Shapes and Symmetries in Nuclei: from Experiment to Theory

6-10 November 2017, Gif-sur-Yvette

Marcella Grasso

A beyond-mean-field description for nuclear excitation spectra: Second RPA (including 2 particle-2 hole configurations in the energy-density-functional approach)

Collaborators

 (work on beyond mean-field)- F. Catara (Catania Univ.), G. Co' (Lecce univ.), V. De Donno (Lecce Univ.),D. Gambacurta (ELI, Bucharest), J. Engel (North Carolina), O. Vasseur (IPN Orsay)
SRPA with zero-range and finite-range effective interactions and Implementation with a subtraction procedure
- J. Bonnard (IPN Orsay), G. Colo’ (Milano Univ.), U. van Kolck (IPN Orsay), D. Lacroix, (IPN Orsay), X. Roca-Maza (Milano Univ.), J. Yang (IPN Orsay)
Nuclear interaction designed for beyond mean field

Work on
the
density
functional

Density

Functional
Theory in
chemistry and solid state physics

EDF as a DFT for

 decades ... but in practice ...
Nuclear many-body problem with effective interactions

Energy Density Functional (EDF) theory (functionals derived in most cases from effective phenomenological interactions adjusted at the mean-field level)

Beyond mean field

Necessary to go beyond a DFT-like strategy.
Double counting, divergences ...
-Models
-Functionals/Inter action (Bridging with EFT/ ab initio)

Outline

- Beyond RPA with the second RPA (SRPA) model employing effective phenomenological interactions such as Skyrme or Gogny interactions
- Implementation of the SRPA model. Application of a subtraction method to handle double counting, instabilities and ultraviolet divergences
- Some results for nuclear excitations. Dipole excitations in ${ }^{48} \mathrm{Ca}$
- Conclusions and perspectives

SRPA model : formally established since several decades

$$
\begin{aligned}
Q_{v}^{\dagger}= & \sum_{p h}\left(X_{p h}^{v} a_{p}^{\dagger} a_{h}-Y_{p h}^{v} a_{h}^{\dagger} a_{p}\right) \\
& +\sum_{p<p^{\prime}, h<h^{\prime}}\left(X_{p h p^{\prime} h^{\prime}}^{v} a_{p}^{\dagger} a_{h} a_{p^{\prime}}^{\dagger} a_{h^{\prime}}-Y_{p h p^{\prime} h^{\prime}}^{v} a_{h}^{\dagger} a_{p} a_{h^{\prime}}^{\dagger} a_{p^{\prime}}\right)
\end{aligned}
$$

Excitation operators: 2p2h configurations are included, together with the RPA 1p1h configurations

- Hoshino and Arima, Phys. Rev. Lett. 37, 266 (1976)
- Knupfer and Huber, Z. Phys. A 276, 99 (1976)
- Adachi and Yoshida, Nucl. Phys. A 306, 53 (1978)
- Tohyama, Gong, Z. Phys.A 332, 269 (1989)
- Lacroix, Ayik, Chomaz, Prog. Part. Nucl. Phys. 52, 497 (2004)
- Schwesinger, Wambach, Phys. Lett. B 134, 29 (1984)
- Schwesinger, Wambach, Nucl. Phys. A 426, 253 (1984)
- Wambach, Rep. Prog. Phys. 51, 989 (1988)
- Drozdz, Nishizaki, Speth, Wambach, Phys. Rep. 197, 1 (1990)
- Nishizaki and Wambach, Phys. Lett. B 349, 7 (1995)
- Nishizaki and Wambach, Phys. Rev. C 57, 1515 (1998)

Examples of first applications for the calculation of fragmentation and spreading widths (strong cuts in the 2p2h space, Second Tamm-Dancoff, truncations and approximations in the 2 p 2 h sector of the matrix)

No approximations in 2 p 2 h matrix elements and large 2 p 2 h cutoff values

Papakonstantinou and Roth, Phys. Lett. B 671, 356 (2009)

Papakonstantinou and Roth, Phys. Rev. C 81, 024317 (2010)

Microscopic interaction (derived from Argonne V18)

- Gambacurta, Grasso, and Catara, Phys. Rev. C 81, 054312 (2010)

Gambacurta, Grasso, and Catara, J. Phys. G 38, 035103 (2011)
Phenomen.
Skyrme and
Gogny
Gambacurta, Grasso, and Catara, Phys. Rev. C 84, 034301 (2011)

