{(2 k+1)(2 k+3)} \times \frac{(2 j+2 k)!}{(2 j)!(2 k)!} \lambda_{1}^{2 j} \lambda_{2}{ }^{2 k}
$$

Pumpkin-like shapes and tori

A pumpkin-like configuration may be simulated using elliptic lemniscates and taking the vertical axis as axis of revolution. $s=a / c$ is also sufficient to define the shape. When s decreases from 1 to 0 an hollow progressively appears in this oblate lemniscatoid leading to a ring torus for which the upper and lower hollows are just linked.

Later on, the evolution of the ring torus can be governed by: $s_{\dagger}=\left(r_{+}-r_{s}\right) / 2 r_{s}$. r_{+}and r_{s} are the torus and sausage radii.

Pumpkin-like shapes and tori

For the oblate elliptic lemniscatoids:
volume, surface, perpendicular moment of inertia and mean square radius

$$
\begin{gathered}
V=\frac{4 \pi R_{0}^{3}}{3}=\frac{4 \pi c^{3}}{3}\left[\frac{s^{3}}{4}+\frac{3}{8}\left(s+\frac{\sin ^{-1}\left(\sqrt{1-s^{2}}\right)}{\sqrt{1-s^{2}}}\right)\right] \quad B_{s}=\frac{s}{4 \pi R_{0}^{2}}=\frac{c^{2}}{2 R_{0}^{2}}\left(s^{2}+\frac{\sin ^{-1}\left(\sqrt{1-s^{4}}\right)}{\sqrt{1-s^{4}}}\right) \\
I_{\perp, \text { rel }}=\frac{3 c^{5}}{2 R_{0}{ }^{5}\left(1-s^{2}\right)}\left(-\frac{s^{7}}{24}-\frac{s^{5}}{16}-\frac{25 s^{3}}{192}+\frac{35 s}{128}-\frac{5}{16}\left(s^{2}-\frac{7}{8}\right) \frac{\sin ^{-1}\left(\sqrt{1-s^{2}}\right)}{\sqrt{1-s^{2}}}\right) \\
\left\langle r^{2}\right\rangle_{\text {rel }}=\frac{\left\langle r^{2}\right\rangle}{\frac{3}{5} R_{0}{ }^{2}}=\frac{5 c^{5}}{4 R_{0}{ }^{5}}\left[\frac{2 s^{5}}{15}+\frac{s^{3}}{6}+\frac{1}{4}\left(s+\frac{\sin ^{-1}\left(\sqrt{1-s^{2}}\right)}{\sqrt{1-s^{2}}}\right)\right]
\end{gathered}
$$

For the holed torus :
volume, surface, perpendicular moment of inertia and mean square radius

$$
\begin{array}{crl}
V=\frac{4 \pi R_{0}^{3}}{3}=2 \pi^{2} r_{t} r_{s}^{2}=\frac{\pi^{2} c_{t}^{3}}{4}\left(1+2 s_{t}\right) . & B_{s}=\frac{4 \pi^{2} r_{s} r_{t}}{4 \pi R_{0}{ }^{2}}=\frac{\pi c_{t}{ }^{2}}{4 R_{0}{ }^{2}}\left(1+2 s_{t}\right) . \\
I_{\perp, r e l}=\frac{35}{32}\left(1+3 s_{t}+3 s_{t}^{2}\right)\left(\frac{16}{3 \pi\left(1+2 s_{t}\right)}\right)^{2 / 3} & \left\langle r^{2}\right\rangle_{\text {rel }}=\frac{5}{6}\left(1+2 s_{t}+2 s_{t}{ }^{2}\right)\left(\frac{16}{3 \pi\left(1+2 s_{t}\right)}\right)^{2 / 3}
\end{array}
$$

(thick skin) Bubbles

Assuming volume conservation, the bubble characteristics can be expressed in terms of a single parameter, the ratio $p=r_{1} / r_{2}$ of the inner radius r_{1} and the outer one r_{2}.

