Beyond the Standard Model Higgs Searches at the Tevatron

presented by

Brookhaven National Laboratory, USA

on behalf of the DØ and CDF Collaborations

XLIVth Rencontres de Moriond: EW Interactions and Unified Theories La Thuile, Val d'Aoste, Italy

BSM Higgs: Outline

- In addition to SM searches, several extensions to SM predict Higgs
 - behave similar to SM Higgs, but exhibit different couplings
 - branching ratio of various Higgs decays can be enhanced significantly

I. Fermiophobic Higgs Search

- Higgs primarily couples to bosons and branching ratios to fermions substantially suppressed
- depending on mass: decays mostly to γ or W bosons
 - + $h_f \rightarrow \gamma \gamma$, WH \rightarrow WWW*

II. MSSM Higgs Search

- 5 physical Higgs bosons
 - + ϕ (= h⁰, H⁰, A⁰) and H[±]
- main searches
 - + $\phi b \rightarrow b\bar{b}b$
 - + $\phi \rightarrow \tau \tau$ and $\phi b \rightarrow \tau \tau b$
 - + charged Higgs in top decays (see talk on Tevatron tt Prod. results)

WH \rightarrow WWW* $\rightarrow \ell^{\pm}\nu\ell^{\pm}\nu + X$ Search

- For Fermiophobic Higgs: $M_h > 110 \text{ GeV} \Rightarrow \text{Br}(h \rightarrow WW^*) \text{ supersedes Br}(h \rightarrow \gamma\gamma)$
- Signature of associated Higgs production requires like-sign dileptons (e, μ)
 - sign from one of W's via Higgs = sign from associated W
- [updated since ICHEP '08] 2.7 fb⁻¹ search: use data-driven methods in control regions to estimate fake leptons and residual photon-conversion backgrounds
- Implement Boosted Decision Tree to improve search sensitivity
 - BDT outputs: data agrees with expected background
 - ratio of $\sigma \times BR$ limit to theory prediction ~ 8.8 at M_h = 120 GeV (at 95% CL)

$WH \rightarrow WWW^* \rightarrow \ell^{\pm} \nu \ell^{\pm} \nu + X$

- Similarly, DØ considers like-sign isolated dileptons with 1.0 fb⁻¹ dataset
- Likelihood discriminant used to separate signal from physics backgrounds:
 - physics: WZ $\rightarrow \ell \nu \ell \ell$, with lost lepton from Z
 - QCD: b-jets, punch-throughs, $\gamma \rightarrow e$
 - charge flips: mainly from $\mathbb{Z}/\gamma^* \rightarrow \ell \ell$
- For each final state, data agrees with expected backgrounds \Rightarrow similar sensitivity for $\sigma \times Br$

Fermiophobic $h_f \rightarrow \gamma \gamma$ Search

- [updated] 3.0 fb⁻¹ result roughly doubles acceptance by including one forward γ
- M_{vv} fitted with smooth function
 - peak hunt: no evidence of narrow resonance in di-photon data spectrum

- For Fermiophobic couplings, limit set at 95% CL: $m_{hf} > 106 \text{ GeV}$
 - for model, strongest limit to date by hadron collider
- $DØ (1.1 \text{ fb}^{-1}): m_{hf} > 100 \text{ GeV}$
 - new result expected soon
- **Tevatron results: extend sensitivity for** Br($h_f \rightarrow \gamma \gamma$) into $m_{hf} > 130$ GeV region, not accessible by LEP

Higgs bosons in the MSSM

- **MSSM Higgs requires 2 doublets**
 - yields: ϕ (= h^0 , H^0 , A^0) and H^{\pm}
- At tree-level, MSSM Higgs fully specified by two free parameters
 - $-M_{\Lambda}$
 - tan $\beta = \langle H_u \rangle / \langle H_d \rangle$ (ratio of v.e.v. of 2 Higgs doublet)
- Radiative corrections introduce dependence on additional SUSY parameters
- $\sigma(p\bar{p} \rightarrow h/H/A) \propto tan^2 \beta$
 - at large tanβ (low M_A) ⇒ enhanced production cross-section
- h/H/A decays, in most parameter space:
 - $\phi \rightarrow b\bar{b} (\sim 90\%)$
 - $\phi \rightarrow \tau\tau (\sim 10\%)$
 - + smaller BR but cleaner signature (vs. large QCD background in b mode)

