Martin Goebel (DESY / Universität Hamburg) for the Gfitter group

XLIVth Rencontres de Moriond Electroweak Interactions and Unified Theories 8th March 2009

Revisiting the Global Electroweak Fit of the Standard Model and Beyond with Gfitter

http://cern.ch/Gfitter

paper accepted by Eur. Phys. J. C, (arXiv:0811.0009) H. Flächer (CERN), M. G. (Univ. Hamburg, DESY), J. Haller (Univ. Hamburg), A. Höcker (CERN), K. Mönig (DESY), J. Stelzer (DESY)

G fitter

A Generic Fitter Project for HEP Model Testing

- modular framework for involved fitting problems in the LHC era (and beyond)
- coherent treatment of statistical, systematic errors, and correlations
 - theoretical uncertainties: included in χ^2 estimator with flat likelihood in allowed ranges
- physics plug-in packages
 - Library for the Standard Model fit to the electroweak precision data
 - Library for SM extensions via the oblique parameters
 - Library for the 2HDM extension of the SM

A Gfitter Package for the Global Electroweak Fit

- complete new implementation of SM predictions of electroweak precision observables
- state-of-the art calculations (OMS scheme); in particular:
 - M_W and sin²θ^f_{eff}: full two-loop + leading beyond-two-loop correction [M. Awramik et al., Phys. Rev D69, 053006 (2004) and ref.][M. Awramik et al., JHEP 11, 048 (2006) and refs.]
 - radiator functions: N³LO of the massless QCD Adler function [P.A. Baikov et al., Phys. Rev. Lett. 101 (2008) 012022]
- wherever possible calculations cross-checked against ZFITTER
 → excellent agreement

Fit Input

	Parameter	Input value
usage of latest experimental results:		
• Z-pole observables : LEP/SLD results	$M_Z [{ m GeV}]$	91.1875 ± 0.0021
[ADLO+SLD, Phys. Rept. 427, 257 (2006)]	$\Gamma_Z [{ m GeV}]$	2.4952 ± 0.0023
• Mw and Tw: LEP/Tevatron	$\sigma_{ m had}^0 ~[{ m nb}]$	41.540 ± 0.037
[ADLO, hep-ex/0612034] [CDF, Phys Rev. D77, 112001 (2008)] [CDF, Phys. Lett. 100,	R_ℓ^0	20.767 ± 0.025
071801 (2008)] [CDF+D0, Phys. Rev. D 70, 092008 (2004)]	$A_{ m FB}^{0,\ell}$	0.0171 ± 0.0010
• m_t: Ievatron [arXivx:0808.1089 [hep-ex]]	A_ℓ (*)	0.1499 ± 0.0018
• $\Delta \alpha_{had}^{(5)}(M_Z^2)$: including α_S dependency	A_c	0.670 ± 0.027
[Hagiwara et al., Phys. Lett. B649, 173 (2007)]	A_b	0.923 ± 0.020
 m_c, m_b: world averages [PDG, J. Phys. G33,1 (2006)] 	$A_{ m FB}^{0,c}$	0.0707 ± 0.0035
theoretical uncertainties: $M = (8M - 4 - 6Ge)/(8)$	$A_{ m FB}^{0,b}$	0.0992 ± 0.0016
theoretical uncertainties. $W_W (0 W_W - 4^{-}00eV)$,	R_c^0	0.1721 ± 0.0030
$\sin^2\theta_{\text{eff}}^{\text{I}}$ ($\delta \sin^2\theta_{\text{eff}}^{\text{I}} = 4.7 \cdot 10^{-5}$)	R_b^0	0.21629 ± 0.00066
floating fit parameters: $M_{Z'}$, $M_{H'}$, $m_{t'}$, $\Delta \alpha_{had}^{(5)}$ (M_Z^2),	$\sin^2 \theta_{\rm eff}^{\ell}(Q_{\rm FB})$	0.2324 ± 0.0012
$\alpha_{\rm S}({\rm M_Z}^2), \ \overline{\rm m_{c'}} \ \overline{\rm m_{b}}$	$M_H \; [\text{GeV}] \;^{(\circ)}$	Likelihood ratios
fits are performed in two versions:	M_W [GeV]	80.399 ± 0.025
 standard fit: all data except results from direct 	$\Gamma_W [{ m GeV}]$	2.098 ± 0.048
Higgs searches	$\overline{\overline{m}_c}$ [GeV]	1.25 ± 0.09
 complete fit: all data including results from 	$\overline{m}_b [{\rm GeV}]$	4.20 ± 0.07
direct Higgs searches at LEP [ADLO: Phys. Lett. B565, 61 (2003)]	$m_t [{ m GeV}]$	172.4 ± 1.2
and Tevatron [CDF+D0: arXiv:0804.3423, CDF+D0: arXiv:0808.0534]	$\Delta \alpha_{\rm had}^{(5)}(M_Z^2) \ ^{(\dagger \bigtriangleup)}$	2768 ± 22
	$\alpha_s(M_Z^2)$	_