$$
\begin{gathered}
V=\frac{4 \pi R_{0}^{3}}{3}=\frac{4 \pi}{3}\left(r_{2}^{3}-r_{1}^{3}\right) \\
r_{1}=R_{0} p\left(1-p^{3}\right)^{-1 / 3} \quad r_{2}=R_{0}\left(1-p^{3}\right)^{-1 / 3} \\
B_{s}=\frac{1+p^{2}}{\left(1-p^{3}\right)^{2 / 3}} \quad B_{C}=\frac{1-2.5 p^{3}+1.5 p^{5}}{\left(1-p^{3}\right)^{5 / 3}} \\
I_{\perp, \text { rel }}=\left(1-p^{5}\right)\left(1-p^{3}\right)^{-5 / 3} \\
\left\langle r^{2}\right\rangle_{r e l}^{1 / 2}=\frac{\left\langle r^{2}\right\rangle^{1 / 2}}{\sqrt{3 / 5} R_{0}}=\left(1-p^{5}\right)^{1 / 2}\left(1-p^{3}\right)^{-5 / 6}
\end{gathered}
$$

Liquid Drop Model energy

$$
\mathrm{E}_{\text {GLDM }}=\mathrm{E}_{\text {vol }}+\mathrm{E}_{\text {surface }}+\mathrm{E}_{\text {Coulomb }}+\mathrm{E}_{\text {proximity }}
$$

$$
\begin{array}{ll}
\mathrm{E}_{\mathrm{vol}}!!\mathrm{a}_{\mathrm{v}}\left(1!\mathrm{k}_{\mathrm{v}} \mathrm{I}^{2}\right) \mathrm{A} & \mathrm{I}!(\mathrm{N}!\mathrm{Z}) / \mathrm{A} \\
\mathrm{E}_{\text {surf }}!\mathrm{a}_{\mathrm{s}}\left(1!\mathrm{k}_{\mathrm{s}} \mathrm{I}^{2}\right) \mathrm{A}^{2 / 3}!\frac{\text { Surf }}{4 \pi \mathrm{R}_{0}^{2}} & \begin{array}{l}
\mathrm{a}_{\mathrm{v}}!15.494 \mathrm{MeV} \\
\mathrm{a}_{\mathrm{s}}!17.9439 \mathrm{MeV} \\
\mathrm{E}_{\text {Coul }}!\frac{9 \mathrm{e}^{2} \mathrm{Z}^{2}}{16 \pi^{2} \mathrm{R}_{0}^{6}}!\frac{\mathrm{d} \tau \mathrm{~d} \tau^{\prime}}{\left|\frac{1}{\mathrm{r}}!\frac{1}{\mathrm{r}^{\prime}}\right|} \\
\end{array} \\
& \mathrm{k}_{\mathrm{v}}!1.8 \\
\mathrm{k}_{\mathrm{s}}!2.6 \\
\mathrm{R}_{0}!1.28 \mathrm{~A}^{1 / 3}!0.76!0.8 \mathrm{~A}!1 / 3
\end{array}
$$

Proximity energy

Additional energy to the surface energy taking into account the finite range of the nuclear interaction between opposite nucleons in a gap between incoming nuclei or in a neck in one-body compact shapes (\sim - 9.4 MeV at the contact point of two!)

$$
\mathrm{E}_{\text {proximity }}(\mathrm{r})!2 \gamma \underset{\mathrm{~h}_{\min }}{\mathrm{h}_{\max }}!\varphi!\mathrm{D}(\mathrm{r}, \mathrm{~h}) / \mathrm{b}!2 \pi \mathrm{hdh}
$$

${ }^{12} \mathrm{C}$ nucleus (triangular configuration)

$$
\left\langle r^{2}\right\rangle^{1 / 2}(g s, \exp)=2.47 \mathrm{fm}
$$

$$
\left\langle r^{2}\right\rangle^{1 / 2}(G L D M)=2.43 \mathrm{fm}
$$

(for a linear chain 3.16 fm)

Electric quadrupole moment (gs):
$Q_{0}(\exp)=-22+-10$ e fm^{2}
$Q_{0}(G L D M)=-24.4 e \mathrm{fm}^{2}$

Two data compatible with an equilateral triangular shape of the ${ }^{12} \mathrm{C}$ ground state, but not with a linear chain.

