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Outline

• Beyond RPA with the second RPA (SRPA) model employing
effective phenomenological interactions such as Skyrme or
Gogny interactions

• Implementation of the SRPA model. Application of a
subtraction method to handle double counting, instabilities
and ultraviolet divergences 

• Some results for nuclear excitations. Dipole excitations in
48Ca

• Conclusions and perspectives
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SRPA modelSRPA model

1 and 2:

short-hand notation for 1p1h
and 2p2h

Schematically: same form as
RPA equations

A11 and B11: standard RPA matrices

A12, A21, B12 , and B21: coupling between 1p1h and 2p2h

A22 and B22: 2p2h sector



SRPA with density-dependent forces
 

New rearrangement terms with respect to RPA 
(Waroquier et al., Phys. Rep. 148, 249 (1987), Adachi and Yoshida,

Phys. Lett. B 81, 98 (1979))

 Gambacurta, Grasso, Catara, J. Phys. G: Nucl. and Part. Phys. 38, 035103 (2011) 

Through a variational derivation of SRPA with density-
dependent forces:

Through a variational derivation of SRPA with density-
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Variational procedure to derive the SRPA equation,
formulated it in the case of a density-dependent interaction

-The coefficients C are used as variational parameters (minimization of the
expectation value of the Hamiltonian)

-The coefficients C are assumed very small => expansion of the expectation
values of 1- and 2-body operators truncated at the second order in C 

HF state

 Gambacurta, Grasso, Catara, J. Phys. G: Nucl. and Part. Phys. 38, 035103 (2011) 
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Ω Ω
- -* *

SRPA RPA

- -* *

where the energy-dependent matrix elements arewhere the energy-dependent matrix elements are

For cases where the interaction is density
independent and with A22 diagonal: 
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beyond mean-field model and provides the description of
spreading widths and fragmentation (in addition to the single-
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and two are associated with the choice of
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• (Too) strong shift to lower energies with respect to the RPA
spectrum

• Instabilities (Thouless theorem) 

• Dependence on the energy cutoff  for the 2p2h configurations
(ultraviolet divergence in case of zero-range interactions)

• Double counting (parameters adjusted at the mean-field level)

Recent studies about instabilities and double counting:
 
- Tselyaev, Phys. Rev. C 88, 054301 (2013)
- Papakonstantinou, Phys. Rev. C 90, 024305 (2014)
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• Correlations implicitly included in the functional (because
of the adjustment of the parameters at mean-field level to
reproduce some observables). In the spirit of DFT:
‘universal exact functional for a mean-field-like calculation’

• Thus, this functional must produce a static RPA response
function which is the ‘exact’ zero-energy response function.

• Any modification of the response function (to go beyond
the mean field) should be zero in the static limit to avoid
double counting of correlations

EDF and double counting for extensions of
RPA (Tselyaev)

EDF and double counting for extensions of
RPA (Tselyaev)



Response function in RPA and SRPAResponse function in RPA and SRPA

RPA derived as small-amplitude limit of TDHF equationsRPA derived as small-amplitude limit of TDHF equations

h -> 1-body HF Hamiltonian
f -> external field  

Transition density

By inverting these equations one defines the response function or polarization
operator R, 
By inverting these equations one defines the response function or polarization
operator R, 

and the dynamic polarizabilityand the dynamic polarizability



Response function in RPA and SRPAResponse function in RPA and SRPA

SRPA

RPA

We require thatWe require that

Σ(E) -> energy-dependent second-order self-energyΣ(E) -> energy-dependent second-order self-energy
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independent
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Subtraction:Subtraction:

This may be guaranteed by following the subtraction procedure by
Tselyaev (the zero-energy second-order self-energy is subtracted)
This may be guaranteed by following the subtraction procedure by
Tselyaev (the zero-energy second-order self-energy is subtracted)

This also leads to the equality of the static polarizability in RPA and SRPA:This also leads to the equality of the static polarizability in RPA and SRPA:

Adachi, Lipparini, Nucl.
Phys. A 489, 445 (1988)



Stability condition in RPA (Thouless theorem, Nucl.
Phys. 21, 225 (1960), Nucl. Phys. 22, 78 (1961))

Stability condition in RPA (Thouless theorem, Nucl.
Phys. 21, 225 (1960), Nucl. Phys. 22, 78 (1961))

If the HF state minimizes the expectation value of the Hamiltonian 
-> the RPA stability matrix is positive semi-definite (real eigenvalues
and eigenvectors with positive eigenvalues have positive norm)

 
Stability RPA matrix 

This does not imply that the SRPA stability matrix is also positive semi-
definite. 

The theorem can be extended to SRPA either by using a correlated
ground state instead of HF (Papakonstaninou 2014) or by applying the
subtraction procedure (Tselyaev 2013)
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By following Tselayev 2013 -> 

It is possible to rewrite the equations (after subtraction)
in a non energy dependent SRPA form: 

S -> subtracted
F -> full scheme (inversion of the matrix A22’)

Gambacurta, Grasso, Engel, PRC 92, 034303 (2015)



SOME APPLICATIONS

SRPA including the
subtraction procedure

Gambacurta, Grasso, Engel, PRC 92, 034303 (2015)

Gambacurta, Grasso Eur. Phys. J A 52 7, 198 (2016)

Gambacurta, Grasso, Vasseur, arXiv:1708.07083 

Vasseur, Gambacurta, Grasso, in preparation



Quadrupole excitations. Spreading widthQuadrupole excitations. Spreading width

Centroid: 20.21 MeV
Width: 4.05 MeV
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Low-lying states. Two-particle/two-hole statesLow-lying states. Two-particle/two-hole states

Gambacurta, Grasso, Engel, PRC 92, 034303 (2015)

Ajzenberg-
Selove, NPA 375,
1 (1985)

Subtr. SRPA

16O



Gambacurta, Grasso, Vasseur, 
arXiv:1708.07083 

Without subtraction

Dipole low-lying response in 48CaDipole low-lying response in 48Ca

Exp: Hartmann et al., PRL
93, 192501 (2004)

(γ,γ’) data at Darmstadt



GDR in 48CaGDR in 48Ca

Gambacurta, Grasso, Vasseur, arXiv:1708.07083 

Exp: Birkhan et al., PRL
118, 252501 (2017)

(p,p’) data at
RCNP,Osaka

Exp centroid: 18.9 MeV
Exp width: 3.9 MeV 
Exp centroid: 18.9 MeV
Exp width: 3.9 MeV 
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Gambacurta, Grasso, Vasseur, arXiv:1708.07083 

Exp: Birkhan et al., PRL
118, 252501 (2017)



Gambacurta, Grasso, Vasseur, arXiv:1708.07083 

Exp: Birkhan et al.,
PRL 118, 252501
(2017)

Electric dipole polarizability (important for
constraining the symmetry energy -> key ingredient
for predictions of neutron skin thickness, radius and

proton fraction in neutron stars, …)
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SummarySummary

- Implementation of the SRPA model by a subtraction procedure: 

- Double counting

- Stability condition (correction of the shift with respect to the RPA)

- Convergence with respect to the cutoff 

- Applications. Dipole response in 48Ca 

- Perspectives (SRPA with a correlated ground state -> PhD thesis of
Olivier Vasseur) (the inclusion of correlations produces a subtractive
term in the self-energy -> Takayanagi et al. Nucl. Phys. A477, 205 (1988))
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