Gambacurta, Grasso, De Donno, Co, and Catara, Phys. Rev. C 86 021304(R) (2012)

SRPA model

$$
\left(\begin{array}{cc}
\mathcal{A} & \mathcal{B} \\
-\mathcal{B}^{*} & -\mathcal{A}^{*}
\end{array}\right)\binom{\mathcal{X}^{v}}{\mathcal{Y}^{v}}=\omega_{\nu}\binom{\mathcal{X}^{\nu}}{\mathcal{Y}^{v}} \begin{aligned}
& \text { Schematically: same form as } \\
& \text { RPA equations }
\end{aligned}
$$

$$
\begin{aligned}
\mathcal{A} & =\left(\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right), \quad \mathcal{B}=\left(\begin{array}{ll}
B_{11} & B_{12} \\
B_{21} & B_{22}
\end{array}\right) \begin{array}{l}
\text { 1 and 2: } \\
\text { short-hand notation for 1p1h } \\
\mathcal{X}^{v}
\end{array}=\binom{X_{1}^{v}}{X_{2}^{v}}, \quad \mathcal{Y}^{v}=\binom{Y_{1}^{v}}{Y_{2}^{v}} .
\end{aligned} \quad \begin{aligned}
& \text { and 2p2h }
\end{aligned}
$$

A_{11} and B_{11} : standard RPA matrices
A_{12}, A_{21}, B_{12}, and B_{21} : coupling between 1 p1h and $2 p 2 h$
A_{22} and $B_{22}: 2 p 2 h$ sector

SRPA with density-dependent forces

New rearrangement terms with respect to RPA

(Waroquier et al., Phys. Rep. 148, 249 (1987), Adachi and Yoshida, Phys. Lett. B „', 98 (1979))
where:

$$
\begin{aligned}
& \left(\begin{array}{cc}
\mathcal{A} & \mathcal{B} \\
-\mathcal{B}^{*} & -\mathcal{A}^{*}
\end{array}\right)\binom{\mathcal{X}^{\nu}}{\mathcal{Y}^{\nu}}=\omega_{\omega_{\nu}}\binom{\mathcal{X}^{\nu}}{\mathcal{Y}^{\nu}}, \\
& \mathcal{A}=\binom{A_{11}}{A_{21}}, \mathcal{B}=\left(\begin{array}{cc}
B_{12} \\
B_{21} & B_{22}
\end{array}\right),
\end{aligned}
$$

Through a variational derivation of SRPA with densitydependent forces:

Gambacurta, Grasso, Catara, J. Phys. G: Nucl. and Part. Phys. 38, 035103 (2011)

Variational procedure to derive the SRPA equation, formulated it in the case of a density-dependent interaction

$$
\begin{gathered}
|\Psi\rangle=e^{\hat{S}}|\Phi\rangle \longrightarrow \mathrm{HF} \text { state } \\
\hat{S}=\sum_{p h} C_{p h}(t) a_{p}^{\dagger} a_{h}+\frac{1}{2} \sum_{p h p^{\prime} h^{\prime}} \hat{C}_{p p^{\prime} h h^{\prime}}(t) a_{p}^{\dagger} a_{p^{\prime}}^{\dagger} a_{h} a_{h^{\prime}} \\
\hat{C}_{\alpha \beta \gamma \delta}=C_{\alpha \beta \gamma \delta}-C_{\alpha \beta \delta \gamma}
\end{gathered}
$$

-The coefficients C are used as variational parameters (minimization of the expectation value of the Hamiltonian)
-The coefficients C are assumed very small $=>$ expansion of the expectation values of 1 - and 2-body operators truncated at the second order in C

Gambacurta, Grasso, Catara, J. Phys. G: Nucl. and Part. Phys. 38, 035103 (2011)

For cases where the interaction is density independent and with A_{22} diagonal:

where the energy-dependent matrix elements are
$A_{11^{\prime}}(\omega)=A_{11^{\prime}}+\sum_{2} A_{12}\left(\omega+i \eta-A_{22}\right)^{-1} A_{21^{\prime}}$
Second-order self-energy insertion -> leads to a beyond mean-field model and provides the description of spreading widths and fragmentation (in addition to the singleparticle Landau damping) through de coupling with 2 p 2 h

Drawbacks of the SRPA model (two are general and two are associated with the choice of specific interactions)

- (Too) strong shift to lower energies with respect to the RPA spectrum
- Instabilities (Thouless theorem)

Recent studies about instabilities and double counting:

- Tselyaev, Phys. Rev. C 88, 054301 (2013)
- Papakonstantinou, Phys. Rev. C 90, 024305 (2014)

EDF and double counting for extensions of RPA (Tselyaev)

- Correlations implicitly included in the functional (because of the adjustment of the parameters at mean-field level to reproduce some observables). In the spirit of DFT: 'universal exact functional for a mean-field-like calculation'
- Thus, this functional must produce a static RPA response function which is the 'exact' zero-energy response function.
- Any modification of the response function (to go beyond the mean field) should be zero in the static limit to avoid double counting of correlations

Response function in RPA and SRPA

RPA derived as small-amplitude limit of TDHF equations

$i \hbar \dot{\rho}=[h[\rho]+f(t), \rho]$
h -> 1-body HF Hamiltonian
f-> external field

$$
\left[\left(\begin{array}{cc}
A & B \\
B^{*} & A^{*}
\end{array}\right)-\hbar \omega\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)\right]\binom{\rho^{(1) p h}}{\rho^{(1) h p}}=-\binom{f^{p h}}{f^{h p}}
$$

$\rho^{(1) p h}\left(\Omega_{\nu}\right)=<0\left|a_{p}^{\dagger} a_{h}\right| \nu>\quad$ Transition density
By inverting these equations one defines the response function or polarization operator R ,

$$
\rho^{(1) k l}=\sum_{p q} R_{k l p q}(\omega) f^{p q}
$$

and the dynamic polarizability

$$
\Pi(\omega)=\sum_{p q p^{\prime} q^{\prime}} f^{p q^{*}} R_{p q p^{\prime} q^{\prime}}(\omega) f^{p^{\prime} q^{\prime}}
$$

Response function in RPA and SRPA

RPA

$$
R^{R P A}(E)=\left(\begin{array}{cc}
E-A & -B \\
-B & -E-A
\end{array}\right)^{-1}
$$

SRPA

$R^{S R P A}(E)=\frac{1}{\left(\begin{array}{cc}E-A & -B \\ -B & -E-A\end{array}\right)-\left(\begin{array}{cc}\Sigma(E) & 0 \\ 0 & \Sigma(E)\end{array}\right)} \begin{aligned} & \begin{array}{l}\text { Density- } \\ \text { independent } \\ \text { interaction }\end{array}\end{aligned}$
$\Sigma(E)$-> energy-dependent second-order self-energy
We require that

$$
R^{S R P A}(0)=R^{R P A}(0)
$$

This may be guaranteed by following the subtraction procedure by Tselyaev (the zero-energy second-order self-energy is subtracted)

$$
A_{11^{\prime}}^{S}(\omega)=A_{11^{\prime}}(\omega)-E_{11^{\prime}}(0)
$$

Subtraction:

$$
B_{11^{\prime}}^{S}(\omega)=B_{11^{\prime}}(\omega)-F_{11^{\prime}}(0)
$$

$$
\begin{aligned}
& E_{11^{\prime}}(\omega)=\sum_{2,2^{\prime}} A_{12}\left(\omega+i \eta-A_{22^{\prime}}\right)^{-1} A_{2^{\prime} 1^{\prime}}-\sum_{2,2^{\prime}} B_{12}\left(\omega+i \eta+A_{22^{\prime}}\right)^{-1} B_{2^{\prime} 1^{\prime}} \\
& F_{11^{\prime}}(\omega)=\sum_{2,2^{\prime}} A_{12}\left(\omega+i \eta-A_{22^{\prime}}\right)^{-1} B_{2^{\prime} 1^{\prime}}-\sum_{2,2^{\prime}} B_{12}\left(\omega+i \eta+A_{22^{\prime}}\right)^{-1} A_{2^{\prime} 1^{\prime}}
\end{aligned}
$$

This also leads to the equality of the static polarizability in RPA and SRPA:

$$
\Pi^{S R P A}(0)=\Pi^{R P A}(0)=-2 m_{-1}^{R P A}
$$

$\alpha^{R P A}=-\Pi(0)=2 \sum_{\nu} \frac{|<\nu| F|0>|^{2}}{E_{\nu}-E_{0}}=2 m_{-1}^{R P A}$

Adachi, Lipparini, Nucl. Phys. A 489, 445 (1988)

Stability condition in RPA (Thouless theorem, Nucl. Phys. 21, 225 (1960), Nucl. Phys. 22, 78 (1961))

If the HF state minimizes the expectation value of the Hamiltonian \rightarrow the RPA stability matrix is positive semi-definite (real eigenvalues and eigenvectors with positive eigenvalues have positive norm)

- Double counting
- Instabilities (Thouless theorem)
- Strong shift downwards of energies (with respect to RPA) and divergences (with zero-range forces) ?