DØ: $\phi b \rightarrow bbb$ Search

- φ→bb̄ search difficult due to large multijet background
 - consider φ produced in association with at least one b-jet
- 2.6 fb⁻¹ data requires 3 b-tagged jets via
 NN b-tagger
 - likelihood discriminates b-jets via
 Higgs signal from multi-jet
 backgrounds
- Improve sensitivity by separating into 3,
 4, and 5-jet channels
- No excess in di-jet invariant mass: 95% C.L. exclusion limits in MSSM benchmark parameter space

Higgs mass term, μ < 0: enhanced production for 3b mode gives strongest limits

CDF: ϕb → $b\bar{b}b$ Search

- Require 3 b-tagged jets with 1.9 fb⁻¹ data
- Search for enhancements in mass of 2 lead jets, m₁₂
- Fit 2- and 3-tag distributions to estimate quark content from heavy-flavor multi-jet backgrounds
 - vertex mass fits ⇒ set mass-dependent cross section limits
 - translate limits in $(M_{\Delta}, \tan \beta)$ plane

CDF: $\phi \rightarrow \tau \tau$ Search

- CDF considers $\tau_e \tau_{had}$, $\tau_{\mu} \tau_{had}$, and $\tau_e \tau_{\mu}$ channels with 1.8 fb⁻¹ data, selected by:
 - isolated e or μ : opposite sign (OS) from hadronic τ
 - τ's selected using variable-size cone algorithm
 - W+jets background removed by requirement on relative direction of visible τ decay products and E_T

Final State: (1.8 fb ⁻¹)	Sum Background	Data
$ au_{\mu} au_{had}$	1750.8 ± 41.8	1666 ± 41
$ au_{ m e} au_{ m had}$	1921.1 ± 43.8	1979 ± 45
$ au_{ m e} au_{ m \mu}$	701.9 ± 26.5	726 ± 27

- Data agrees with backgrounds for visible mass
 - set $\sigma \times BR$ limits for 90 GeV < M_A < 250 GeV

DØ: Inclusive ττ Search

- Result using 1.0 fb⁻¹ dataset for $\tau_{\mu}\tau_{had}$, $\tau_{e}\tau_{had}$, and $\tau_{e}\tau_{u}$: PRL 101, 071804 (2008)
- 2.2 fb⁻¹ of Run II data considers $\tau_{\mu}\tau_{had}$
 - isolated μ separated from τ : opposite sign
 - hadronic τ categorized by decay types
 - + discriminated from jets using τ -ID NN
 - M_T < 40 GeV ⇒ reject W+jets

DØ Preliminary (1-2.2fb⁻¹)

- No excess in data across visible mass spectrum
 - extract upper limits on $\sigma \times BR$ as function of ϕ mass
 - + 2.2 fb⁻¹ result: ~10 - 20% improvement
 - + dominant systematic: τ -ID (4-8%)

A. Patwa: Moriond 2009

ττ Search: MSSM Interpretation

- Interpret limits into MSSM m_h^{max} and no-mixing benchmark scenarios
- Exclusion results similar for each experiment
 - reached sensitivity tan β ~ 40 50 for M $_A$ < 180 GeV

ϕ b \rightarrow ττb Search: σ ×BR and MSSM Limits

- 1.2 fb⁻¹ search considers $\phi b \rightarrow \tau_{\mu} \tau_{had} b$
 - − use developed techniques from both $\phi \rightarrow \tau \tau$ and $\phi b \rightarrow b\bar{b}b$ searches [published 330 pb⁻¹ result: PRL 102, 051804 (2009)]
- Pre b-tag: dominated by QCD multi-jet and $Z \rightarrow \tau \tau$, $\mu \mu$ backgrounds
- Post b-tag: dominated by QCD multi-jet and top events
- Limits calculated for $\sigma \times BR$ and translated into MSSM exclusions
 - complementary to $\phi \rightarrow \tau \tau$ channel as it does not suffer from $Z \rightarrow \tau \tau$ background

DØ: NMSSM h → aa Search (I)

- [new search] next-to-MSSM Higgs decay search, 3.7 fb⁻¹ data [Theory: Nucl. Phys. B 492, 21 (1997)]
 - $h \rightarrow b\bar{b}$ branching ratio greatly reduced
 - h dominantly decays to pair of pseudo-scalar Higgs "a": h → aa
 - general LEP search sets limit: M_h > 82 GeV [Eur. Phys. J. C27, 311 (2003)]

