

UNIVERSITY of the WESTERN CAPE

Recognizing structure in the Z = 50 region

Paul Garrett University of Guelph University of the Western Cape

11/10/2017

Paul Garrett SSNET2017 Orsay

Courtesy of M. Itoh and Y. Fujita

Paul Garrett SSNET2017 Orsay

NIVERSITY

Candidates for near harmonic vibrational motion

(or U(5) symmetry) near Z=50

For good U(5) candidates, Kern et al. considered:

- Excitation spectrum existence of a *full* set of two-phonon states, and perhaps even 3-phonon states
- E₄/E₂ ratio approximately 2
- Energies could be fit with the U(5) energy formula
- The $\Delta N = 1 E2$ transitions strongly favoured over possible decays

Now consider expanded criteria:

- Smooth evolution of states as a function of A
- Enhanced set of *B*(*E*2) values between phonon states
- Deformation parameters extracted from Coulomb excitation or inelastic scattering follow expectations
- Consistent transfer results
 - One-phonon states may be strongly populated in SNT, but multiphonon should have (ideally) zero spectroscopic strengths
 - Weak populations in two-nucleon transfer

Why are more stringent criteria needed?

- Considering only energies

 and branching ratios
 would lead to conclusion
 that ¹²⁴Sn is a good
 harmonic vibrational
 nucleus
 - E(4+)/E(2+) ratio is 1.86
 - Energy spread of 2-phonon triplet is only 90 keV
 - Relative B(E2) strongly favour decay to one-phonon 2⁺ state
- Absolute B(E2) values
 immediately rule out
 harmonic vibrations

Appear to have the right levels and decays

 Appearance of additional 0⁺ and 2⁺ states with enhanced E2 decays systematic in Cd isotopes near midshell

First firm evidence for deformed coexisting band in Cd

isotopes – observed with β-decay

- Detailed
 spectroscopy on
 ¹¹⁰Cd via β-decay
 reveals in-band
 transitions
- "Extra" states in
 vicinity of 2-phonon
 triplet explained as
 part of "intruder"
 band

R. Meyer and L. Peker,Z.Phys. A283, 379 (1977)

11/10/2017

states based on $\pi 2p$ -4n configuration

Evidence for *2p-2h* proton excitations from strong populations of 0⁺ band heads in Pd(³He,n) reactions

To understand the structure of the "normal" collective states, we have to be able to identity and separate the intruder structures requiring detailed spectroscopy and systematic studies

 J_{v}

Possible $\pi 4p-2h$ intruder states in the Te isotopes –

¹¹⁸⁻¹²⁴Te U(5) candidates

- Energy systematics
 of excited states in
 the Te isotopes
 suggest intruder
 origin or possibly
 just a changing
 overall structure?
- Is there any real evidence for intruders?

 0^{+}

 2^{+}

 0^{+}

B(E2) (Wu)

 2^{+}

 0^{+}

108Cd

633

<31(5)

¹¹⁰Cd

0+

112Cd

¹¹⁴Te

7%

709

Strong similarity in structure of Cd and Te nuclei – properties of 0₂⁺ states in Te match intruder 0⁺ states in Cd

Suggested

band heads

 $10^{3}\rho^{2}(E0)$

intruder

in the Te

isotopes

0+ 50% 1747 0^{+} 1657 0^{+} 63% 17% 1348 0^{+} 1357 18% 1103 20(4)1060 0^{+} 21% 958 < 36 61(24)12(3) 2^{+} 679 666 2+-603 605 2+ 564 560 13(6) 0^{+} 0^{+} 0^{+} 0^{+} 0^{+} ¹²⁴Te ¹¹⁸Te ¹²⁰Te ¹²²Te ¹¹⁶Te ¹²⁶Te 1913 Population in % relative to gs in **0**⁺ states 1721 (³He,n) reactions identified as 1615 1473 42% 0^{+} intruder 0^{+} 1380 55% 0^{+} 224 band heads 1135 < 40 in the Cd 30(6) 51(14) 27.4(17) 2+ 658 618

2+

37(11)

 0^{+}

558

 ^{114}Cd

 2^{+}

16(1)

 0^{+}

513

 ^{116}Cd

488

118Cd

 2^{+}

 0^{+} 0^{+}

isotopes PG, J. Phys. G 43, 084002 (2016).

