

Outline

- > Physics motivations
- > Standard Model Higgs searches:
 - \rightarrow H \rightarrow WW, H \rightarrow ZZ, H \rightarrow $\gamma\gamma$, H \rightarrow $\tau\tau$
- > Supersymmetry hints:
 - > Multiple jets + leptons, di-jets
- > Beyond the Standard model:
 - > Z', G
- Conclusions
- P.S. Either CMS or ATLAS results will be shown

Open questions in particle physics

- Is the Higgs mechanism to generate weak boson and fermions masses real?
- How to solve the problem of the hierarchy between the EWK scale and the GUT or Planck scale?
- Are the electroweak and strong forces unified at some GUT scale
- Is the SUSY realized in nature? Do the SUSY particles exist? Can they explain the dark matter?
- Do extra dimensions exist?

LHC can provide some answers

The ATLAS/CMS detectors at LHC

Tracker: $|\eta| < 2.5$ SI pixels, SI strips, straw-tubes $\sigma/p_{\tau} \approx 0.05\% p_{\tau} \oplus 1\%$

Muon spectrometer: $|\eta| < 2.7$ Drift tubes (barrel), CSC (endcap), RPCs $\sigma/p_{\tau} \approx 10\%$ (1 TeV muons)

> EM Calorimeter: |η| < 3.2 Lead/LAr σ/E ≈ 10% / √E ⊕ 0.7%

Tracker: $|\eta| < 2.5$ SI pixels, SI strips $\sigma/p_{\tau} \approx 0.015\% p_{\tau} \oplus 0.5\%$

Muon spectrometer: $|\eta| < 2.6$ Drift tubes (barrel), CSC (endcap), RPCs $\sigma/p_T = 4.5-7$ % (1 TeV μ), if comb. with TK

EM Calorimeter: $|\eta| < 3.0$ Lead tungstate (PbWO4) crystals $\sigma/E = 2.8 \%/\sqrt{E \oplus 0.3 \%}$ (barrel)

...in preparation for real data

- **CMS** and **ATLAS** communities are improving analyses, focusing on perspective searches with **low** luminosity (< 1 fb⁻¹).
- Full simulation/closer to the real experimental set-up → start-up conditions (miscalibration/misalignment of the detectors) used
- Focus on **data driven methods** to estimate background and efficiency from data → evaluation of systematics
- Improved **signal & backgrounds understanding** (more complex MCs, NLO QCD/EW corrections)

SM Higgs production at LHC

- Higgs production crosssection (NLO): 0.1-50 pb
- gluon fusion dominates at LHC especially at low m_H

A.Djouadi, Phys.Rept.457:1-216,2008

– $H \rightarrow b \bar{b}$ dominant, BR = 60–90%

 $-\,H
ightarrow au^+ au^-, c\overline{c}, gg$ BR= a few %

– $H \rightarrow \gamma \gamma, \gamma Z$, BR = a few permille.

• 'High mass range', $M_{\rm H} \gtrsim 130\,{\rm GeV}$:

 $-\,H
ightarrow\,WW^*,\,ZZ^*$ up to $\,\gtrsim 2M_W$

 $-\mathbf{H} o \mathbf{WW}, \mathbf{ZZ}$ above (BR $o \frac{2}{3}, \frac{1}{3}$)

 $-H \rightarrow t\bar{t}$ for high M_H ; BR $\lesssim 20\%$.

H→WW and H→ZZ are important channels at low lumi

$H \rightarrow WW \rightarrow II_{VV}$ analysis

- Signatures: 2 isolated high p_T leptons + MET, no higgs mass peak
- Backgrounds: tt, DY, di-boson, tW, W+jets
- Preselection strategy:
 - Single lepton triggers
 - 2 isolated leptons opp. charge
 - p_T 1,2>10 GeV or at least one p_T >20 GeV
 - MET > 30 GeV, m_{\parallel} >12 GeV
- Main selection observables:
 - Central jet veto
 - Angular correlations btw leptons
 - Di-lepton mass, MET, leptons p_T
- cut based and NN approaches
- control from real data of
 - the efficiencies (lepton and jet reconstruction)
 - of the systematics on the MET measur.
 - the estimation of bkg rates and fake rate