For Masses: $2M_{\mu} < M_a < \sim 2M_{\tau}$ (~3.6 GeV)

- BR(a $\rightarrow \mu^+\mu^-$) ~ 100%: 4μ final state
 - signature: two pairs of extremely collinear muons due to low M_a
- Require "companion-track" for each of two μ's
 ⇒ redefine object ID: μ isolation for "pair"

Background Events	4μ Final State	
QCD background $[\mu's from \pi/K in-flight decays or \mu's from heavy-flavor decays]$	1.2 ± 0.4	
Z/γ [*] → μμ + jets	0.25 ± 0.03	
Data	3	

DØ: NMSSM h → aa Search (II)

For Masses: $2M_{\tau} < M_a < 2M_b$ (~9.0 GeV)

- BR(a $\rightarrow \mu^+\mu^-$) suppressed and "a" dominantly decays to tau pairs
 - 2μ2τ final state: one pair of collinear muons and large $\not\!\!{E}_{\tau}$ from a → τ⁺τ⁻ decay
- Select back-to-back $\mu\mu$ and $\tau\tau$ -paired topologies: $\Delta\phi$ ($\not\!\!E_T$, 2μ) > 2.5
- Fit signal di-muon mass: data consistent with expected backgrounds within ±20 window

Current Tevatron limit: × ~4 larger than expected Higgs production

Tevatron: requires $\mathcal{O}(\sim 40 \text{ fb}^{-1})$ data to reach sensitivity at expected signal level

LHC: need $\mathcal{O}(\sim 1 \text{ fb}^{-1})$ due to × ~50 larger Higgs cross section

Closing Summary

- CDF and DØ actively searching for Higgs boson in models beyond SM
 - results with up to 3.7 fb⁻¹ reported with no excess observed in data
- Fermiophobic Higgs
 - strong mass-dependent limits established for $h_f \rightarrow \gamma \gamma$, WH \rightarrow WWW* searches
 - + Higgs decays also contribute to SM Higgs searches
- MSSM Higgs
 - 95% CL exclusions in MSSM parameter space calculated for neutral Higgs search
 - + reached sensitivity $\tan \beta \sim 40 50$ for $M_{\Delta} < 180$ GeV
 - + combination of different channels and with experiments is in progress
- NMSSM Higgs
 - new search at Tevatron, offers promising prospects for Higgs physics at LHC
- Tevatron delivered > 6.0 fb⁻¹ of Run II data ...and more coming
 - updated results from searches expected soon
 - expect sensitivity to continually improve
 - + if a key value of $(M_A, \tan \beta)$ achieved, aim for observation

CDF: http://www-cdf.fnal.gov/physics/new/hdg/hdg.html

DØ: http://www-d0.fnal.gov/Run2Physics/WWW/results/higgs.htm

A. Patwa: Moriond 2009

Reference Slides

Ref: SM Higgs Production at Tevatron

Gluon fusion: gg → H

 $\sigma = 0.70 \text{ pb}$ for $M(H) = 120 \text{ Gev/c}^2$ with QCD NLO correction

Higgsstrahlung: $q\overline{q} \rightarrow VH$ (V=W, Z)

WH: $\sigma = 0.16 \text{ pb}$

ZH: $\sigma = 0.10 \text{ pb}$

Vector Boson Fusion: $q\overline{q} \rightarrow q\overline{q}H$

 σ = 0.10 pb

Radiation off heavy quark: $q\overline{q} \rightarrow t\overline{t}H$, $b\overline{b}H$

τ properties

- Mass = 1.78 GeV; Short lifetime, $c\tau$ = 87.11 μ m
 - $\mathcal{O}(10^{-13} \text{ s})$
 - taus decay prior to reaching any detector active element
- Main decay channels:

τ Decay Final State	BR (%)	Decay Type	
$e + v_e + v_\tau$	17.8	Leptonic	$ au_{e}$
$\mu + \nu_{\mu} + \nu_{\tau}$	17.4	(35.2%)	$ au_{\mu}$
π (/K) + ν_{τ}	11.8	1-prong	
$\pi(/K) + \nu_{\tau} + \ge 1\pi^{\circ}$	36.9	(48.7%)	$ au_{h}$
πππ + ≥0πo + ντ	13.9	3-prong	