Deformation barrier versus the three-alphas configuration.

The difference between the energies of the minima of the linear chain configuration and the minima of the oblate equilateral configuration is 7.36 MeV , close to the energy 7.65 MeV of the excited Hoyle state.

${ }^{16} \mathrm{O}$ and ${ }^{20 \mathrm{Ne}}$ nuclei

${ }^{24} \mathrm{Mg}$ and ${ }^{32} \mathrm{~S}$ nuclei

Conclusion

Different axially symmetric shape sequences are proposed to describe ground or excited states of leptodermous nuclear matter distributions and to follow their evolution in the entrance or decay channels of nuclear reactions such as fusion, fission, alpha decay and cluster radioactivities. These shapes are derived from the generalized lemniscate families.

- The energies of the ${ }^{12} \mathrm{C},{ }^{16} \mathrm{O},{ }^{20} \mathrm{Ne},{ }^{24} \mathrm{Mg}$ and ${ }^{32} \mathrm{~S} 4 \mathrm{n}$ nuclei have been determined assuming different planar and three-dimensional shapes of the! molecules: linear chain, triangle, square, tetrahedron, pentagon, trigonal bipyramid, square pyramid, hexagon, octahedron, octagon and cube. These calculations suggest that an oblate equilateral triangular configuration is compatible with the ground state shape of ${ }^{12} \mathrm{C}$ and a prolate almost aligned shape for the excited Hoyle state shape. The three dimensional shapes are favored for the heavier nuclei.

Thank you for your attention

Shape review: Phys. Rev. C 95 (2017) 054610

Fission: Phys. Rev. C 86 (2012) 044326
Alpha emission; J. Phys. G 26 (2000) 1149
Ternary fission: J. Phys. G: 15 (1989) L1

Multibody shapes: Phys. Rev. C 92 (2015) 054308

Cluster radioactivity: Nucl. Phys. A 683 (2001) 182
Pumpkin-like and torus: Nucl. Phys. A 598 (1996) 125
Fusion: Nucl. Phys. A 444 (1985) 477

Recent studies on light n-alpha clusters

' Evidence for Triangular $D_{3 h}$ Symmetry in ${ }^{12} \mathrm{C}$ ',
D.J. Marin-Lambarri et al, PRL 113, 012502, (2014)
' Further improvement of the upper limit on the direct 3a Decay from the Hoyle State in ${ }^{12} C$ ',
M. Itoh et al, PRL 113, 102501, (2014)
' Decay and structure of the Hoyle state ',
$\rightarrow \quad$ There appear to be some peaks in the interior density distribution corresponding to configurations of equilateral and isosceles triangles
S. Ishikawa, PRC 90, 061604 (R), (2014)
' Giant Dipole Resonance as a Fingerprint of a Clustering Configurations in ${ }^{12} \mathrm{C}$ and ${ }^{16} \mathrm{O}$ ',
W.B. He et al, PRL 113, 032506, (2014)
' One-Dimensional a Condensation of a-Linear-Chain States in ${ }^{12} \mathrm{C}$ and ${ }^{16} \mathrm{O}$ ',
T. Suhara et al, PRL 112, 062501, (2014)
' Evidence for tetrahedral symmetry in ${ }^{16} \mathrm{O}$ ',
R. Bijker et al, PRL 112, 152501, (2014)
' Ab initio Calculation of the spectrum and structure of ${ }^{16} \mathrm{O}$ ',
\rightarrow For the ground state ...tetrahedral configuration, for the first excited spin-0 state ...square configuration of alpha clusters
E. Epelbaum et al, PRL 112, 102501, (2014)
' Signatures of a clustering in light nuclei from relativistic nuclear collisions '
W. Broniowski et al, PRL 112, 112501, (2014)
and other papers ...

