Searches in Lepton Final States

Marc Hohlfeld Universität Mainz

on behalf of the CDF and DØ Collaborations

Outline

- Tevatron collider and detectors
- Going beyond the Standard Model
- Supersymmetry
 - ▲ Searches within mSUGRA
 - ▲ SUSY beyond mSUGRA
- Searches for heavy resonances
 - ▲ Extra gauge bosons
 - ▲ Gravitons
- Summary and outlook

Results presented today $\int \mathcal{L}dt = 1-3 \text{ fb}^{-1}$

Moriond EW 2009, 8.3.2009

The Detectors

Going Beyond the Standard Model

- The Standard Model is very successful...
 - ▲ ...but it cannot answer all questions and has some caveats
 - \Rightarrow Many ways and attempts to extend the Standard Model
- 1. Supersymmetry
 - ▲ Extension of the Poincare group
 - Supersymmetric partner for every SM particle
 - Charginos, Neutralinos, Sleptons, Sneutrinos,...

Going Beyond the Standard Model

- The Standard Model is very successful...
 - ...but it cannot answer all questions and has some caveats
 - \Rightarrow Many ways and attempts to extend the Standard Model
- 1. Supersymmetry
 - Extension of the Poincare group
 - Supersymmetric partner for every SM particle
 - Charginos, Neutralinos, Sleptons, Sneutrinos,...
- 2. Grand Unified Theories

- ▲ Enlarge gauge group $SU(3)_C \times SU(2)_L \times U(1)_Y$
 - ► New additional gauge bosons W', Z'

Going Beyond the Standard Model

- The Standard Model is very successful...
 - ▲ ...but it cannot answer all questions and has some caveats
 - $\Rightarrow\,$ Many ways and attempts to extend the Standard Model
- 1. Supersymmetry
 - ▲ Extension of the Poincare group
 - Supersymmetric partner for every SM particle
 - Charginos, Neutralinos, Sleptons, Sneutrinos,...
- 2. Grand Unified Theories
 - ▲ Enlarge gauge group $SU(3)_C \times SU(2)_L \times U(1)_Y$
 - New additional gauge bosons W', Z'
- 3. Large Extra Dimensions, Randall Sundrum Model
 - ▲ Increase the number of space dimension
 - ► KK excitations, RS gravitons,...
- 4. Many more not covered here...

Supersymmetry (MSSM)

Minimal field content with two Higgs doublets

R–parity = +1			R–pa	arity = -1	R-parity = -1		
Particle	Sýmbol	Spin	Particle	Śymbol	Spin	Particle Symbol	Spin
Lepton	l	$\frac{1}{2}$	Slepton	$ ilde{\ell}_{ m L}, ilde{\ell}_{ m R}$	0		
Neutrino	ν	$\frac{1}{2}$	Sneutrino	$ ilde{ u}$	0		
Quark	q	$\frac{1}{2}$	Squark	$\tilde{q}_{\rm L}, \tilde{q}_{\rm R}$	0		
Gluon	g	1	Gluino	ĝ	$\frac{1}{2}$		
Photon	γ	1	Photino	$ ilde{\gamma}$	$\frac{\overline{1}}{2}$		
Z Boson	Z	1	Zino	$ ilde{ ext{Z}}$	$\frac{\overline{1}}{2}$		
W Boson	W^{\pm}	1	Wino	$ ilde{W}^{\pm}$	$\frac{1}{2}$	Neutralino $ ilde{\chi}_{ m i}^0$	$\frac{1}{2}$
Higgs	$\mathrm{H}^{0},\mathrm{H}^{\pm}$	0	Higgsino	$\tilde{\mathrm{H}}_{1}^{0}, \tilde{\mathrm{H}}_{2}^{+}$	$\frac{1}{2}$	Chargino $ ilde{\chi}^\pm_{ m i}$	$\frac{1}{2}$
	h^0, A^0	0		$\tilde{\mathrm{H}}_{1}^{-},\tilde{\mathrm{H}}_{2}^{0}$	$\frac{1}{2}$		