[†] in units of 10⁻⁵

Higgs Mass Constraints

- standard fit:
 - from MC toy: p-value=0.225±0.004_{-0.02}
 - Higgs mass
 - central value $\pm 1\sigma$: $M_{\rm H} = 80^{+30}_{-23} \ {\rm GeV}$
 - 2σ interval: [39, 155] GeV
 - 3σ interval: [26, 209] GeV
- green error band
 - theory uncertainties directly included in χ² ("flat likelihood")
- direct Higgs searches from LEP and Tevatron
 - resulting contribution added to the χ^2 during the fit

Higgs Mass Constraints

- standard fit:
 - from MC toy: p-value=0.225±0.004_{-0.02}
 - Higgs mass
 - central value $\pm 1\sigma$: $M_{\rm H} = 80^{+30}_{-23} \ GeV$
 - 2σ interval: [39, 155] GeV
 - 3σ interval: [26, 209] GeV
- green error band
 - theory uncertainties directly included in χ² ("flat likelihood")
- complete fit:
 - from MC toy: p-value=0.217±0.004_{-0.02}
 - including direct Higgs searches
 - Higgs mass:
 - central value $\pm 1\sigma$: $M_{\rm H} = 116.4_{-1.3}^{+18.3} {\rm GeV}$
 - 2σ interval: [114, 145] GeV

UH

Pulls and Results for Complete Fit

- pull values of complete fit
 - no value exceeds 3σ
 - FB asymmetry of bottom quarks \rightarrow largest contribution to w^2
 - \rightarrow largest contribution to χ^2
- α_S from complete fit:

 $\alpha_{\rm S}(M_Z^2) = 0.1193^{+0.0028}_{-0.0027} \pm 0.0001$

- including N³LO of the massless QCD Adler function
- first error is experimental fit error
- second error due to missing QCD orders:
 - incl. variation of renorm. scale from M_Z/2 to 2M_Z and massless terms of order/beyond $\alpha_s^{-5}(M_Z)$ and massive terms of order/beyond $\alpha_s^{-4}(M_Z)$

Standard Fit: Deeper Look

- Higgs mass constraints from most sensitive observables
 - tension between M_W , A_I (SLD), and $A_{FB}{}^{0,b}$
 - including measurements of floating fit parameters

- How compatible are these measurements?
 - MC toy analysis ("look-elsewhere-effect")
 - compare the χ^2_{min} of the full fit with χ^2_{min} of a fit without the least compatible measurement (here $A_{FB}^{0,b}$) $\rightarrow \Delta \chi^2_{min} = 8.0$
 - Generate toy sample around fitted values and repeat procedure by calculating the $\Delta \chi^2_{min} \rightarrow \Delta \chi^2_{min}^{toy}$ -distribution
 - 1.4% (2.5 σ) of toys show a result worse than the $\Delta \chi^2_{min}$ of the data

W and Top Mass

- indirect fit results agree with experimental values
- results from Higgs searches significantly reduce the allowed parameter space
- probe of SM, if M_H is measured at LHC and/or ILC

Prospects for LHC and ILC

- LHC, ILC (+GigaZ)*
 - exp. improvement on $M_W,\ m_{t'} \\ sin^2 \theta^I_{eff}, R_I^0$
 - in addition improved $\Delta \alpha_{had}^{(5)} (M_Z^2)$