Neural Network Output

$H \rightarrow ZZ \rightarrow 4l$ analysis

- Signatures: 4e,4mu and 2e2mu final state
- Backgrounds:
 - *irreducible* ZZ (each virtual or real Z in $\mu^+\mu^-$)
 - *reducible* Zbb (Z in $\mu^+\mu^-$ and semilept. decay of b)
 - reducible tt (each t in bW and semilept. decay of b) and tt+jets, Z+jets, W+jets, QCD
- Preselection strategy: (to get rid of QCD bkg with fake leptons)
 - Single & double lepton triggers
 - 4 loose isolated leptons opp. charge and eleId
 - m_{||}>12 GeV, m_{4|}>100 GeV
- Main selection observables:
 - tight isolation (against tt, Zbb)
 - impact parameter (against Zbb and tt)
 - 50<m₇<100 GeV, 20<m_{7*}< 100 GeV
- → Baseline cut-based analysis, m_H-independent, able to get rid of main bkg -> first observation with reasonable lumi

$H \rightarrow ZZ$ and $H \rightarrow WW$ combination

In absence of a signal \rightarrow UL on σ

→ SM-like Higgs could be excluded for $m_H > 140$ GeV at $\sqrt{s} = 14$ TeV with 1 fb⁻¹

Projection at 10 TeV:

■ Most important effect is the change in σ

```
-- gg→H: 10 TeV/14 TeV is ~0.54
```

-- WW/ZZ: 10 TeV/14 TeV is ~0.65

Rescaling of signal and main backgrounds yields from the 14

TeV analyses

N. De Filippis

→ 14→10 TeV is approximately equivalent to a loss of a factor 1.5 in sensitivity

$H \rightarrow \gamma \gamma$

Important channel for Higgs with $110 < m_H < 140$ GeV because **clear signature** but small B.R. (0.2%)

Backgrounds: *irreducible* (gg $\rightarrow \gamma \gamma$, qqbar, qg $\rightarrow \gamma \gamma$, pp $\rightarrow \gamma$ +jets (2 prompt γ); *reducible* (pp $\rightarrow \gamma$ +jets (1 prompt γ + 1 fake γ), pp \rightarrow jets (2 fake γ), fake γ from $\pi^0 \rightarrow \gamma \gamma$

Important issues:

- γ reconstruction and calibration
- γ identification to reject bkg from jets faking γ
- ullet separation of converted and unconverted γ
- excellent energy and angular resolution obtained to achieve ~1.2% resolution in Higgs mass reconstruction degrading slightly when pileup added.

Many topologies: Inclusive, H+1jet, H+2jet, H+MET+ lept. Iso., H+MET

→ significance based on event counting of 2.6 with 10 fb⁻¹ for m_H = 120 GeV in the case of inclusive analysis

Searches for SUSY

Spectrum of new particles, partner of SM particles

A SUSY signal at LHC is typically dominated by the production of squarks and gluinos.

Event topologies of SUSY:

multiple jets, often energetic

+ possibly some lepton,

+ missing E_T

multileptons + missing ET

Most studies done in the context of MSSM with R-parity conservation, squarks and gluinos heavy

- -- SUSY breaking scenarios considered:
 - **mSUGRA minimal SuperGravity**
 - GMSB Gauge Mediated SUSY Breaking
 - AMSB Anomaly Mediated SUSY Breaking

Searches for jets + lepts (e,μ) + MET

- **0-lepton** mode can probe close to min[m(\widetilde{q}), m(\widetilde{g})] = **1.5 TeV** with 1 fb⁻¹; reach is roughly independent of tan β for 0- and 1 lepton modes 4-jet requirement seems best in 0-lepton mode
- \rightarrow ATLAS should discover signals for R-parity conserving SUSY with gluino and squark masses less than O(1TeV) after having accumulated and understood an integrated luminosity of about 1fb⁻¹.

SUSY searches with di-jet

$$pp \to \widetilde{q} \overline{\widetilde{q}}, \quad \widetilde{q} \to q \; \widetilde{\chi}_1^0(LSP)$$
: di-jet + missing E_T signature

CMS

Main background: QCD

di-jet, Z+jet (Z \rightarrow vv)

Sample	m_0	$m_{1/2}$	A_0	$\tan \beta$	$sign(\mu)$	σNLO	(LO)	lightest q̃	χ_1^0
	(GeV)	(GeV)				(pb)	(pb)	(GeV)	(GeV)
LM1	60	250	0	10	+	54.86	(43.28)	410 (\tilde{t}_1)	97
LM2	185	350	0	35	+	9.41	(7.27)	582 (\tilde{t}_1)	141
LM3	330	240	0	20	+	45.47	(34.20)	$446 (\tilde{t}_1)$	94
LM4	210	285	0	10	+	25.11	(19.43)	483 (\tilde{t}_1)	112