- More than 100 parameters in the MSSM
 - ▲ Can be reduced with reasonable assumptions (unification at GUT scale,...)
- R-parity: $R = (-1)^{3(B-L)+2S}$
 - ▲ If R-parity conserved ⇒ Lightest supersymmetric particle is stable

mSUGRA

- One of the most considered models for SUSY searches is mSUGRA
 - ▲ mSUGRA characterized by five parameters
 - \blacktriangleright Common scalar mass at GUT scale: m_0
 - Common Gaugino mass at GUT scale: $m_{1/2}$
 - Common trilinear coupling at GUT scale: A₀
 - Ratio of VEV of the neutral Higgs fields: $\tan \beta$
 - Sign of Higgs mass parameter: $sign(\mu)$
 - \blacktriangle R-parity conservation \Rightarrow stable LSP (Neutralino)
- Main search channels at the Tevatron
 - Charginos and Neutralinos
 - ▶ Three charged leptons + \mathbb{E}_{T}
 - ▲ Squarks and Gluinos (not covered in this talk)
 - ▶ 2–4 jets + ₽_T
 - Stop and Sbottom

600

500

Search for Charginos and Neutralinos

- Trilepton channel is the "golden mode" for Chargino/Neutralino search
 - ▲ Signature: three charged leptons plus missing transverse energy
- Challenges
 - ▲ Leptons have low transverse momenta
 - ▲ Small cross sections: $\sigma \times BR < 0.5 \text{ pb}$

- Selection strategy
 - ▲ Two identified leptons + track
 - ► High efficiency, sensitive to all flavors
 - A Require \mathbb{E}_{T} to account for LSP's and ν 's
- DØ: Five different final states
 arXiv:09010646v1
 - $ee + \ell, \, \mu\mu + \ell, \, e\mu + \ell, \, \mu\tau + \ell, \, \mu\tau + \tau$
- CDF: Several final states PRL 101, 251801 (2008)
 - ▲ Three identified leptons (e, μ) or two leptons (e, μ) plus track

Trilepton Results

$D \varnothing \int \mathcal{L} dt = 2.3 \ \mathrm{fb}^{-1}$			$CDF \int \mathcal{L} dt = 2.0 \; \mathrm{fb}^{-1}$		
Background Data			Background Data		
low $p_{\rm T}$	5.4±0.6	9	Trilepton 0.88±0.14 1		
high $\mathrm{p_{T}}$	3.3±0.4	4	Lepton+track 5.5±1.1 6		

- Main background: Diboson production (WZ, WW)
- Other contributions: Drell Yan, $W \rightarrow \ell \nu$, $t\bar{t}$

Trilepton Results (2)

• Extend limits in $m_0-m_{1/2}$ plane and for different $\tan\beta$

- Exclude Charginos with masses up to 167 GeV
- Probe Charginos masses up to 178 GeV
- Can exclude Charginos of 130 GeV up to $\tan \beta = 9.6$

Search for $\tilde{t}_1 \tilde{t}_1 \rightarrow b \bar{b} \ell \ell' \tilde{\chi}_1^0 \tilde{\chi}_1^0 \nu \bar{\nu}$

180

185

10

- Kinematic assumptions
 - ▲ $m_{\tilde{t}_1} < m_t$: 115 GeV < $m_{\tilde{t}_1} <$ 185 GeV $\blacktriangle m_{\tilde{\chi}_{1}^{\pm}} < m_{\tilde{t}_{1}} - m_{b}$: 106 GeV $< m_{\tilde{\chi}_{1}^{\pm}} <$ 126 GeV Λ $\tilde{\chi}_1^0$ is LSP: 44 GeV < $m_{\tilde{\chi}_1^0}$ < 89 GeV

Marc Hohlfeld

Search for $\tilde{t}_1 \tilde{t}_1 \rightarrow b \bar{b} \ell \ell' \tilde{\chi}_1^0 \tilde{\chi}_1^0 \nu \bar{\nu}$ (2)

- Use topological variables to discriminate signal from background
 - \blacktriangle H_T: scalar sum of jet transverse momenta
 - \blacktriangle S_T : scalar sum of lepton transverse momenta and $\not\!\!\!E_T$