Detect using standard electron / muon ID algorithms

Need dedicated tau ID to measure "narrow", low multiplicity jet objects

- Taus decay ~17% to e, μ; ~65% to hadrons
- For Higgs to di-tau final state, three channels studied

Detectors

- silicon detector and scintillating fiber tracker in 2.0 T solenoidal field
- liquid argon/uranium calorimeters: central (CC) and two forward, end (EC) calorimeters
- muons: scintillators and mini-drift tubes, coverage up to $\eta = 2.0$

- silicon and central outer tracker system in 1.4 T magnetic field
- lead (iron) scintillating calorimeter for EM (hadronic) showering
- forward end-plug cal, $\eta \rightarrow 3.0$
- muon coverage to $\eta = 1.0$

A. Patwa: Moriond 2009

b-jet identification & tagging

- B-hadrons are long lived
 - search for displaced vertices & tracks with large impact parameters
- Tag via neural network (NN) tagger
 - combines several dca & vertex based tagging algorithms

Neural Network Input Variables

- vertex mass
- number of tracks for vertex
- vertex decay length significance
- $\chi^2/d.o.f.$ of vertex
- number of vertices
- combined impact parameter significances from two methods

Loose tag: ~70% eff; ~4.5% mis-tag Tight tag: ~48% eff; ~0.3% mis-tag

CDF

τ Identification

narrow calorimeter clusters matched to low multiplicity tracks

- define [shrinking] signal and isolation cones
 around seed track's axis (= highest p_T track; > 6 GeV)
- + # of tracks inside signal cone = τ decay mode
- + add π° info to track-cal cluster \Rightarrow consistent with τ mass
- + EM-fraction < 0.8 ⇒ remove electrons
- τ-id based on "cuts" to key variables
 (e.g., sum of isolation E_T, p_T tracks inside cone)

--- isolation cone (annulus: θ_{sig} to θ_{iso} =30°; ΣΕ_τiso [trks, π °] < [2, 1 GeV])

cal cluster
(in CES detector

- narrow calorimeter energy clusters matched to tracks, with or without EM subclusters
- separate τ 's into 3 categories, defined by their decay mode
 - + πv -like (type 1), ρv -like (type 2), and 3-prongs (type 3)
 - + implement neural nets (NN) for each τ -type to discriminate τ signal from QCD jets

A. Patwa: Moriond 2009

MSSM Benchmark Scenarios

- For neutral Higgs searches: $\sigma \times BR$ limits \Rightarrow interpreted in MSSM
- Tree-level: Higgs sector of MSSM described by M_{Δ} & tan β
 - radiative corrections introduce dependence on additional SUSY parameters
- Five additional, relevant parameters
 - M_{SUSY} Common Scalar mass: parameterizes squark, gaugino masses
 - X_t Mixing Parameter: related to the trilinear coupling $A_t \rightarrow stop$ mixing
 - M₂ SU(2) gaugino mass term
 - μ Higgs mass parameter
 - m_e gluino mass: comes in via loops

Two common benchmarks

- m_h^{max} (max-mixing): Higgs boson mass, m_h, close to maximum possible value for a given tanβ
- no-mixing: vanishing mixing in stop sector ⇒ small Higgs boson mass, m_b

Constrained Model: Unification of SU(2) and U(1) gaugino masses			
	m _h ^{max}	no-mixing	
M _{SUSY}	1 TeV	2 TeV	
X_t	2 TeV	0	
M_2	200 GeV	200 GeV	
μ	±200 GeV	±200 GeV	
$m_{\scriptscriptstyle{\widetilde{\sigma}}}$	800 GeV	1600 GeV	

Fermiophobic $h_f \rightarrow \gamma \gamma$ Search

- 1.1 fb⁻¹ result: PRL 101, 051801 (2008)
- Distinguish photons with misidentified jet backgrounds by using NN
 - implement energy-weighted width of DØ central preshower clusters
 - exploit fact that preshower width narrower for photons than for jets

- Search for excess of events in γγ mass spectrum
- Exclude Fermiophobic Higgs of mass up to 100 GeV at 95% C.L.
- Extends sensitivity for Br($h_f \rightarrow \gamma \gamma$) into $m_{hf} > 130$ GeV region, not accessible by LEP

Multivariate Methods: Variables

WH → WWW* Search

WH → WWW* Search

8-variable Boosted Decision Tree (BDT)