${ }^{12} \mathrm{C}$ nucleus

Potential barriers governing the
binary ${ }^{12} \mathrm{C}\left\langle->{ }^{8} \mathrm{Be}+{ }^{4} \mathrm{He}\right.$ and
prolate ternary ${ }^{12} \mathrm{C}<->{ }^{4} \mathrm{He}+{ }^{4} \mathrm{He}+{ }^{4} \mathrm{He}$ reactions.
$Q_{3!}!=7.27 \mathrm{MeV}$
$Q_{\mathrm{Be}+\mathrm{He}}=7.37 \mathrm{MeV}$

L-dependent barriers for the prolate ternary ${ }^{12} \mathrm{C}<->{ }^{4} \mathrm{He}+{ }^{4} \mathrm{He}+{ }^{4} \mathrm{He}$ reaction.

${ }^{12} \mathrm{C}$ nucleus

20 Ne nucleus

Reaction	${ }^{16} \mathrm{O}+{ }^{4} \mathrm{He}$	${ }^{12} \mathrm{C}+{ }^{8} \mathrm{Be}$	${ }^{8} \mathrm{Be}+{ }^{4} \mathrm{He}+{ }^{8} \mathrm{Be}$	${ }^{10} \mathrm{~B}+{ }^{10} \mathrm{~B}$
$\mathrm{Q}(\mathrm{MeV})$	4.73	11.98	19.35	31.14

${ }^{24} \mathrm{Mg}$ nucleus

Reaction	${ }^{20} \mathrm{Ne}+{ }^{4} \mathrm{He}$	${ }^{12} \mathrm{C}+{ }^{12} \mathrm{C}$	${ }^{16} \mathrm{O}+{ }^{8} \mathrm{Be}$	${ }^{8} \mathrm{Be}+{ }^{8} \mathrm{Be}+{ }^{8} \mathrm{Be}$	${ }^{10} \mathrm{~B}+{ }^{4} \mathrm{He}+{ }^{10} \mathrm{~B}$
Qreaction (MeV)	9.32	13.93	14.14	28.76	40.46

${ }^{32}$ S nucleus

Reaction	${ }^{28} \mathrm{Si}+{ }^{4} \mathrm{He}$	${ }^{16} \mathrm{O}+{ }^{16} \mathrm{O}$	${ }^{24} \mathrm{Mg}+{ }^{8} \mathrm{Be}$	${ }^{20} \mathrm{Ne}+{ }^{12} \mathrm{C}$	${ }^{12} \mathrm{C}+{ }^{8} \mathrm{Be}+{ }^{12} \mathrm{C}$	${ }^{14} \mathrm{~N}+{ }^{4} \mathrm{He}+\mathrm{N}$
$Q_{\text {reaction }}$ (MeV)	6.95	16.54	17.02	18.97	30.96	34.17

Ground state rms radius

${ }^{16} \mathrm{O}$	Square	Tetrahedron	Linear config.
rms radius (fm)	2.83	2.54	4.15
Exp : 2.70 fm			
$Q_{\text {elec }}\left(\mathrm{e} . \mathrm{fm}^{2}\right)$	-49.17 (Oblate)	0	
${ }^{20} \mathrm{Ne}$	Pentagon	Trigonal bipyramid	Square pyramid
rms radius (fm)	3.29	2.76	2.79
Exp : 3.01 fm			
$Q_{\text {elec }}\left(\mathrm{e} . \mathrm{fm}^{2}\right)$	-89.63 (Oblate)	41.29 (Prolate)	-29.73 (Oblate)
${ }^{24} \mathrm{Mg}$	Hexagon	Octahedron	
rms radius (fm)	3.79	2.85	
Exp : 3.06 fm			
$Q_{\text {elec }}\left(\mathrm{e} . \mathrm{fm}^{2}\right)$	-149.75 (Oblate)	0	
32 S	Octogon	Cube	
rms radius (fm)	4.85	3.37	
Exp : 3.26 fm			
$Q_{\text {elec }}\left(\mathrm{e} . \mathrm{fm}^{2}\right)$	-345.3 (Oblate)	0	