0		Expected uncertainty			
Quantity		Present	LHC	ILC	GigaZ (ILC)
$M_W \; [\mathrm{MeV}]$		25	15	15	6
$m_t \; [\; \text{GeV}]$		1.2	1.0	0.2	0.1
$\sin^2\theta_{\rm eff}^\ell \ [10^{-5}]$]	17	17	17	1.3
$R_{\ell}^0 [10^{-2}]$		2.5	2.5	2.5	0.4
$\Delta \alpha_{\rm had}^{(5)}(M_Z^2) \ [$	$[10^{-5}]$	22(7)	22(7)	22(7)	22(7)
$M_H (= 120 \text{ G})$ $\alpha_s (M_Z^2) [10^-$	eV) [GeV] ⁴]	$^{+56}_{-40} \begin{pmatrix} +52\\ -39 \end{pmatrix} \begin{bmatrix} +39\\ -31 \end{bmatrix}$ 28	$^{+45}_{-35} \begin{pmatrix} +42\\ -33 \end{pmatrix} \begin{bmatrix} +30\\ -25 \end{bmatrix}$ 28	$^{+42}_{-33} \begin{pmatrix} +39\\ -31 \end{pmatrix} \begin{bmatrix} +28\\ -23 \end{bmatrix}$ 27	$ \begin{array}{c} +27 \\ -23 \end{array} \begin{pmatrix} +20 \\ -18 \end{pmatrix} \begin{bmatrix} +8 \\ -7 \end{bmatrix} \\ 6 \end{array} $

- assume M_H=120 GeV by adjusting central values of observables
- improvement of M_H prediction
 - to be confronted with direct measurement → goodness-of-fit
 - broad minima: Rfit treatment of theo. uncertainties
- GigaZ: significant improvement for M_H and $\alpha_S(M_Z^2)$

*[ATLAS, Physics TDR (1999)][CMS, Physics TDR (2006)][A. Djouadi et al., arXiv:0709.1893][I. Borjanovic, EPJ C39S2, 63 (2005)][S. Haywood et al., hepph/0003275][R. Hawkings, K. Mönig, EPJ direct C1, 8 (1999)][A. H. Hoang et al., EPJ direct C2, 1 (2000)][M. Winter, LC-PHSM-2001-016]

A Gfitter Package for SM Extensions

- oblique electroweak corrections to SM observables (physics beyond SM appear only through vacuum polarizations)
 - STU parameters [Peskin and Takeuchi, Phys. Rev. D46, 1 (1991)]
 - $O_{\text{measurement}} = O_{\text{SM}}(M_{\text{H}'}m_{\text{t}}) + c_{\text{S}}S + c_{\text{T}}T + c_{\text{U}}U$
 - S : new physics contribution to neutral current processes
 - (S+U) : new physics contribution to charged current processes
 U only sensitive to W mass and width
 usually very small in new physics models (often: U=0)
 - T : difference between neutral and charged current processes (sensitive to isospin violation)
 - also implemented extended parameters (VWX) and corrections to Zbb couplings [Burgess et al., Phys. Lett. B326, 276 (1994)] [Burgess et al., Phys. Rev. D49, 6115 (1994)]

Martin Goebel

Global Fit of electroweak SM and beyond

Fit to Oblique Parameters

- derived from fit to electroweak observables (see global SM fit)
- floating fit parameters: $M_{Z'} \alpha_s(M_Z^2)$, $\Delta \alpha_{had}^{(5)}(M_Z^2)$
- 68%, 95% CL ellipses for various M_H values and $m_t = 172$ GeV (fixed)

Littlest Higgs with T-Parity

- Higgs pseudo-Nambu-Goldstone boson
- new fermions and new gauge bosons
 - two new top states (T-odd $m_{T\text{-}}$ and T-even $m_{T\text{+}}$)
 - LH solves hierarchy problem (new particles cancel SM loops)
- T-parity
 - provide dark matter candidate
 - forbids tree-level contribution from heavy gauge bosons to SM observables

- parameters of LH model
 - f symmetry breaking scale (scale of new particles)
 - $s_{\lambda} \cong m_{T_{-}} / m_{T_{+}}$ ratio of masses in top sector
 - order one-coefficient δ_c (exact value depends on detail of UV physics)
 - treated as theory uncertainty in fit (Rfit) $\delta_c {=}{-}5{\ldots}5$
 - oblique parameters replaced by corrections from LH model [Hubisz et al., JHEP 0601:135 (2006)]