To establish deformed intruder structures, need detailed

spectroscopy – e.g. ¹²³Te(n,γ) @ FIPPS

Energy systematics of low-lying levels in the Pd isotopes – ¹⁰²⁻¹¹⁰Pd U(5) candidates

NIVERSITY

of GUEI

Evidence for shape coexistence in Pd isotopes from rotational invariants in Coulomb excitation

ERSITY

E. Peters et al., EPJ A52, 96 (2016)

candidates show clear shape coexistence

Detailed Coulomb excitation studies enable extraction of shape-invariants clearly indicating different shapes for 0₁⁺ and 0₂⁺ states

- In nearly all cases of U(5) candidates in Z=50 region, additional data has shown that previously assigned 0⁺ member of two-phonon triplet *is*, *or very likely to be*, a shape coexisting structure
- In most of these cases, it's the shape coexisting structure that possess an enhanced B(E2) value to the 2_1^+ state why?

Most detailed Coulex study to date on Cd isotopes [Fahlander, NPA 485, 317 (1988)] ¹⁶O, ⁴⁰Ca, ⁵⁸Ni, ²⁰⁸Pb on ¹¹⁴Cd

E0's extracted from α coefficients and evaluated lifetimes (Wood et al, NPA 651, 323 (1999) & Kibedi and Spear, At. Data Nucl. Data Tab. 80, 35 (2002))

Assume 2-level mixing model – may not always be appropriate
 Describe levels using β, γ shape parameters, mixing amplitude a

 $\rho^2(E0)$

$$= a^{2}(1-a^{2})\left(\frac{3Z}{4\pi}\right)^{2} \left[(\beta_{1}^{2}-\beta_{2}^{2}) \qquad \sim \mathbf{0}$$

- If shape parameters are known, the mixing amplitude can be determined
- Use the results from detailed Coulomb excitation

Analysis of 0⁺ ρ^2 (E0) values in ¹¹⁴Cd

ERSITY

- While mixing is small, important consequences: Consider ¹¹⁴Cd
- Write 0⁺ wave functions

 $|0_{gs}^{+}\rangle = a|0_{A}^{+}\rangle + b|0_{B}^{+}\rangle$ $|0_{I}^{+}\rangle = -b|0_{A}^{+}\rangle + a|0_{B}^{+}\rangle$

• Assume:

• inband $2^+ \rightarrow 0^+$ transitions equal the observed values (since weak mixing) $2_B^+ \rightarrow 0_B^+ = 65 \pm 9$ W.u.

 $2_B^+ \rightarrow 0_A^+ = 0$ with admixture of 8% results in calculated $B(E2;0_2^+ \rightarrow 2_1^+) = 26 \pm 4$ W.u. consistent with observed value of 27.4 \pm 1.7 W.u.

114**C**d

2400

Important contribution to $0_2^+ \rightarrow 2_1^+ E2$ strength from mixing

Result for ¹¹⁴Cd 0⁺ states consistent with evidence for weak mixing in ¹¹⁰Cd

Cross-configuration E2 transitions in ¹¹⁰Cd are generally weak or unobserved

Detailed spectroscopy via β -decay and $(n,n'\gamma)$ enabled observation of, or stringent limits on, nearly all possible decays

PG et al., Phys. Rev. C 86, 044304 (2012)

Transitions labelled in W.u. Relative B(E2) in parenthesis Dashed lines: unobserved transitions

Levels rearranged and limits on unobserved transitions removed

Transitions labelled in W.u. Relative B(E2) in parenthesis Weak transitions removed for clarity

Revealing the underlying structure

Paul Garrett SSNET2017 Orsay

INIVERSITY

of GUE

Are their any surviving candidates for near harmonic vibrational motion near Z = 50?

vibrational motion near 2

Special thanks to

Steve Yates – Kentucky John Wood – Georgia Tech Kasia Wrzosek-Lipska – Warsaw Mitch Allmond – ORNL ...and the Guelph Nuclear Physics Group

11/10/2017

Cd g-factors and quadrupole moments