Search for Sneutrino Resonances

- Consider R parity violating model with superpotential $W = \frac{1}{2} \varepsilon_{ab} \lambda_{ijk} \hat{L}^{a}_{i} \hat{L}^{b}_{j} \hat{E}_{k} + \varepsilon_{ab} \lambda'_{ijk} \hat{L}^{a}_{i} \hat{Q}^{b}_{j} \hat{D}_{k} + \frac{1}{2} \varepsilon_{\alpha\beta\gamma} \lambda''_{ijk} \hat{U}^{\alpha}_{i} \hat{D}^{\beta}_{j} \hat{D}^{\gamma}_{k} + \varepsilon_{ab} \delta_{i} \hat{L}^{a}_{i} \hat{H}^{b}_{2}$

• All RPV couplings other than λ'_{311} and $\lambda_{321} = \lambda_{312}$ are set to zero

 $(e\tau, \mu\tau)$ to extract limits

• CDF $\int \mathcal{L}dt = 1 \text{ fb}^{-1}$

A Search in $e\mu$, $e\tau$ and $\mu\tau$ final states

• Use invariant mass $(e\mu)$ or visible mass

Search for Sneutrino Resonances (2)

- Cross section limits
 - **A** Exclude $\sigma \times BR$ in the range of 10^{-2} to 10^{-1} pb

Search for CHAMPS

Background

----- Stau (300 GeV)

10⁵

10⁴

10³ 10² (b)

DØ

- Search for Charged Massive Stable Particles
 - ▲ Pair produced staus or charginos
 - Signature in the detector: "slow muons"
 - Use time-of-flight information and invariant mass to distinguish signal and background

Extra Dimensions

GRAVITYBRANE

EAKBRANE

- Extra dimension models come in various flavors
 - ▲ Large extra dimension, universal extra dimensions,...
 - ▲ Today: only Randall Sundrum model
 - Only one additional dimension
 - Weak scale generated from large scale through exponential hierarchy
 - Exponential hierarchy arises from background metric
 - ▲ Excitations lead to heavy gravitons
 - ▲ Can decay into pair of fermions or bosons

Additional Gauge Bosons

GRAVITYBRANE

EAKBRANE

- Extra dimension models come in various flavors
 - ▲ Large extra dimension, universal extra dimensions,...
 - Today: only Randall Sundrum model
 - Only one additional dimension
 - Weak scale generated from large scale through exponential hierarchy
 - Exponential hierarchy arises from background metric
 - ▲ Excitations lead to heavy gravitons
 - Can decay into pair of fermions or bosons
- Embed SM gauge group in larger groups: SU(5), SO(10), E₆,...
 - ▲ U(1) gauge groups can survive to reasonable low energies ⇒ Additional neutral gauge vector bosons: Z'
- Other models also predict new heavy gauge bosons
 - ▲ Left–right symmetric models: $SU(2)_L \times SU(2)_R \times U(1)_{B-L}$
 - ▲ Little Higgs models

Search for High Mass Resonances

- High mass resonance in dilepton final state
 - **Spin 0: Sneutrino** $\tilde{\nu}$
 - **A** Spin 1: Heavy gauge boson Z'
 - ▲ Spin 2: RS graviton G^*
- Search for deviations from SM prediction at high invariant dilepton mass

• DØ search for W' with $\int \mathcal{L}dt = 1 \text{ fb}^{-1}$: $m_{W'} > 1000 \text{ GeV}$

CDF Run II Preliminary

Mass limits in GeV					
		ee	$\mu\mu$		
$ ilde{ u}$	$\lambda^2 \cdot BR = 0.01$		810		
Z'	SM like	966	1030		
G^*	$k/M_{Pl} = 0.1$	850	921		
2.5 σ excess at m_{ee} = 240 GeV					

Moriond EW 2009, 8.3.2009

Search for High Mass Resonances (2)

- High mass resonance can also decay in pair of Z bosons
 - ▲ Intermediate mass region: *eeee*, $ee\mu\mu$, $\mu\mu\mu\mu$
 - ▲ High mass region: eejj, $\mu\mu jj$
- Loosen lepton requirements to increase acceptance

Z→µµ YIELD COMPARISON

CDF RUN II PRELIMINAR

 $L = 2.5 - 2.6 \text{ FB}^{-1}$

Marc Hohlfeld

X→ZZ MUON SELECTION

(-150,000 CANDIDATES)