 1^{st} lepton $p_T (p_{T1})$

 2^{nd} lepton $p_T(p_{T2})$

Dilepton System $p_T(p_{T12})$

Missing E_T (MET)

Dilepton Mass

MetSpec: MET if $\Delta \phi$ (MET, ℓ or jet) > $\pi/2$ MET*sin($\Delta \phi$ (MET, ℓ or jet)); otherwise

 H_T (sum of p_{T1} , p_{T2} , jets E_T , MET)

 N_{iets} for jet's $E_T > 15$ GeV

 $\Delta \phi(l_1, l_2)$ = opening angle between leptons

MET [for ee and eμ], Hadronic MET (for all)

Min Angle: $\Delta \phi(I, MET)$ [for $\mu\mu$]

 $M(l_1, l_2)$ = Invariant mass between leptons

$h_f \rightarrow \gamma \gamma$ Search

5-variable Artificial NN

 $\Sigma p_T(trks)$

 N_{cells} in CAL Layer 1 within $\Delta R < 0.2$

 N_{cells} in CAL Layer 1 within 0.2 < ΔR < 0.4

Number of associated CPS clusters with EM

Energy-weighted width of CPS clusters

φb → bb̄b Search

 $\Delta \eta$ of 2-jets in the pair

 $\Delta \phi$ of 2-jets in the pair

angle: φ(lead jet, total pT of jet)

Momentum balance: $|p_{b1}-p_{b2}|/|p_{b1}+p_{b2}|$

combined rapidity of jet pair

event sphericity

$\phi b \rightarrow \tau \tau b$ Search

kNN (anti-top)	Log-Likelihood (anti-QCD)
N _{jets}	Muon p _T
H _T	Tau p _T
E(τ + μ + j)	Δ R(μ , $ au$)
Δ φ(μ , τ)	$M_{\mu\tau}$: μ - τ Mass
	Visible Mass, M _{vis}

Visible Mass

- After final event selections for $\phi \rightarrow \tau \tau$, irreducible background from $Z \rightarrow \tau \tau$
 - small contribution from EW and QCD multi-jet
- Distinguish Higgs boson by its mass
 - presence of neutrinos in final states \Rightarrow not possible to reconstruct $\tau\tau$ mass
 - use visible mass: the invariant mass of the sum of the τ decay plus missing transverse energies
 - * exploit fact that signal appears as an enhancement above $Z \rightarrow \tau \tau$

$$M_{VIS} = \sqrt{(P^{\tau 1} + P^{\tau 2} + P_T)^2}$$

- Use 4-vectors of:
 - P^{τ1}, P^{τ2} of visible tau decay products
 - $P_T = (E_T, E_x, E_y, 0)$, where E_x and E_y indicate components of E_T

φ→ττ: σ×BR Limit

- Study M_{vis} for Higgs boson masses from 90 to 300 GeV
 - no significant evidence for Higgs production observed
 - + modified frequentist (CL_s) method used to extract upper limits on $\sigma \times BR$
 - + M_{vis} used as input to limit calculation

2.2 fb⁻¹ DØ Combination in Run II: 10-20% improvement in $\sigma \times BR$ from PRL result

Major Systematic Uncertainties

Luminosity (6.1%)

 τ -ID (4-8%, τ -type dependent)

τ energy scale (shape)

Z cross section (5%)

Trigger efficiency (shape)

DØ: $\phi b \rightarrow \tau \tau b$ Channel

- 1.2 fb⁻¹ search considers $\phi b \rightarrow \tau_{\mu} \tau_{had} b$
 - isolated muon, $p_T > 12$ GeV; hadronic τ selected via τ -ID NN
 - one b-tagged jet using NN b-tagger: $p_T > 15$ GeV, $\Delta R(\ell_{\mu,\tau}, j) > 0.5$
- Pre b-tag: dominated by QCD multi-jet and Z→ττ, μμ backgrounds
- Post b-tag: dominated by QCD multi-jet and top events

(★ = largest contribution)

All τ _h -decay types	Ζ→(ττ;μμ)	Тор	Multi-jet	Other EW	Total Pred.	DATA
PRE b-tag	532.3 ± 5.6 *	26.5 ± 1.0	252.7 ± 17.0 *	56.0 ± 2.1	867.4 ± 24.8	906 ± 30
POST b-tag	7.8 ± 0.1	16.0 ± 0.6 *	16.8 ± 1.4 *	1.0 ± 0.1	41.7 ± 1.5	54 ± 7.4