Kinematical variables used to suppress the QCD bkg like:

$$\alpha = E_{\rm T}^{\rm j2}/M_{\rm inv}^{\rm j1,j2}$$

Data driven techniques for:

- bkg estimation via matrix method
- \blacksquare Z+jets (Z \rightarrow vv) bkg from W+jets

Selection cut	QCD	tŧ,W,Z	$Z ightarrow u ar{ u}$	LM1
Trigger	1.1×10^{8}	147892	1807	25772
Preselection	3.4×10^{7}	9820	878	2408
$\mathrm{HT} > 500\mathrm{GeV}$	3.2×10^{6}	2404	243	1784
$\alpha > 0.55$	0	7.2	19.7	227.6
$\alpha_{\rm T} > 0.55$	0	19.9	58.2	439.6
$\Delta \phi_{\mathrm{j}1,\mathrm{j}2} < 2\pi/3$	0	18.7	57.2	432.4

Several SUSY benchmark points can be discovered with S/B up to 6 with a data sample smaller than 1fb⁻¹

Beyond SM: $Z' \rightarrow e^+e^-$

Massive gauge bosons expected in several models; Z' in SSM (sequential standard model), G in Randall-Sundrum

Phys. Rev. Lett. 83 (1999) 3370–3373

Main bkg: DY, tt (2 real ele), QCD, W+jets, γ +jets, $\gamma\gamma$ (with one jet faking electron)

Model mass (GeV/c ²)	M = 1000	M = 1500	M = 2000	M = 2500
SSM Z'				
$\sigma \cdot BR$ (fb)	458	80	20	5.8
nb. ev. for 100 pb ⁻¹ and 2 el. with $ \eta < 2.5$	38	7.2	1.8	0.54
RS $G(c = 0.1)$				
$\sigma \cdot BR$ (fb)	660	76	14	3.5
nb. ev. for 100 pb $^{-1}$ and 2 el. with $ \eta < 2.5$	62	7.2	1.3	0.32
DY bg. (GeV/ c^2)	M > 600	M > 1100	M > 1600	M > 2100
cross section (fb)	50	4.4	0.76	0.18
nb. ev. for 100 pb $^{-1}$ and 2 el. with $ \eta < 2.5$	4.0	0.4	0.07	0.02

Important features:

- -- High threshold trigger: $E_T > 80$ and loose isolation OR E_T>200 GeV
- -- saturation in ECAL electronics for very high energy deposition in ecal crystals
- -- efficiency checked using Tag & Probe with data
- -- tt measured with data

Beyond SM: $Z' \rightarrow \mu^+ \mu^-$

Muons in the 1 TeV Z' sample have a most probable p_T of about 500 GeV $\rightarrow p_T$ resolution of approximately 5% is found.

Background sources: DY (irreducible), inclusive jets, W+jets, Z+jets.

Sample	Z'_{SSM} (1 TeV)	Z'_{χ} (1 TeV)	Drell-Yan
Generated	508.6	380.6	13.5
$ \eta \le 2.5$	366.8	271.5	10.8
$p_T \ge 30 \text{ GeV}$	364.0	270.1	10.7
Muon identification	342.3	256.0	10.0
Trigger	325.2	243.2	9.5
Opposite charge	324.8	243.0	9.5

SSM Z'

- ➤ Muon chamber misalignment has an important effect → loss of Z' mass resolution
- Luminosity needed for a 5σ discovery ranges from 20 to 40 pb⁻¹, which is competitive with the di-electron channel.

Summary and conclusions

- > CMS and ATLAS are ready for real data analyses making use of most advanced knowledge of the detectors and designed to use real data to control background and estimate systematics
- ➤ CMS/ATLAS should be able to observe an excess or put new constraints on several scenario for new physics with 100 pb⁻¹ - 1 fb⁻¹ of integrated luminosity
- > the discovery of SUSY and BSM/Extra dimension is possible with relatively small data samples and even with roughly calibrated detectors
- → Looking forward with analyses at $\sqrt{s=10}$ TeV with 200 pb⁻¹ detector conditions.

Backup slides

VBF qqH, H $\rightarrow \tau\tau \rightarrow$ I+jets

Important channel for Higgs discovery in 115 < m_u < 145 GeV

- Improved s/b ratio, thanks to forward jets and no had. activity in the central region
- Main backgrounds:
 Z + jets, W + jets, tt and QCD multi-jet → detailed study done in CMS about background estimate from data
- **Problematic issue: electrons faking** τ **jets**

Variables proposed to separate e/ τ : $E_{T\ max}^{HT}$ and $E_{T\ max}^{HT}/p_{T}^{ltr}$

- **■** Lepton Counting
- VBF Event Selection
- Lepton Selection
- Mass Reconstruction
- Vertex Selection
- Central Jet Veto
- **τ** -jet Selection
- Background Rejection
- Selection of VBF Jets
- Lepton-MET system

■ No signal evidence is expected at **1** fb⁻¹ but it is a discovery channel at 30 fb⁻¹.