116

Conclusion

• Summary

- ▲ Tevatron, CDF and DØ are performing well
 - Already collected more than 5 fb^{-1} of data
 - Nearly factor two and more of data than used in results presented here
- ▲ Searches probing new regions so far not accessible
 - New limits well beyond previous results
- Tevatron will continue to search for new physics in so far uncovered territory
- For more information please refer to

CDF http://www-cdf.fnal.gov/physics/exotic/exotic.html

DØ http://www-d0.fnal.gov/Run2Physics/WWW/results/np.htm

BACKUP SLIDES

Moriond EW 2009, 8.3.2009

Tevatron

20

• $p\bar{p}$ collisions at center of mass energy of \sqrt{s} = 1.96 TeV

	Run I	Run IIa	Run IIb
$\sqrt{\mathrm{s}}$ (TeV)	1.8	1.96	1.96
Bunches	6×6	36×36	36×36
Bunch spacing (ns)	3500	396	396
Luminosity $(cm^{-2}s^{-1})$	$1.6 \cdot 10^{30}$	$9 \cdot 10^{31}$	$3 \cdot 10^{32}$

Marc Hohlfeld

The Detectors (cont'd)

Moriond EW 2009, 8.3.2009

Marc Hohlfeld

GUTENBERG

Excited Electrons

- Quarks and leptons could have a substructure PRD 77, 091102 (2008) (as so many other particles that once were believed to be fundamental)
 - \Rightarrow Excited states, eg e^*
 - ▲ Production and decay
 - Contact interaction with compositeness scale Λ
 - ▶ Decay via CI or gauge interaction (eg $e^* \rightarrow e\gamma$)

	Bkg	Data
Total	239	259
m_{e^*} = 200 GeV	0.52	1
m_{e^*} = 500 GeV	0.12	0
m_{e^*} = 1000 GeV	$0.17 \cdot 10^{-3}$	0

- Exclude excited electrons with masses below m_{e^*} = 756 GeV for Λ = 1 TeV
- Neglecting $CI \Rightarrow m_{e^*} > 989 \text{ GeV}$

Moriond EW 2009, 8.3.2009

Search for Stops in Lepton+Jets

- Use $t\bar{t}$ selection in lepton+jets channel to search for stop quarks arXiv:0901.1063
- To discriminate $t\bar{t}$ from stop signal build Likeli– hood discriminant

	= 3 jets		\geq 4 jets		
	e +jets μ +jets		e+jets	μ +jets	
Signal	3.2	2.2	2.9	2.1	
Background	186.2	157.2	138.1	116.0	
Data	193	163	133	135	

Marc Hohlfeld

Search for long lived Charged Massive Particles ▲ Long lifetime, does not decay in detector

Search for CHAMPS (2)

- Highly ionizing and penetrating
- Signature in the detector: "slow muon"
 - ▲ Use time-of-flight system to measure β of the particle
 - Measure momentum in the tracker
 - Combine β and momentum measure– ment to get mass of the particle

50 100 150 200 250 Mass from track momentum and β_{TOF} (GeV/c²) 0

- Cross section limit can be interpreted in SUSY models with one compactified extra dimension
 - In these models Stop is the LSP
- Mass limit: $m_{\tilde{t}} > 250 \text{ GeV}$

Marc Hohlfeld

Moriond EW 2009, 8.3.2009

arXiv:0902.1266

Multimuons

- Study of multimuons events with large impact parameter arXiv:0810.5357v2
 - ▲ Predict number of dimuon events in loose sample starting from tight sample
 - Tight sample: Hits in 2 innermost silicon layers + at least 2 additional hits
 - Loose sample: At least 3 silicon hits

$$N_{loose} = N_{tight} \cdot \frac{\varepsilon_{loose}}{\varepsilon_{tight}}$$

- Measurement
 - ▲ $N_{tight} = 143743$ events $\Rightarrow N_{loose}^{pred} = 518417$ events
 - ▲ But N_{loose}^{obs} = 590970 events ⇒ Excess of N = 72553 events
- These event are referred as "ghost events"
 - ▲ No explanation for total excess