Global Fit of electroweak SM and beyond

A Gfitter Package for 2HDM SM Extensions

- Two Higgs Doublet Model (Type-II)
 - additional Higgs doublet
 - one doublet couples to up-type, one doublet couples to down-type fermions
 - 6 free parameters \rightarrow M_{H±'} M_{A0'} M_{H0'} M_{h'} tan β , $|\alpha|$

Two Higgs Doublet Model

observable	input value	exp. ref	calculation
R₀⁰	0.21629 ± 0.00066	[ADLO, Phys. Rept.427, 257 (2006)	[H. E. Haber and H. E. Logan, Phys. Rev. D62, 015011 (2000)]
BR (Β->Χ _s γ)	(3.52±0.23±0.09) ·10 ⁻⁴	[HFAG, latest update]	[M. Misiak et al., Phys. Rev. Lett. 98, 022002 (2007)]
BR (B->τν)	(1.51±0.33) ·10-4	[P.Chang, Talk at ICHEP 2008]	[W. S. Hou, Phys. Rev. D48, 2342 (1993)]
BR (B->μν)	(-5.7±6.8±7.1)·10-4	[E. Baracchini, Talk at ICHEP 2008]	[W. S. Hou, Phys Rev. D48, 2342 (1993)]
BR (K->μν)/ BR(π->μν)	1.004±0.007	[FlaviaNet,, arXiv:0801.1817]	[FlaviaNet, arXiv:0801.1817]
BR(B->Dτν)/ BR(B->Dev)	0.416±0.117±0.052	[Babar, Phys. Rev. Lett 100, 021801 (2008)]	[J. F. Kamenik and F. Mescia, arXiv:0802.3790]

- so far: only looked at processes sensitive to charged Higgs → $M_{H_{\pm}}$, tanβ
- overlay of individual 95% CL excluded regions
 - assuming n_{dof}=1 and 2-sided limits
- combined fit:
 - ndof ambiguity resolved by MC toy study assuming 2sided limits
- excluded at 95% CL:
 - small $tan\beta$
 - for all $tan\beta$
 - M_H < 240 GeV
 - $M_H < 780$ GeV for tan $\beta = 70$

Conclusion

- Gfitter is a framework for involved fitting problems
 - advanced studies of statistical fit properties
- results for electroweak fit of the SM
 - inclusion of direct Higgs searches $\rightarrow M_{\rm H} = 116.4_{-1.3}^{+18.3} \text{ GeV}$
 - no evidences for physics beyond SM (p-value, pull values, small oblique corrections)
- assuming new physics models
 - constraints on Littlest Higgs model
 - constraints on Two-Higgs-Doublet Model (Type II)
- continuous support
 - Stay tuned for updated results with new Higgs combination from Tevatron at end of conference
- more information/results:
 - <u>http://cern.ch/Gfitter</u>
 - paper accepted by Eur. Phys. J. C, (arXiv:0811.0009)

Backup

A Generic Fitter Project for HEP Model Testing

Backup

Martin Goebel

Global Fit of electroweak SM and beyond

Goodness of Global Fit

- determine p-value by using MC toy experiments
 - p-value: probability for wrongly rejecting the SM
 - p-value: probability for getting a $\chi^2_{min,toy}$ larger than the $\chi^2_{min,data}$ from data

sensitive observables mixed with insensitive ones

Martin Goebel

Global Fit of electroweak SM and beyond

Complete Fit: Direct Higgs Searches

- complete fit: $\chi^2_{min}/n_{dof} = 18.0/14$
 - Higgs mass:
 - central value $\pm 1\sigma$: M_H = 116.4^{+18.3}_{-1.3} GeV
 - 2σ interval: [114, 145] GeV
- direct Higgs searches from LEP and Tevatron
 - using one-sided CL_{s+b}
 - sensitive to too few Higgs-like events
 - we are interested in any kind of deviation from "s+b" hypothesis
 - also too many Higgs-like events
 - transform one-sided CL_{s+b} into 2-sided $CL_{s+b}^{2-sided}$
 - compute contribution χ^2 to assuming symmetric PDF:

 $\delta \chi^2 = \mathrm{Erf}^{-1}(1 - \mathrm{CL}^{2-\mathrm{sided}}_{\mathrm{s+b}})$

