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Abstract

We discuss how, by including gauge singlets in supersymmetric gauge theories, one can con-
struct and test new types of duality. This may help in finding dual theories of supersymmetric
GUTs. This talk is based on the recent article Ref.[1].

1 Introduction and motivation

Seiberg duality in N = 1 supersymmetry (see Ref.[2] for a review) gives us a different per-
spective on supersymmetric (SUSY) gauge theories. It is a pure field theory duality between
two SUSY gauge theories. The original incarnation was supersymmetric QCD (SQCD) with
FQ flavours of quark/antiquark and N colours. The would-be dual theory is also SQCD,
with FQ flavours of quark/antiquark, but with n = FQ−N colours and an extra, elementary
meson field M . Various powerful tests such as ‘t Hooft anomaly matching established that
the two theories are really different descriptions of the same infra-red physics. This kind of
duality has great potential to shed light on many aspects of BSM physics such as gauge uni-
fication, proton decay and dynamical SUSY breaking. Unfortunately Seiberg dualities only
currently exist for theories with highly constrained matter content and unrealistic superpo-
tentials (see Refs.[3–8] for some examples). If we ever want to access these phenomenological
applications we will therefore need to extend the idea of Seiberg duality to a more realistic
model. Ideally we would like to be able to find a duality involving a SUSY grand unified
theory (GUT), like one of the SU(5) models.

1.1 An example: “dualification”

To illustrate what Seiberg duality might do for us, consider a recent example from Ref.[9];
“dualification”. Suppose we have some SUSY breaking GUT where the SUSY breaking is
mediated directly. The set-up for direct mediation is as follows. The theory contains two
sectors; the visible sector and the hidden sector. SUSY is broken somehow in the hidden
sector then communicated to the visible sector by messenger particles. For direct mediation,
these messenger particles are charged under the visible sector gauge group.

Now consider the renormalisation group (RG) flow of the visible sector gauge couplings
in this theory. They are sketched in Figure 1 (where we show the inverse coupling 1/α).
Starting at the weak scale MW it looks initially as though the couplings in the theory are
going to unify at a physical value of 1/α at the scale MGUT. However, once we reach the
messenger scale Mm we have to include the effects of the messenger particles, and thus the
RG flows of the couplings are deflected. This only occurs because the messenger particles
are charged under the visible sector gauge group. If the messenger sector comes in complete
SU(5) multiplets, all the beta functions are deflected by the same amount so the theory



still unifies at the scale MGUT. However, if the RG flows are deflected too much the theory
encounters a Landau pole; the couplings become arbitrarily strong and hit 1/α = 0 below
the unification scale, where our description of the physics breaks down. An interesting point
to note is that the theory continues to look as though it unifies at the GUT scale, but at a
negative (unphysical) value of 1/α.

Instead, we consider the original theory as one half of a duality. When we reach the strong
coupling regime 1/α ≈ 0 we can no longer describe the physics with the original theory but
it may be that a dual description exists. In the dual theory, the RG flow proceeds in the
opposite direction so we move away from the Landau pole. Remarkably, the unification is
not affected by the duality. All gauge couplings still flow to a single value and this occurs
at the same scale as the original theory, MGUT. It was therefore proposed in Ref.[9] that
unphysical, negative gauge coupling unification in a SUSY gauge theory is actually a remnant
from physical unification in a dual theory.
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Figure 1: “Dualification”. Deflection of the RG flows by messenger particles at the scale Mm

appears to cause unphysical unification at 1/α < 0 in the original theory. In the dual theory,
unification occurs much more naturally.

2 Extending the duality

Ref.[9] showed that this happens in simple vector-like GUT theories based on so-called Ku-
tasov dual theories (of which more in a moment): alas no similar dual theories are known for
the Georgi-Glashow model or Flipped SU(5). If one could be found however, the same argu-
ments should apply. In order to do this various extensions of Seiberg duality are required,
including chirality, more generations and so on. The present work constitutes a step in this
direction.

The difficulty in extending Seiberg duality stems from the meson sector. One of the
standard tests for dualities is that the classical moduli spaces of the two theories match up.
This means that all gauge invariant degrees of freedom in the original theory must have a
counterpart in the dual theory, with exactly the same properties under all global symmetries.
In particular, there must be a one to one correspondence between mesons in the two theories.
As an example, consider regular Seiberg duality [2].

The mesons in the original theory are the usual SQCD composite mesons Q̃Q, where
Q and Q̃ are the quarks/antiquarks respectively. The flavour indices have been suppressed
and the colour indices summed over. In the dual theory there are the composite mesons q̃q,
where q and q̃ are the dual quarks/antiquarks, but also the elementary mesons M . We can
see that there are twice as many mesons in the dual theory than in the original theory. To
remedy this we add a superpotential Wdual = Mq̃q to the dual theory which projects out
the composite mesons via the F -term equation

∂Wdual

∂M
= q̃q = 0. (1)

We are now able to construct the map Q̃Q↔M between mesons in the original theory and
the dual theory. This map respects all global symmetries.