VBF qqH, H $\rightarrow \tau\tau \rightarrow$ I+jets (ATLAS)

VBF H $\rightarrow \tau\tau$: more intricate but more fun

 ~ 1600 events produced @ 10 fb⁻¹, for m_H = 120 GeV/c² in the lepton-hadron (lh) and di-lepton (ll) final states, but large and difficult backgrounds, small efficiencies

All detector capabilities needed:

- · soft leptons, hadronic taus
- E_T^{mis} (mass reconstruction)
- · b-tagging (veto against tt)
- forward jets and soft central jets (central jet veto CJV)
 - ightharpoonup Large impact of the underlying event (UE) and pile-up events (E_T^{mis} resolution, CJV)
 - ⇒Very difficult experimentally, but also very promising

Example of mass spectrum for $m_H = 120~GeV/c^2~and~30~fb^{-1}~in~the~lh~final~state$ $B \sim 2.5~fb~/~S = 0.72~fb$

Within $m_H \pm 15 \text{ GeV/c}^2$: S/B ~ 3 $\sigma(m_{\tau\tau}) \sim 10 \text{ GeV/c}^2$

Rapidity gap

(Fig. from E. Richter-Was)

⇒ Combining the lh and ll channels,

5 σ discovery with 30 fb⁻¹ for $m_H = 115$ GeV/c², and above ~ 4 σ for $m_H \in [110,135]$ GeV/c² The hadron-hadron channel is considered as well but needs further studies (QCD background)

mSugra benchmark points

m₀, m_{1/2}
universal spin 0
& 1/2 particle
masses at the

GUT scale

mSugra benchmark points

	m_0 (GeV)	m_1/2 (GeV)	A0 (GeV)	tan(beta)	σ(NLO) (pb)	Comment
SU1	70	350	0	10	10.9	Soft leptons, taus
SU2	3550	300	0	10	7.2	gluino/gaugino production, heavy flavor decays
SU3	100	300	-300	6	27.7	Generic point
SU4	200	160	-400	10	402.2	Low mass point near Tevatron bound
SU6	320	375	0	50	6.1	Tau rich

Common features for all points

- $-- \mu > 0$
- $-m(\tilde{g}) < 1 \text{ TeV}$
- -- Comparable \tilde{g} and q masses
- $-m(\tilde{g})/m(\tilde{\chi}_1^0) \approx 6-8$
- -- NLO xsec used

Beyond SM: Leptoquarks

Leptoquarks (LQ) = hypothetical bosons

- with both quark and lepton quantum numbers
- decay in any combination of a lepton and a quar
- three generations of leptoquarks, each coupled t 🐧 a lepton and a quark from the same SM generation.
- produced in pairs by the strong interaction or in association with a lepton via the leptoquark-quarklepton coupling.
- decay final states with two highly energetic leptons + two jets and no MET

Bkg: tt, inclusive Z/g processes, multijet events with two jets are misidentified as leptons

Beyond SM: 4th lepton generation

- Phase in CKM can give CP violation but is too small to cope with the asymmetry between matter to antimatter \rightarrow 4th lepton generation (b', t')
- Searches at Tevatron gave m(b') > 268 GeV at 95 % C.L.
- Tevatron and ATLAS evaluated the impact of the 4th lepton gen. on the Higgs observability

CMS searches for b'

- Significance of 7.5 for m(b') ~ 300 GeV with 100 pb
- If no signal → m(b')<480 excluded at 95% CL

ATLAS searches

Beyond SM: Heavy stable charged particles

Several models predicting HSCP: susy with R-parity and extra dimension with KK-parity:

- > Leptons-like HSCPS (sleptons and stau in SUSY models with GMSB
- ➤ HSCPs with strong charge will hadronize in R-hadrons (R-hadrons, R-mesons, R-gluonball) → hadronic interaction with the matter

Signature: a low velocity particle associated with a high momentum of few hundred GeV; two techniques to measure β by:

- measuring TOF with the Barrel Muon Drift Tube
- ➤ measuring dE/dx with the Silicon tracker

HSCPs can be discovered with early data for different models and mass region