$\Sigma(E)-\Sigma(0)$

 is responsible for the divergence. The subtraction removes it: the selfenergy has the same divergence at finite E and at $E=0$.
By following Tselayev 2013 ->

It is possible to rewrite the equations (after subtraction) in a non energy dependent SRPA form:

$$
\begin{aligned}
& \mathcal{A}_{F}^{S}=\left(\begin{array}{cc}
A_{11^{\prime}}-\sum_{2} A_{12}\left(A_{22^{\prime}}\right)^{-1} A_{21^{\prime}}+\sum_{2} B_{12}\left(A_{22^{\prime}}\right)^{-1} B_{21^{\prime}} & A_{12} \\
A_{21} & A_{22^{\prime}}
\end{array}\right) \\
& \mathcal{B}_{F}^{S}=\left(\begin{array}{cc}
B_{11^{\prime}}+\sum_{2} A_{12}\left(A_{22^{\prime}}\right)^{-1} B_{21^{\prime}}+\sum_{2} B_{12}\left(A_{22^{\prime}}\right)^{-1} A_{21^{\prime}} & B_{12} \\
B_{21} & B_{22^{\prime}}
\end{array}\right)
\end{aligned}
$$

S -> subtracted
F $\rightarrow>$ full scheme (inversion of the matrix A_{22})

Gambacurta, Grasso, Engel, PRC 92, 034303 (2015)

SOME APPLICATIONS

SRPA including the subtraction procedure

Gambacurta, Grasso, Engel, PRC 92, 034303 (2015)
Gambacurta, Grasso Eur. Phys. J A 52 7, 198 (2016)
Gambacurta, Grasso, Vasseur, arXiv:1708.07083
Vasseur, Gambacurta, Grasso, in preparation

EXP: Lui, Clark, Youngblood, PRC 64, 064308 (2001)
Gambacurta, Grasso, Engel, PRC 92, 034303 (2015)

Centroid: $\mathbf{2 0 . 7 3} \mathbf{~ M e V}$ Width: 2.42 MeV

Centroid: $\mathbf{2 0 . 2 1 ~ M e V}$ Width: 4.05 MeV

Centroid: 19.76 MeV Width: 5.11 MeV

Low-lying states. Two-particle/two-hole states

Gambacurta, Grasso, Engel, PRC 92, 034303 (2015)

Dipole low-lying response in ${ }^{48} \mathrm{Ca}$

Exp: Hartmann et al., PRL 93, 192501 (2004)
($\mathrm{Y}, \mathrm{Y}^{\prime}$) data at Darmstadt

Gambacurta, Grasso, Vasseur, arXiv:1708.07083

	Exp	SRPA SGII	SSRPA SGII	SRPA SLy4	SSRPA SLy4
Centroid					
$\sum B(E 1)$	0.068	0.563	0.078	1.012	0.126
	± 0.008				
$\sum_{i} E_{i} B_{i}(E 1)$	0.570	4.618	0.621	8.795	1.062
	± 0.062				

GDR in ${ }^{48} \mathrm{Ca}$

Exp centroid: 18.9 MeV Exp width: 3.9 MeV

Exp: Birkhan et al., PRL 118, 252501 (2017)
(p, p^{\prime}) data at RCNP,Osaka

Gambacurta, Grasso, Vasseur, arXiv:1708.07083

GDR in ${ }^{48} \mathrm{Ca}$

Exp: Birkhan et al., PRL 118, 252501 (2017)

Gambacurta, Grasso, Vasseur, arXiv:1708.07083

Electric dipole polarizability (important for constraining the symmetry energy $->$ key ingredient for predictions of neutron skin thickness, radius and proton fraction in neutron stars, ...)

Gambacurta, Grasso, Vasseur, arXiv:1708.07083

Summary

- Implementation of the SRPA model by a subtraction procedure:
- Double counting
- Stability condition (correction of the shift with respect to the RPA)
- Convergence with respect to the cutoff
- Applications. Dipole response in ${ }^{48} \mathrm{Ca}$
- Perspectives (SRPA with a correlated ground state -> PhD thesis of Olivier Vasseur) (the inclusion of correlations produces a subtractive term in the self-energy -> Takayanagi et al. Nucl. Phys. A477, 205 (1988))