For phenomenological purposes we often need to include more complicated matter than
quarks and antiquarks (which live in the fundamental and antifundamental representations
of the gauge group respectively). For example, suppose we want to include an adjoint
representation of the gauge group X. The most general meson we can construct is now
Q̃XjQ for any positive integer j. There are thus an arbitrary number of mesons in the
original theory so the dual theory is not well defined (in particular, we would require infinitely
many elementary degrees of freedom and an infinite number of colours in the dual theory to
match the two theories).

The solution to this problem was discovered in Refs.[6–8]. The idea is to add a su-
perpotential to the original theory which truncates the chiral ring, in effect limiting the
number of mesons in the original theory. This can be accomplished with the superpotential
Worig = Tr

[
Xk+1

]
for some integer k, where the trace is taken over colour indices. The

F -term equations in the original theory set

∂Worig

∂X
∼ Xk = 0 (2)

so we can only build k mesons: Q̃XjQ for j = 0, . . . , k − 1. Having done this, a duality can
be found in a similar way to the original Seiberg duality, but with n = kFQ−N colours and
a more complicated dual superpotential.

Unfortunately this technique comes with its own problems. By adding a superpotential
to the original theory we reduce the number of global symmetries. Non-trivial global symme-
tries are crucial for testing the duality at a quantum mechanical level via highly non-trivial
’t Hooft anomaly matching conditions. If we add too many terms to the original theory’s
superpotential we will therefore be unable to rigourously test the duality. Priority in this
regard is given to R-symmetries; symmetries which do not commute with SUSY transforma-
tions (i.e. fermions have different charges to their scalar superpartners). It turns out that
R-symmetries generally give the most stringent test of the duality, so we must aim to choose
a superpotential which allows one.

To address this problem we proposed the following in Ref.[1]. If we add gauge singlets
to the theory we can use them to restore the global symmetries broken by the original
theory’s superpotential. Alternatively this process can be viewed as elevating the coupling
constants in the superpotential to fields. In particular, gauge singlets allow the preservation
of an R-symmetry. This allows us much more freedom in choosing the superpotential while
preserving access to all of the standard tests of duality. Now we have more freedom in
choosing the superpotential we are able to add more matter to the theory and still have well
behaved mesons. We used this technique to extend Seiberg duality to theories with matter
content closer to that of a SUSY GUT; multiple generations of adjoint or antisymmetric
representations of the gauge group.

2.1 Example: SQCD with three generations of antisymmetric tensor

Suppose we want to extend SQCD (with FQ flavours of quark/antiquark and N colours)
to include three generations of antisymmetric tensor A, B and C (plus their conjugates).
Models with a single generation of antisymmetric were first discussed in Ref.[3] but for a
realistic SU(5) GUT we need at least three. To do this we include a singlet φ and give the
original theory the superpotential

Worig = φρA(AÃ)kA+1 +φρB (BB̃)kB+1 +φρC (CC̃)kC+1 +φσ
(
AB̃ + ÃB + BC̃ + B̃C

)
. (3)

The k’s are positive integers and the ρ’s are to be determined. The addition of a singlet
is necessary for the theory to possess an R-symmetry. For non-zero φ, the F -terms of this
superpotential result in truncation equations

Ã(AÃ)k∗ ∼ O
(
Ã(AÃ)k∗−2kAkB−kA−kB

)
(AÃ)k∗A ∼ O

(
(AÃ)k∗−2kAkB−kA−kBA

)
. (4)



for the chiral ring, where

k∗ =
1
2

[(2kA + 1) (2kB + 1) (2kC + 1)− 1] . (5)

The other antisymmetrics can be expressed entirely in terms of A and Ã so the truncation
is complete. The mesons are then schematically

Mj ∼ Q̃(ÃA)jQ, j = 0, . . . , k∗

Pj ∼ Q(ÃA)jÃQ, j = 0, . . . , k∗ − 1
P̃j ∼ Q̃A(ÃA)jQ̃, j = 0, . . . , k∗ − 1.

(6)

In Ref.[1] we show that a dual theory with

n = (2k∗ + 1) FQ − 4k∗ −N (7)

colours can then be found. A key feature of our technique is that the gauge singlet appears
in the definition of the mesons in the original theory. We determine unambiguously how this
should be done and find that our approach is totally consistent with all global symmetries
as well as ’t Hooft anomaly matching.
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